Identification of the Sediment Movement Mechanism via Grain Size and Shape: A Case Study of a Beach in Eastern Hainan Island in South China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sediment Sampling and Beach Morphology
2.3. Dynamic Image Analysis (DIA)
2.4. The Grain Size Cumulative Frequency Curve and the Grain Size–Shape Curve Trend
3. Results
3.1. Distributions of Grain Size and Grain Shape
3.2. Cumulative Frequency Curves and Grain Size–Shape Trend Curves
3.3. Grain Size Frequency Curves and Grain Size–Shape Trend Curves
4. Discussion
4.1. The Indication and Sorting Processes of Sediment Grain Size and Shape
4.2. Response of the Grain Size–Shape Trend Curve of Beach Surface Sediments to Beach Morphology
4.3. Indication of Grain Shape to Sediment Transport Direction
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pettijohn, F.J. The Texture of Sediment. In Sedimentary Rocks, 2nd ed.; Harper and Row Publishers: New York, NY, USA, 1972; pp. 25–77. ISBN 0060451912. [Google Scholar]
- Oakey, R.J.; Green, M.; Carling, P.A.; Lee, M.W.E.; Sear, D.A.; Warburton, J. Grain-shape analysis—A new method for determining representative grain shapes for populations of natural grains. J. Sediment. Res. 2005, 75, 1065–1073. [Google Scholar] [CrossRef]
- Blott, S.J.; Pye, K. Particle shape: A review and new methods of characterization and classification. Sedimentology 2008, 55, 31–63. [Google Scholar] [CrossRef]
- Suzuki, K.; Fujiwara, H.; Ohta, T. The evaluation of macroscopic and microscopic textures of sand grains using elliptic Fourier and principal component analysis: Implications for the discrimination of sedimentary environments. Sedimentology 2015, 62, 1184–1197. [Google Scholar] [CrossRef]
- Woronko, B.; Dłużewski, M.; Woronko, D. Sand-grain micromorphology used as a sediment-source indicator for Kharga Depression dunes (Western Desert, S Egypt). Aeolian Res. 2017, 29, 42–54. [Google Scholar] [CrossRef]
- van Hateren, J.A.; van Buuren, U.; Martinus Arens, S.; Theodorus van Balen, R.; Arnoud Prins, M. Identifying sediment transport mechanisms from grain size–shape distributions: Applied to aeolian sediments. Earth Surf. Dyn. 2020, 8, 527–553. [Google Scholar] [CrossRef]
- Chmielowska, D.; Woronko, B.; Dorocki, S. Applicability of automatic image analysis in quartz-grain shape discrimination for sedimentary setting reconstruction. Catena 2021, 207, 105602. [Google Scholar] [CrossRef]
- Folk, R.L.; Ward, W.C. Brazos River bar: A study in the significance of grain size parameters. J. Sediment. Res. 1957, 27, 3–26. [Google Scholar] [CrossRef]
- Vandenberghe, J.; Sun, Y.; Wang, X.; Abels, H.A.; Liu, X. Grain-size characterization of reworked fine-grained aeolian deposits. Earth-Sci. Rev. 2018, 177, 43–52. [Google Scholar] [CrossRef]
- Liang, J.; Liu, J.; Xu, G.; Chen, B. Grain-size characteristics and net transport patterns of surficial sediments in the Zhejiang nearshore area: East China Sea. Oceanologia 2020, 62, 12–22. [Google Scholar] [CrossRef]
- Zhan, Z.; Jiang, F.; Chen, P.; Gao, P.; Lin, J.; Ge, H.; Wang, M.; Huang, Y. Effect of gravel content on the sediment transport capacity of overland flow. Catena 2020, 188, 104447. [Google Scholar] [CrossRef]
- Zhang, P.; Yao, W.; Liu, G.; Xiao, P.; Sun, W. Experimental study of sediment transport processes and size selectivity of eroded sediment on steep Pisha sandstone slopes. Geomorphology 2020, 363, 107211. [Google Scholar] [CrossRef]
- Katharina Tholen, T.P.; Hezi Yizhaq, I.K.; Kroy, K. Megaripple mechanics: Bimodal transport ingrained in bimodal sands. Nat. Commun. 2022, 13, 162. [Google Scholar] [CrossRef] [PubMed]
- Visher, G.S. Grain size distributions and depositional processes. J. Sediment. Petrol. 1969, 39, 1074–1106. [Google Scholar]
- Molinaroli, E.; Guerzoni, S.; De Falco, G.; Sarretta, A.; Cucco, A.; Como, S.; Simeone, S.; Perilli, A.; Magni, P. Relationships between hydrodynamic parameters and grain size in two contrasting transitional environments: The Lagoons of Venice and Cabras (Italy). Sediment. Geol. 2009, 219, 196–207. [Google Scholar] [CrossRef]
- Venkatramanan, S.; Chung, S.Y.; Ramkumar, T.; Park, N. Grain size trend and hydrodynamic condition of Tirumalairajan River Estuary, East Coast of India. Oceanology 2014, 54, 532–540. [Google Scholar] [CrossRef]
- Vandenberghe, J. Grain size of fine-grained windblown sediment: A powerful proxy for process identification. Earth-Sci. Rev. 2013, 121, 18–30. [Google Scholar] [CrossRef]
- Prodger, S.; Russell, P.; Davidson, M. Grain-size distributions on high-energy sandy beaches and their relation to wave dissipation. Sedimentology 2016, 64, 1289–1302. [Google Scholar] [CrossRef]
- Liu, S.; Li, P.; Feng, A.; Zhang, Z.; Yu, X.; Zhu, Z. Morphological variation and sediment dynamic in a cape-bay beach with a tidal channel around (Sanshan Dao beach, west coast of Laizhou Bay, China). Indian J. Geo. -Mar. Sci. 2017, 46, 847–859. [Google Scholar]
- Zhong, Y.; Chen, Z.; Li, L.; Liu, J.; Li, G.; Zheng, X.; Wang, S.; Mo, A. Bottom water hydrodynamic provinces and transport patterns of the northern South China Sea: Evidence from grain size of the terrigenous sediments. Cont. Shelf Res. 2017, 140, 11–26. [Google Scholar] [CrossRef]
- Joevivek, V.J.; Chandrasekar, N.; Jayangondaperumal, R.; Thakur, V.C.; Purniema, K.S. An interpretation of wave refraction and its influence on foreshore sediment distribution. Acta Oceanol. Sin. 2021, 38, 151–160. [Google Scholar] [CrossRef]
- Wang, S.; Pan, C.; Xie, D.; Xu, M.; Yan, Y.; Li, X. Grain size characteristics of surface sediment and its response to the dynamic sedimentary environment in Qiantang Estuary, China. Int. J. Sediment. Res. 2022, 37, 457–468. [Google Scholar] [CrossRef]
- Bridge, J.S.; Bennett, S.J. A model for the entrainment and transport of sediment grains of mixed sizes, shapes, and densities. Water Resour. Res. 1992, 28, 337–363. [Google Scholar] [CrossRef]
- Sun, R.; Xiao, H.; Sun, H. Realistic representation of grain shapes in CFD–DEM simulations of sediment transport with a bonded-sphere approach. Adv. Water Resour. 2017, 107, 421–438. [Google Scholar] [CrossRef]
- Novák-Szabó, T.; Sipos, A.Á.; Shaw, S.; Bertoni, G.; Pozzebon, A.; Grotolli, E.; Sarti, G.; Ciavola, P.; Domokos, G.; Jerolmack, D.J. Universal characteristics of particle shape evolution by bed-load chipping. Sci. Adv. 2018, 4, eaao4946. [Google Scholar] [CrossRef] [PubMed]
- Li, K.M.; Zuo, L.; Nardelli, V.; Alves, T.M.; Lourenco, S.D.S. Morphometric signature of sediment particles reveals the source and emplacement mechanisms of submarine landslides. Landslides 2019, 16, 829–837. [Google Scholar] [CrossRef]
- Komar, P.D.; Reimers, C.E. Grain shape effects on settling rates. J. Geol. 1978, 86, 193–209. [Google Scholar] [CrossRef]
- Shang, Y.; Kaakinen, A.; Beets, C.J.; Prins, M.A. Aeolian silt transport processes as fingerprinted by dynamic image analysis of the grain size and shape characteristics of Chinese loess and Red Clay deposits. Sediment. Geol. 2018, 375, 36–48. [Google Scholar] [CrossRef]
- McLaren, P.; Bowles, D. The effects of sediment transport on grain-size distributions. J. Sediment. Res. 1985, 55, 457–470. [Google Scholar]
- Gunaratna, T.; Suzuki, T.; Yanagishima, S. Cross-shore grain size and sorting patterns for the bed profile variation at a dissipative beach: Hasaki Coast, Japan. Mar. Geol. 2019, 407, 111–120. [Google Scholar] [CrossRef]
- Bujan, N.; Cox, R.; Masselink, G. From fine sand to boulders: Examining the relationship between beach-face slope and sediment size. Mar Geol. 2019, 417, 106012. [Google Scholar] [CrossRef]
- Wright, L.D.; Chappell, J.; Thom, B.G.; Bradshaw, M.P.; Cowell, P. Morphodynamics of reflective and dissipative beach and inshore systems: Southeastern Australia. Mar. Geol. 1979, 32, 105–140. [Google Scholar] [CrossRef]
- Almeida, L.P.; Ferreira, Ó.; Pacheco, A. Thresholds for morphological changes on an exposed sandy beach as a function of wave height. Earth Surf. Process. Landf. 2011, 36, 523–532. [Google Scholar] [CrossRef]
- Scott, T.; Masselink, G.; Russell, P. Morphodynamic characteristics and classification of beaches in England and Wales. Mar. Geol. 2011, 286, 1–20. [Google Scholar] [CrossRef]
- Tunwal, M.; Mulchrone, K.F.; Meere, P.A. Quantitative characterization of grain shape: Implications for textural maturity analysis and discrimination between depositional environments. Sedimentology 2018, 65, 1761–1776. [Google Scholar] [CrossRef]
- Hatfield, R.G.; Wheeler, B.H.; Reilly, B.T.; Stoner, J.S.; Housen, B.A. Particle size specific magnetic properties across the Norwegian-Greenland seas: Insights into the influence of sediment source and texture on bulk magnetic records. Geochem. Geophys. Geosyst. 2019, 20, 1004–1025. [Google Scholar] [CrossRef]
- Martewicz, J.; Kalińska, E.; Weckwerth, P. What hides in the beach sand? A multiproxy approach and new textural code to recognition of beach evolution on the southern and eastern Baltic Sea coast. Sediment. Geol. 2022, 435, 106154. [Google Scholar] [CrossRef]
- Cheng, W.F.; Chen, S.L.; Hu, J. Stability of headland bay beaches on the east coast of Hainan Island. Ocean Eng. 2017, 35, 121–128. (In Chinese) [Google Scholar]
- Cheng, W.F. Stability and Sedimentary Behaviors of Headland-Bay Beaches: A Case Study of Wanning Cosat, Hainan Island. Master’s Dissertation, East China Normal University, Shanghai, China, 2017. (In Chinese). [Google Scholar]
- Wang, B.C.; Chen, S.L.; Gong, W.P.; Lin, Y.Q.; Xu, Y. Formation and Evolution of Hainan Island Harbor Coast; China Ocean Press: Beijing, China, 2006; pp. 75–188. ISBN 7-5027-6635-9. (In Chinese) [Google Scholar]
- Wright, L.D.; Short, A.D. Morphodynamic variability of surf zones and beaches; a synthesis. Mar. Geol. 1984, 56, 93–118. [Google Scholar] [CrossRef]
- Sunamura, T. Quantitative predictions of beach-face slopes. Geol. Soc. Am. Bull. 1984, 95, 242–245. [Google Scholar] [CrossRef]
- Chang, R.F. Coastal Engineering Environment; China Ocean University Press: Qingdao, China, 1997; pp. 124–125. ISBN 7-81026-885-6. (In Chinese) [Google Scholar]
- Zhu, S.B.; Li, Z.Q. Study on beach response to Typhoon Khanun (No. 1720) along southern Leizhou Peninsula. J. Trop Oceanogr. 2019, 38, 96–104. (In Chinese) [Google Scholar]
- Short, A.D. Wave-dominated beaches. In Handbook of Beach and Shoreface Morphodynamics; Short, A.D., Ed.; Wiley Science: Chichester, UK, 1999; pp. 173–203. [Google Scholar]
- Plate, M.; Pankratz, J. Apparatus for Determining the Particle Size Distribution of a Mixture. U.S. Patent 60,661,130, 9 May 2000. [Google Scholar]
- Luo, Z.; Cai, B.; Chen, S. Grain size and shape analysis of beach sediment using dynamic image analysis and comparison with sieving method. Acta Sedimentol. Sin. 2016, 34, 881–898. (In Chinese) [Google Scholar]
- Krumbein, W.C. Measurement and geological significance of shape and roundness of sedimentary particles. J. Sediment. Res. 1941, 11, 64–72. [Google Scholar] [CrossRef]
- Patro, B.C.; Sahu, B.K. Factor analysis of sphericity and roundness data of clastic quartz grains: Environmental significance. Sediment. Geol. 1974, 11, 59–78. [Google Scholar] [CrossRef]
- Campaña, I.; Benito-Calvo, A.; Pérez-González, A.; Bermúdez de Castro, J.M.; Carbonell, E. Assessing automated image analysis of sand grain shape to identify sedimentary facies: Gran Dolina archaeological site (Burgos, Spain). Sediment. Geol. 2016, 346, 72–83. [Google Scholar] [CrossRef]
- Szabó, T.; Domokos, G.; Grotzinger, J.P.; Jerolmack, D.J. Reconstructing the transport history of pebbles on Mars. Nat. Commun. 2015, 6, 8366. [Google Scholar] [CrossRef]
- Dadd, K.; Foley, K. A shape and compositional analysis of ice-rafted debris in cores from IODP Expedition 323 in the Bering Sea. Deep Sea Res. Part II Top. Stud. Oceanogr. 2016, 125–126, 191–201. [Google Scholar] [CrossRef]
- Shepard, F.P.; Young, R. Distinguishing between beach and dune sands. J. Sediment. Res. 1961, 31, 196–214. [Google Scholar]
- Kasper-Zubillaga, J.J.; Dickinson, W.W.; Carranza-Edwards, A.; Hornelas-Orozco, Y. Petrography of quartz grains in beach and dune sands of Northland: North Island: New Zealand. N. Z. J. Geol. Geophys. 2005, 48, 649–660. [Google Scholar] [CrossRef]
- Pál, G.; Domokos, G.; Kun, F. Curvature flows: Scaling laws and the geometry of attrition under impacts. Sci. Rep. 2021, 11, 20661. [Google Scholar] [CrossRef]
- López, M.; López, I.; Aragonés, L.; Serra, J.C.; Esteban, V. The erosion on the east coast of Spain: Wear of particles: Mineral composition: Carbonates and Posidonia oceanica. Sci. Total Environ. 2016, 572, 487–497. [Google Scholar] [CrossRef]
- López, M.; Baeza-Brotons, F.; López, I.; Tenza-Abril, A.J.; Aragonés, L. Factors influencing the rate of beach sand wear: Activation layer thickness and sediment durability. Sci. Total Environ. 2019, 658, 367–373. [Google Scholar] [CrossRef] [PubMed]
- Jerolmack, D.J.; Brzinski, T.A. Equivalence of abrupt grain-size transitions in alluvial rivers and eolian sand seas: A hypothesis. Geology 2010, 38, 719–722. [Google Scholar] [CrossRef]
- McCave, I.N. Size sorting during transport and deposition of fine sediments: Sortable silt and flow speed. Dev. Sedimentol. 2008, 60, 121–142. [Google Scholar]
- Dietrich, W.E. Settling velocity of natural particles. Water Resour. Res. 1982, 18, 1615–1626. [Google Scholar] [CrossRef]
- Salman, A.D.; Verba, A. New approximate equations to estimate the drag coefficient of different particles of regular shape. Period Polytech. Chem. Eng. 1988, 32, 261–276. [Google Scholar]
- Aagaard, T.; Greenwood, B.; Hughes, M. Sediment transport on dissipative: Intermediate and reflective beaches. Earth-Sci. Rev. 2013, 124, 32–50. [Google Scholar] [CrossRef]
- Silvester, R.; Hsu, J.R.C. Coastal Stabilization; Innovative Concepts; Prentice-Hall Inc.: Englewood Cliffs, NJ, USA, 1993; p. 578. ISBN 9780131403109. [Google Scholar]
- Klein, A.H.F.; Ferreira, Ó.; Dias, J.M.A.; Tassler, M.G.; Silveira, L.F.; Benedet, L.; de Menezes, J.T.; de Abreu, J.G.N. Morphodynamics of structurally controlled headland-bay beaches in southeastern Brazil: A review. Coast Eng. 2010, 57, 98–111. [Google Scholar] [CrossRef]
- Gao, S.; Collins, M. A critique of the McLaren method for defining sediment transport paths—Discussion. J. Sediment. Petrol. 1991, 61, 143–146. [Google Scholar] [CrossRef]
- Gao, S.; Collins, M. Net sediment transport patterns inferred from grain-size trends: Based upon definition of “transport vectors”. Sediment. Geol. 1992, 81, 47–60. [Google Scholar] [CrossRef]
- Gao, S. A Fortran program for grain-size trend analysis to define net sediment transport pathways. Comput. Geosci. 1996, 22, 449–452. [Google Scholar] [CrossRef]
- McCarthy, G.R. The rounding of beach sands. Am. J. Sci. 1933, s5-25, 205–224. [Google Scholar] [CrossRef]
- Williams, A.T.; Morgan, P. Quartz grain S.E.M. textural variations of the beach/dune interface, Long Island, U.S.A. J. Coast. Res. 1988, 37–45. [Google Scholar]
- Conley, D.C.; Griffin, J.G. Direct measurements of bed stress under swash in the field. J. Geophys. Res. Atmos. 2004, 109, C03050. [Google Scholar] [CrossRef]
- Masselink, G.; Puleo, J.A. Swash-zone morphodynamics. Cont. Shelf Res. 2006, 26, 661–680. [Google Scholar] [CrossRef]
- Heiss, J.W.; Puleo, J.A.; Ullman, W.J.; Michael, H.A. Coupled surface-subsurface hydrologic measurements reveal infiltration, recharge, and discharge dynamics across the swash zone of a sandy beach. Water Resour. Res. 2015, 51, 8834–8853. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, W.; Chen, S.; Zhu, J.; Zhong, X.; Hu, J.; Guo, J. Identification of the Sediment Movement Mechanism via Grain Size and Shape: A Case Study of a Beach in Eastern Hainan Island in South China. Water 2023, 15, 3637. https://doi.org/10.3390/w15203637
Cheng W, Chen S, Zhu J, Zhong X, Hu J, Guo J. Identification of the Sediment Movement Mechanism via Grain Size and Shape: A Case Study of a Beach in Eastern Hainan Island in South China. Water. 2023; 15(20):3637. https://doi.org/10.3390/w15203637
Chicago/Turabian StyleCheng, Wufeng, Shenliang Chen, Jun Zhu, Xiaojing Zhong, Jin Hu, and Junli Guo. 2023. "Identification of the Sediment Movement Mechanism via Grain Size and Shape: A Case Study of a Beach in Eastern Hainan Island in South China" Water 15, no. 20: 3637. https://doi.org/10.3390/w15203637