Presentation of DeMa (Decision Support Software and Database for Wellfield Management) and Its Application for the Wadi Al Arab Wellfield
Abstract
1. Introduction
2. Study Area
3. Materials and Methods
3.1. Concept of DeMa
3.2. Technical Description
- Forty-two files to allow the user to update, delete, insert data, and run the database backup in the database management tool (DbMT);
- Four files to graphically visualize the data and the relation between different observations in the observation-based tool (OBT);
- Three files to manage the well- and wellfield-related documents in the documents management tool (DMT);
- Two files to use the best from the published scientific articles in the research-based tool (RBT);
- Two base constructor files.
3.3. Integrating the Study Area Data and Information into DeMa
3.4. Integrating the Analysis of the Radius of Influence of a Well in the Research-Based Tool
4. Application of the DeMa
4.1. Data and Document Management for the Identification of Missing Information Concerning the Wellfield
4.2. Identification of Maintenance Needs
4.3. Identification of a Suitable Location for a New Well
5. Discussion and Outlook
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schutte, C.F.; Pretorius, W.A. Water demand and population growth. Water SA Pretoria 1997, 23, 127–134. [Google Scholar]
- Butler, D.; Memon, F.A. Water Demand Management; Iwa Publishing: London, UK, 2005; ISBN 1843390787. [Google Scholar]
- Zubaidi, S.L.; Ortega-Martorell, S.; Al-Bugharbee, H.; Olier, I.; Hashim, K.S.; Gharghan, S.K.; Kot, P.; Al-Khaddar, R. Urban water demand prediction for a city that suffers from climate change and population growth: Gauteng province case study. Water 2020, 12, 1885. [Google Scholar] [CrossRef]
- UN-Water and UNESCO. The United Nations World Water Development Report 2022—Making the Invisible Visible; UN: Paris, France, 2022. [Google Scholar]
- Jahan, C.S.; Rahaman, M.F.; Arefin, R.; Ali, M.S.; Mazumder, Q.H. Delineation of groundwater potential zones of Atrai–Sib river basin in north-west Bangladesh using remote sensing and GIS techniques. Sustain. Water Resour. Manag. 2019, 5, 689–702. [Google Scholar] [CrossRef]
- Polemio, M.; Voudouris, K. Groundwater Resources Management: Reconciling Demand, High Quality Resources and Sustainability. Water 2022, 14, 2107. [Google Scholar] [CrossRef]
- Koop, S.H.A.; Grison, C.; Eisenreich, S.J.; Hofman, J.; van Leeuwen, K.J. Integrated water resources management in cities in the world: Global solutions. Sustain. Cities Soc. 2022, 86, 104137. [Google Scholar] [CrossRef]
- Priyan, K. Issues and Challenges of Groundwater and Surface Water Management in Semi-Arid Regions. Groundw. Resour. Dev. Plan. Semi-Arid Reg. 2021, 1–17. [Google Scholar] [CrossRef]
- Al-Karablieh, E.; Salman, A. Water Resources, Use and Management in Jordan—A Focus on Groundwater; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Salameh, E.; Shteiwi, M.; Al Raggad, M. Water Resources of Jordan: Political, Social and Economic Implications of Scarce Water Resources; Springer: Cham, Switzerland, 2018; Volume 1, ISBN 3319777483. [Google Scholar]
- Mirdashtvan, M.; Najafinejad, A.; Malekian, A.; Sa’doddin, A. Sustainable Water Supply and Demand Management in Semi-arid Regions: Optimizing Water Resources Allocation Based on RCPs Scenarios. Water Resour. Manag. 2021, 35, 5307–5324. [Google Scholar] [CrossRef]
- Falkenmark, M.; Widstrand, C. Population and Water Resources: A Delicate Balance. Popul. Bull. 1992, 3, 47. [Google Scholar]
- Nzama, S.M.; Kanyerere, T.O.B.; Mapoma, H.W.T. Using groundwater quality index and concentration duration curves for classification and protection of groundwater resources: Relevance of groundwater quality of reserve determination, South Africa. Sustain. Water Resour. Manag. 2021, 7, 31. [Google Scholar] [CrossRef]
- Ahmed, K.M. Challenges of sustainable groundwater development and management in Bangladesh: Vision 2050. Glob. Groundw. 2021, 27, 425–438. [Google Scholar] [CrossRef]
- Zheng, C.; Guo, Z. Plans to protect China’s depleted groundwater. Science 2022, 375, 827. [Google Scholar] [CrossRef]
- Tang, X.; Adesina, J.A. Integrated Watershed Management Framework and Groundwater Resources in Africa—A Review of West Africa Sub-Region. Water 2022, 14, 288. [Google Scholar] [CrossRef]
- Liu, X.; Hu, L.; Sun, K.; Yang, Z.; Sun, J.; Yin, W. Improved Understanding of Groundwater Storage Changes under the Influence of River Basin Governance in Northwestern China Using GRACE Data. Remote Sens. 2021, 13, 2672. [Google Scholar] [CrossRef]
- Pollicino, L.C.; Masetti, M.; Stevenazzi, S.; Cristaldi, A.; Righetti, C.; Gorla, M. Multi-aquifer susceptibility analyses for supporting groundwater management in urban areas. J. Contam. Hydrol. 2021, 238, 103774. [Google Scholar] [CrossRef]
- Sarkar, S.K.; Talukdar, S.; Rahman, A.; Shahfahad; Roy, S.K. Groundwater potentiality mapping using ensemble machine learning algorithms for sustainable groundwater management. Front. Eng. Built Environ. 2021, 2, 43–54. [Google Scholar] [CrossRef]
- Rossetto, R.; Borsi, I.; Schifani, C.; Bonari, E.; Mogorovich, P.; Primicerio, M. SID & GRID: Hydroinformatics system for the management of the water resource. Rend. Online Soc. Geol. It. 2010, 11, 193–194. [Google Scholar]
- Pierce, S.A.; Sharp, J.M.; Eaton, D.J. Decision support systems and processes for groundwater. Integr. Groundw. Manag. Concepts Approaches Chall. 2016, 369–665. [Google Scholar] [CrossRef]
- Fitch, P.; Brodaric, B.; Stenson, M.; Booth, N. Integrated groundwater data management. Integr. Groundw. Manag. Concepts Approaches Chall. 2016, 667–692. [Google Scholar] [CrossRef]
- Aderemi, B.A.; Olwal, T.O.; Ndambuki, J.M.; Rwanga, S.S. A Review of Groundwater Management Models with a Focus on IoT-Based Systems. Sustainability 2021, 14, 148. [Google Scholar] [CrossRef]
- Avesani, D.; Galletti, A.; Piccolroaz, S.; Bellin, A.; Majone, B. A dual-layer MPI continuous large-scale hydrological model including Human Systems. Environ. Model. Softw. 2021, 139, 105003. [Google Scholar] [CrossRef]
- Lu, Q.; Xie, X.; Parlikad, A.K.; Schooling, J.M. Digital twin-enabled anomaly detection for built asset monitoring in operation and maintenance. Autom. Constr. 2020, 118, 103277. [Google Scholar] [CrossRef]
- Wu, C.; Wu, P.; Wang, J.; Jiang, R.; Chen, M.; Wang, X. Critical review of data-driven decision-making in bridge operation and maintenance. Struct. Infrastruct. Eng. 2020, 18, 47–70. [Google Scholar] [CrossRef]
- Schmidt, B.; Wang, L. Cloud-enhanced predictive maintenance. Int. J. Adv. Manuf. Technol. 2016, 99, 5–13. [Google Scholar] [CrossRef]
- Montero, J.; Finger, M. Digitalizing infrastructure: Active management for smarter networks. Mod. Guid. Digit. Infrastruct. 2021, 1, 1–44. [Google Scholar]
- Zonta, T.; da Costa, C.A.; da Rosa Righi, R.; de Lima, M.J.; da Trindade, E.S.; Li, G.P. Predictive maintenance in the Industry 4.0: A systematic literature review. Comput. Ind. Eng. 2020, 150, 106889. [Google Scholar] [CrossRef]
- Singh, O.; Kasana, A.; Sharma, T. Groundwater irrigation market patterns and practices over an agriculturally developed province of north-west India. GeoJournal 2020, 85, 703–729. [Google Scholar] [CrossRef]
- Mora, M.; Vera, J.; Rocamora, C.; Abadia, R. Energy Efficiency and Maintenance Costs of Pumping Systems for Groundwater Extraction. Water Resour. Manag. 2013, 27, 4395–4408. [Google Scholar] [CrossRef]
- Beebe, R.S. Predictive Maintenance of Pumps Using Condition Monitoring; Elsevier: Amsterdam, The Netherlands, 2004; ISBN 1856174085. [Google Scholar]
- Alqadi, M.; Margane, A.; Al Raggad, M.; Subah, H.A.; Disse, M.; Hamdan, I.; Chiogna, G. Implementation of simple strategies to improve wellfield management in arid regions: The case study of Wadi Al Arab Wellfield, Jordan. Sustainability 2019, 11, 5903. [Google Scholar] [CrossRef]
- Sajid, S.; Haleem, A.; Bahl, S.; Javaid, M.; Goyal, T.; Mittal, M. Data science applications for predictive maintenance and materials science in context to Industry 4.0. Mater. Today Proc. 2021, 45, 4898–4905. [Google Scholar] [CrossRef]
- Cao, Q.; Zanni-Merk, C.; Samet, A.; Reich, C.; Beuvron, F.; de Beuvron, F.d.B.; Beckmann, A.; Giannetti, C. KSPMI: A Knowledge-based System for Predictive Maintenance in Industry 4.0. Robot. Comput. Integr. Manuf. 2022, 74, 102281. [Google Scholar] [CrossRef]
- Teoh, Y.K.; Gill, S.S.; Parlikad, A.K. IoT and Fog Computing based Predictive Maintenance Model for Effective Asset Management in Industry 4.0 using Machine Learning. IEEE Internet Things J. 2021, 3050441. [Google Scholar] [CrossRef]
- Nordal, H.; El-Thalji, I. Modeling a predictive maintenance management architecture to meet industry 4.0 requirements: A case study. Syst. Eng. 2020, 24, 21565. [Google Scholar] [CrossRef]
- Drakaki, M.; Karnavas, Y.L.; Tzionas, P.; Chasiotis, I.D. Recent Developments towards Industry 4.0 Oriented Predictive Maintenance in Induction Motors. Procedia Comput. Sci. 2021, 180, 943–949. [Google Scholar] [CrossRef]
- Drakaki, M.; Karnavas, Y.L.; Tziafettas, I.A.; Linardos, V.; Tzionas, P. Machine learning and deep learning based methods toward industry 4.0 predictive maintenance in induction motors: State of the art survey. J. Ind. Eng. Manag. 2022, 15, 31–57. [Google Scholar] [CrossRef]
- Müller-Czygan, G.; Tarasyuk, V.; Wagner, C.; Wimmer, M. How does digitization succeed in the municipal water sector? The waterexe4.0 meta-study identifies barriers as well as success factors, and reveals expectations for the future. Energies 2021, 14, 7709. [Google Scholar] [CrossRef]
- Xu, M.; David, J.M.; Kim, S.H. The fourth industrial revolution: Opportunities and challenges. Int. J. Financ. Res. 2018, 9, 90–95. [Google Scholar] [CrossRef]
- Sarker, I.H. Data science and analytics: An overview from data-driven smart computing, decision-making and applications perspective. SN Comput. Sci. 2021, 2, 1–22. [Google Scholar] [CrossRef]
- Sun, A.Y.; Scanlon, B.R. How can Big Data and machine learning benefit environment and water management: A survey of methods, applications, and future directions. Environ. Res. Lett. 2019, 14, 73001. [Google Scholar] [CrossRef]
- Chen, J.; Chen, S.; Fu, R.; Li, D.; Jiang, H.; Wang, C.; Peng, Y.; Jia, K.; Hicks, B.J. Remote sensing big data for water environment monitoring: Current status, challenges, and future prospects. Earth’s Futur. 2022, 10, e2021EF002289. [Google Scholar] [CrossRef]
- Gijzen, H. Big data for a sustainable future. Nature 2013, 502, 38. [Google Scholar] [CrossRef]
- Seele, P.; Lock, I. The game-changing potential of digitalization for sustainability: Possibilities, perils, and pathways. Sustain. Sci. 2017, 12, 183–185. [Google Scholar] [CrossRef]
- Gaffoor, Z.; Pietersen, K.; Jovanovic, N.; Bagula, A.; Kanyerere, T. Big data analytics and its role to support groundwater management in the southern African development community. Water 2020, 12, 2796. [Google Scholar] [CrossRef]
- Lee, S.; Hyun, Y.; Lee, M.-J. Groundwater potential mapping using data mining models of big data analysis in Goyang-si, South Korea. Sustainability 2019, 11, 1678. [Google Scholar] [CrossRef]
- Martínez-Santos, P.; Renard, P. Mapping groundwater potential through an ensemble of big data methods. Groundwater 2020, 58, 583–597. [Google Scholar] [CrossRef]
- Shafiee, M.E.; Barker, Z.; Rasekh, A. Enhancing water system models by integrating big data. Sustain. Cities Soc. 2018, 37, 485–491. [Google Scholar] [CrossRef]
- Ghernaout, D.; Aichouni, M.; Alghamdi, A. Applying big data in water treatment industry: A new era of advance. Int. J. Adv. Appl. Sci. 2018, 5, 89–97. [Google Scholar] [CrossRef]
- Naeem, M.; Jamal, T.; Diaz-Martinez, J.; Butt, S.A.; Montesano, N.; Tariq, M.I.; De-la-Hoz-Franco, E.; De-La-Hoz-Valdiris, E. Trends and Future Perspective Challenges in Big Data. Smart Innov. Syst. Technol. 2022, 253, 309–325. [Google Scholar] [CrossRef]
- Wu, W. Credit Risk Measurement, Decision Analysis, Transformation and Upgrading for Financial Big Data. Complexity 2022, 2022, 8942773. [Google Scholar] [CrossRef]
- Shamim, S.; Zeng, J.; Shariq, S.M.; Khan, Z. Role of big data management in enhancing big data decision-making capability and quality among Chinese firms: A dynamic capabilities view. Inf. Manag. 2019, 56, 103135. [Google Scholar] [CrossRef]
- Abd Rahman, M.S.B.; Mohamad, E.; Abdul Rahman, A.A. Bin Development of IoT—Enabled data analytics enhance decision support system for lean manufacturing process improvement. Concurr. Eng. 2021, 29, 208–220. [Google Scholar] [CrossRef]
- Rossi, R.; Hirama, K. Characterizing Big Data Management. arXiv 2015, arXiv:2201.05929. [Google Scholar]
- ESdat.Net Environmental Data Management Software|ESdat. Available online: https://esdat.net/Default.aspx (accessed on 22 December 2021).
- RockWare. RockWorks 2021 Training Manual; RockWare: Golden, CA, USA, 2020. [Google Scholar]
- Borehole Management—EDAMS. Available online: https://edams.com/products/licensing-permits/borehole-management/ (accessed on 4 January 2022).
- Ribeka Die Experten für effizientes Wasser-Ressourcen-Management 2018. Available online: https://www.ribeka.com/ (accessed on 22 November 2022).
- Barlow, P.M.; Moench, A.F. WTAQ Version 2—A Computer Program for Analysis of Aquifer Tests in Confined and Water-Table Aquifers with Alternative Representations of Drainage from the Unsaturated Zone; US Geological Survey Office: Washington, DC, USA, 2011. [Google Scholar]
- Halford, K.J.; Kunianksy, E.L. USGS OFR 02-197 Spreadsheets for the Analysis of Aquifer Pumping and Slug Test Data; US Geological Survey Office: Washington, DC, USA, 2002. [Google Scholar]
- Xin, J.; Wang, Y.; Shen, Z.; Liu, Y.; Wang, H.; Zheng, X. Critical review of measures and decision support tools for groundwater nitrate management: A surface-to-groundwater profile perspective. J. Hydrol. 2021, 598, 126386. [Google Scholar] [CrossRef]
- Selvaraj, A.; Saravanan, S.; Jennifer, J.J. Mamdani fuzzy based decision support system for prediction of groundwater quality: An application of soft computing in water resources. Environ. Sci. Pollut. Res. 2020, 27, 25535–25552. [Google Scholar] [CrossRef] [PubMed]
- Machiwal, D.; Jha, M.K.; Singh, V.P.; Mohan, C. Assessment and mapping of groundwater vulnerability to pollution: Current status and challenges. Earth Sci. Rev. 2018, 185, 901–927. [Google Scholar] [CrossRef]
- Hecht, C.; Cordeira, J.; Kawsenuk, B.; Kalansky, J.; Ralph, F.; Hecht, C.; Cordeira, J.; Kawsenuk, B.; Kalansky, J.; Ralph, F. Decision Support Tools for Forecast Informed Reservoir Operations: Atmospheric River Related Situational Awareness Products at the Center for Western Weather and Water Extremes. AGUFM 2021, 2021, H43H-09. [Google Scholar]
- Phan, T.D.; Smart, J.C.R.; Stewart-Koster, B.; Sahin, O.; Hadwen, W.L.; Dinh, L.T.; Tahmasbian, I.; Capon, S.J. Applications of bayesian networks as decision support tools for water resource management under climate change and socio-economic stressors: A critical appraisal. Water 2019, 11, 2642. [Google Scholar] [CrossRef]
- Roozbahani, A.; Ebrahimi, E.; Banihabib, M.E. A Framework for Ground Water Management Based on Bayesian Network and MCDM Techniques. Water Resour. Manag. 2018, 32, 4985–5005. [Google Scholar] [CrossRef]
- Rossetto, R.; De Filippis, G.; Borsi, I.; Foglia, L.; Cannata, M.; Criollo, R.; Vázquez-Suñé, E. Integrating free and open source tools and distributed modelling codes in GIS environment for data-based groundwater management. Environ. Model. Softw. 2018, 107, 210–230. [Google Scholar] [CrossRef]
- Wang, H.; Asefa, T.; Wanakule, N.; Adams, A. Application of Decision-Support Tools for Seasonal Water Supply Management that Incorporates System Uncertainties and Operational Constraints. J. Water Resour. Plan. Manag. 2020, 146, 1225. [Google Scholar] [CrossRef]
- Yao, A.B.; Mangoua, O.M.J.; Georges, E.S.; Kane, A.; Goula, B.T.A. Using “Water Evaluation and Planning” (WEAP) Model to Simulate Water Demand in Lobo Watershed (Central-Western Cote d’Ivoire). J. Water Resour. Prot. 2021, 13, 216–235. [Google Scholar] [CrossRef]
- Chelangat, C.; Abebe, A. Reservoir operation for optimal water use of Kabalega reservoir in Uganda. Int. J. Energy Water Resour. 2021, 5, 311–321. [Google Scholar] [CrossRef]
- Huang, X.; Xu, B.; Zhong, P.A.; Yao, H.; Yue, H.; Zhu, F.; Lu, Q.; Sun, Y.; Mo, R.; Li, Z.; et al. Robust multiobjective reservoir operation and risk decision-making model for real-time flood control coping with forecast uncertainty. J. Hydrol. 2022, 605, 127334. [Google Scholar] [CrossRef]
- Li, J.; Yang, X.; Sitzenfrei, R. Rethinking the Framework of Smart Water System: A Review. Water 2020, 12, 412. [Google Scholar] [CrossRef]
- Subah, A.; Hobler, M.; HajAli, Z.; Khalifa, N.; Momani, T.; Atrash, M.; Hijazi, H.; Ouran, S.; Jaber, A.; Tarawneh, R. Hydrogeological Proposal for the Delineation of a Groundwater Protection Area for the Wadi Al Arab Well Field; Ministry of Water and Irrigation (MWI): Amman, Jordan, 2006. [Google Scholar]
- DoS. 2019 Figures in Jordan; Department of Statistics (DoS): Amman, Jordan, 2019. [Google Scholar]
- MWI Water Information System (WIS) 2019. Available online: https://water.europa.eu/ (accessed on 15 December 2022).
- Brückner, F.; Bahls, R.; Alqadi, M.; Lindenmaier, F.; Hamdan, I.; Alhiyari, M.; Atieh, A. Causes and consequences of long-term groundwater overabstraction in Jordan. Hydrogeol. J. 2021, 29, 2789–2802. [Google Scholar] [CrossRef]
- Gropius, M.; Dahabiyeh, M.; Al Hyari, M.; Brückner, F.; Lindenmaier, F.; Vassolo, S. Estimation of unrecorded groundwater abstractions in Jordan through regional groundwater modelling. Hydrogeol. J. 2022, 30, 1769–1787. [Google Scholar] [CrossRef]
- Al Kuisi, M.; Al-Hwaiti, M.; Mashal, K.; Abed, A.M. Spatial distribution patterns of molybdenum (Mo) concentrations in potable groundwater in Northern Jordan. Environ. Monit. Assess. 2015, 187, 148. [Google Scholar] [CrossRef]
- Hiasat, T.H.; Rimawi, O.A.; Makhlouf, I.M. Hydrochemical Evaluation of Molybdenum Content of the Groundwater Aquifer System in Northern Jordan. J. Water Resour. Prot. 2020, 12, 223–239. [Google Scholar] [CrossRef]
- Alqadi, M.; Margane, A.; Hamdan, I.; Al Kordi, R.; Hiasat, T.; Al Wriekat, M.; Maharmeh, H.; Bali, A.; Taha, W.; Mrayyan, K.; et al. Wadi Al Arab Wellfield Management Report—Version 2; Ministry of Water and Irrigation (MWI): Amman, Jordan, 2018. [Google Scholar]
- Margane, A.; Alqadi, M.; el Kurdi, O. Updating the Groundwater Contour Map of the A7/B2 Aquifer in North Jordan; BGR: Amman, Jordan, 2015. [Google Scholar]
- GIZ. Rapid Assessment of the Consequences of Declining Resources Availability and Exploitability for the Existing Water Supply Infrastructure; The Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH in Cooperation of the Ministry of Water and Irrigation (MWI): Berlin, Germany, 2020. [Google Scholar]
- Moh’d, B.K. The Geology of Irbid and Ash Shuna Ash Shamaliyya (Waqqas): Map Sheets no. 3154-II and 3154-III; The Hashemite Kingdom of Jordan, Natural Resources Authority, Geology Directorate, Geological Mapping Division: Amman, Jordan, 2000. [Google Scholar]
- Subah, A.; Hobler, M.; Hajali, Z.; Khalifa, N.; Momani, T.; Atrash, M.; Hijazi, H.; Ouran, S.; Jaber, A.; Tarwaneh, R. Delineation of a Groundwater Protection Area for the Wadi Al Arab Well Field; The Hashemite Kingdom of Jordan, Natural Resources Authority, Geology Directorate, Geological Mapping Division: Amman, Jordan, 2006. [Google Scholar]
- Dorsch, T.; Alqadi, M.; Hamdan, A.; Hiasat, T.; Subeh, A.; Margane, A. TR-1: Wadi Al Arab Well Field Management—Part I—Well Field Assessmen; BGR: Amman, Jordan, 2017. [Google Scholar]
- WMI. Customer Service-Focused Business Plan 2019–2021 Yarmouk Water Company—Final Report; WMI: Burlington, VT, USA, 2020. [Google Scholar]
- KFW. Ex Post Evaluation Water Loss Reduction Irbid/Jerash, Jordan; KFW: Berlin, Germany, 2021. [Google Scholar]
- JICA. Water Sector for the Host Communities of Syrian Refugees in Northern Governorates in the Hashemite Kingdom of Jordan—Master plan; JICA: Tokyo, Japan, 2015. [Google Scholar]
- Alqadi, M.; Aldwairi, A.; Margane, A.; Brueckner, F.; Schneider, M. Development of a user-friendly tool for groundwater wellfields management. In Proceedings of the 39th IAHR World Congress, Granada, Spain, 19–24 June 2022; International Association for Hydro-Environment Engineering and Research: Granada, Spain, 2022; p. 10. [Google Scholar]
- Chang, S.W.; Memari, S.S.; Clement, T.P. Pytheis—A python tool for analyzing pump test data. Water 2021, 13, 2180. [Google Scholar] [CrossRef]
- Katsifarakis, K.L.; Nikoletos, I.A.; Stavridis, C. Minimization of Transient Groundwater Pumping Cost—Analytical and Practical Solutions. Water Resour. Manag. 2018, 32, 1053–1069. [Google Scholar] [CrossRef]
- Nagkoulis, N.; Katsifarakis, K.L. Minimization of Total Pumping Cost from an Aquifer to a Water Tank, Via a Pipe Network. Water Resour. Manag. 2020, 34, 4147–4162. [Google Scholar] [CrossRef]
- Hipp, R.D. SQLite. Available online: https://www.sqlite.org/index.html. (accessed on 15 February 2022).
- Bresciani, E.; Shandilya, R.N.; Kang, P.K.; Lee, S. Well radius of influence and radius of investigation: What exactly are they and how to estimate them? J. Hydrol. 2020, 583, 124646. [Google Scholar] [CrossRef]
- Cervera-Gascó, J.; Montero, J.; Moreno, M.A. AS-Solar, a Tool for Predictive Maintenance of Solar Groundwater Pumping Systems. Agronomy 2021, 11, 2356. [Google Scholar] [CrossRef]
- Borch, M.A.; Smith, S.A.; Noble, L.N. Evaluation and Restoration of Water Supply Wells; American Water Works Association: Washington, DC, USA, 1993; ISBN 0898676592. [Google Scholar]
- Brückner, F. Update of Structure Contour Maps of the Ajloun Institute, Belqa Groups; Ministry of Water and Irrigation and Federal Institute for Geosciences and Natural Resources: Amman, Jordan, 2018. [Google Scholar]
- Rödiger, T.; Magri, F.; Geyer, S.; Morandage, S.T.; Subah, H.E.A.; Alraggad, M.; Siebert, C. Assessing anthropogenic impacts on limited water resources under semi-arid conditions: Three-dimensional transient regional modelling in Jordan. Hydrogeol. J. 2017, 25, 2139–2149. [Google Scholar] [CrossRef]
- Al Manaseer, N.; Ta’any, R. Hydrological Study and Aquifer Characteristics Evaluation of Wadi El Arab Catchment Area/Jordan. Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 2058–2070. [Google Scholar] [CrossRef]
- McDonald, M.G.; Harbaugh, A.W. A modular three-dimensional finite-difference ground-water flow model. Tech. Water-Resour. Investig. 1988. [Google Scholar] [CrossRef]
- Trefry, M.G.; Muffels, C. FEFLOW: A Finite-Element Ground Water Flow and Transport Modeling Tool. Groundwater 2007, 45, 525–528. [Google Scholar] [CrossRef]
- Feng, Q.; Liu, Z.; Zhan, H. Semi-analytical solutions for transient flow to a partially penetrated well with variable discharge in a general three-layer aquifer system. J. Hydrol. 2021, 598, 126329. [Google Scholar] [CrossRef]
- Nagkoulis, N.; Katsifarakis, K.L. Cost minimization of groundwater supply to a central tank. Water Supply 2021, 22, 2055–2066. [Google Scholar] [CrossRef]
- Zhai, Y.; Cao, X.; Jiang, Y.; Sun, K.; Hu, L.; Teng, Y.; Wang, J.; Li, J. Further Discussion on the Influence Radius of a Pumping Well: A Parameter with Little Scientific and Practical Significance That Can Easily Be Misleading. Water 2021, 13, 2050. [Google Scholar] [CrossRef]
Content of the Document | # of Documents | # of Sources | Linked to | Sources to Collect the Documents from |
---|---|---|---|---|
CCTV report | 6 | 2 | Well | Private drilling company, water utility |
Completion report | 9 | 3 | Well | MWI, Private drilling company, water utility |
General guidelines | 10 | 2 | - | Online, International cooperation projects in Jordan |
Project report | 7 | 2 | Area/wellfield | MWI, International cooperation projects in Jordan |
Pump curves | 11 | 1 | Well | Water Utility |
Scientific article | 11 | 1 | Area/wellfield | Online |
Well ID | Casing | Drilling | Lithology | Completion Report Availability |
---|---|---|---|---|
AE1007 | Yes | No * | Yes | x |
AE1008 | Yes | No * | Yes | x |
AE1009 | Yes | No * | Yes | x |
AE1010 | Yes | No | Yes | |
AE1011 | Yes | No | Yes | |
AE1012 | No | No | Yes | |
AE3005 | Yes | Yes | No | |
AE3006 | Yes | Yes | No | |
AE3016 | Yes | Yes | No | |
AE3017 | Yes | Yes | No | |
AE3018 | Yes | Yes | No | |
AE3019 | Yes | Yes | No | |
AE3020 | Yes | Yes | Yes | |
AE3021 | Yes | Yes | No | |
AE3024 | Yes | Yes | Yes | x |
AE3027 | No * | No* | Yes | x |
AE3030 | Yes | Yes | Yes | x |
AE3034 | Yes | Yes | Yes | x |
AE3035 | Yes | Yes | Yes | x |
AE3042 | Yes | Yes | No * | x |
AE3043 | Yes | Yes | No |
Well ID | Well Elevation | Well Depth | Elevation of Base of A7 | Fully Penetrating the Aquifer? | Confinement Condition |
---|---|---|---|---|---|
AE3005 | −14.89 | 243 | −632 | No | Confined |
AE3006 | 79.29 | 260 | −329 | No | Unconfined |
AE3016 | 85.63 | 195 | −276 | No | Unconfined |
AE3017 | 74.65 | 230 | −420 | No | Confined |
AE3018 | −40.89 | 230 | −597 | No | Confined |
AE3019 | 104.87 | 304 | −469 | No | Confined |
AE3021 | 70.98 | 347 | −219 | Yes | Unconfined |
AE3042 | 104.87 | 450 | −469 | No | Confined |
AE3043 | 109.59 | 450 | −287 | Yes | Unconfined |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alqadi, M.; Al Dwairi, A.; Merchán-Rivera, P.; Chiogna, G. Presentation of DeMa (Decision Support Software and Database for Wellfield Management) and Its Application for the Wadi Al Arab Wellfield. Water 2023, 15, 331. https://doi.org/10.3390/w15020331
Alqadi M, Al Dwairi A, Merchán-Rivera P, Chiogna G. Presentation of DeMa (Decision Support Software and Database for Wellfield Management) and Its Application for the Wadi Al Arab Wellfield. Water. 2023; 15(2):331. https://doi.org/10.3390/w15020331
Chicago/Turabian StyleAlqadi, Mohammad, Ala Al Dwairi, Pablo Merchán-Rivera, and Gabriele Chiogna. 2023. "Presentation of DeMa (Decision Support Software and Database for Wellfield Management) and Its Application for the Wadi Al Arab Wellfield" Water 15, no. 2: 331. https://doi.org/10.3390/w15020331
APA StyleAlqadi, M., Al Dwairi, A., Merchán-Rivera, P., & Chiogna, G. (2023). Presentation of DeMa (Decision Support Software and Database for Wellfield Management) and Its Application for the Wadi Al Arab Wellfield. Water, 15(2), 331. https://doi.org/10.3390/w15020331