Assessing 30-Year Land Use and Land Cover Change and the Driving Forces in Qianjiang, China, Using Multitemporal Remote Sensing Images
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Data
2.3. Methods
2.3.1. LULC Classification and Validation
2.3.2. LULCC Analysis
3. Results
3.1. Spatial Distribution of LULC
3.2. Spatial Distribution of Aquaculture Areas
3.3. Accuracy of Land Use/Cover Classification
4. Discussion
4.1. Land Use/Cover Change
4.2. Impact of Government Decisions on Land Use
4.3. Advantages and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kasniza Jumari, N.A.S.; Ahmed, A.N.; Huang, Y.F.; Ng, J.L.; Koo, C.H.; Chong, K.L.; Sherif, M.; Elshafie, A. Analysis of urban heat islands with landsat satellite images and GIS in Kuala Lumpur Metropolitan City. Heliyon 2023, 9, e18424. [Google Scholar] [CrossRef] [PubMed]
- Hoque, M.Z.; Ahmed, M.; Islam, I.; Cui, S.; Xu, L.; Prodhan, F.A.; Ahmed, S.; Rahman, M.A.; Hasan, J. Monitoring Changes in Land Use Land Cover and Ecosystem Service Values of Dynamic Saltwater and Freshwater Systems in Coastal Bangladesh by Geospatial Techniques. Water 2022, 14, 2293. [Google Scholar] [CrossRef]
- Wang, L.; Nie, Z.; Yuan, Q.; Liu, M.; Cao, L.; Zhu, P.; Lu, H.; Feng, B. Spatiotemporal Oasis Land Use/Cover Changes and Impacts on Groundwater Resources in the Central Plain of the Shiyang River Basin. Water 2023, 15, 457. [Google Scholar] [CrossRef]
- Paez-Osuna, F. The Environmental Impact of Shrimp Aquaculture: A Global Perspective. Environ. Pollut. Prot. 2001, 112, 31–229. [Google Scholar] [CrossRef]
- Froehlich, H.E.; Gentry, R.R.; Rust, M.B.; Grimm, D.; Halpern, B.S. Public Perceptions of Aquaculture: Evaluating Spatiotemporal Patterns of Sentiment around the World. PLoS ONE 2017, 12, 4–6. [Google Scholar] [CrossRef]
- Cao, Z.; Wang, S.; Luo, P.; Xie, D.; Zhu, W. Watershed Ecohydrological Processes in a Changing Environment: Opportunities and Challenges. Water 2022, 14, 1502. [Google Scholar] [CrossRef]
- Pouliot, D.; Latifovic, R.; Zabcic, N.; Guindon, L.; Olthof, I. Development and assessment of a 250 m spatial resolution MODIS annual land cover time series (2000–2011) for the forest region of Canada derived from change-based updating. Remote Sens. Environ. 2014, 140, 731–743. [Google Scholar] [CrossRef]
- Li, X.; Gong, P.; Liang, L. A 30-year (1984–2013) record of annual urban dynamics of Beijing City derived from Landsat data. Remote Sens. Environ. 2015, 166, 78–90. [Google Scholar] [CrossRef]
- Liu, G.; Li, J. Tracking dike-pond landscape dynamics in a core region of the Guangdong-Hong Kong-Macao Greater Bay Area based on topographic maps and remote sensing data during 1949–2020. Aquaculture 2021, 549, 737741. [Google Scholar] [CrossRef]
- Duan, Y.; Tian, B.; Li, X.; Liu, D.; Sengupta, D.; Wang, Y.; Peng, Y. Tracking changes in aquaculture ponds on the China coast using 30 years of Landsat images. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102383. [Google Scholar]
- Kutser, T.; Hedley, J.; Giardino, C.; Roelfsema, C.; Brando, V.E. Remote sensing of shallow waters—A 50 year retrospective and future directions. Remote Sens. Environ. 2020, 240, 111619. [Google Scholar] [CrossRef]
- Virdis, S.G.P. An object-based image analysis approach for aquaculture ponds precise mapping and monitoring: A case study of Tam Giang-Cau Hai Lagoon, Vietnam. Environ. Monit. Assess. 2014, 186, 117–133. [Google Scholar] [CrossRef] [PubMed]
- Al Sayah, M.J.; Nedjai, R.; Abdallah, C.; Khouri, M. On the use of remote sensing to map the proliferation of aquaculture ponds and to investigate their effect on local climate, perspectives from the Claise watershed, France. Environ. Monit. Assess. 2020, 192, 301. [Google Scholar] [CrossRef]
- Ottinger, M.; Clauss, K.; Kuenzer, C. Large-Scale Assessment of Coastal Aquaculture Ponds with Sentinel-1 Time Series Data. Remote Sens. 2017, 9, 440. [Google Scholar] [CrossRef]
- Meng, L.; Dong, J. LUCC and Ecosystem Service Value Assessment for Wetlands: A Case Study in Nansi Lake, China. Water 2019, 11, 1597. [Google Scholar] [CrossRef]
- Kolli, M.K.; Opp, C.; Karthe, D.; Groll, M. Mapping of Major Land-Use Changes in the Kolleru Lake Freshwater Ecosystem by Using Landsat Satellite Images in Google Earth Engine. Water 2020, 12, 2493. [Google Scholar] [CrossRef]
- Sousa, D.; Small, C. Land Cover Dynamics on the Lower Ganges–Brahmaputra Delta: Agriculture–Aquaculture Transitions, 1972–2017. Remote Sens. 2021, 13, 4799. [Google Scholar] [CrossRef]
- Yuan, P.; Wang, J.; Guo, C.; Guo, Z.; Guo, Y.; Guo, C. Sustainability of the rice-crayfish farming model in waterlogged land: A case study in Qianjiang County, Hubei Province, China. J. Integr. Agric. 2022, 21, 1203–1214. [Google Scholar] [CrossRef]
- Chen, J.; Cao, X.; Peng, S.; Ren, H. Analysis and Applications of GlobeLand30: A Review. ISPRS Int. J. Geo-Inf. 2017, 6, 230. [Google Scholar] [CrossRef]
- Jokar Arsanjani, J.; Tayyebi, A.; Vaz, E. GlobeLand30 as an alternative fine-scale global land cover map: Challenges, possibilities, and implications for developing countries. Habitat Int. 2016, 55, 25–31. [Google Scholar] [CrossRef]
- Costa Fonte, C.; Minghini, M.; Patriarca, J.; Antoniou, V.; See, L.; Skopeliti, A. Generating Up-to-Date and Detailed Land Use and Land Cover Maps Using OpenStreetMap and GlobeLand30. ISPRS Int. J. Geo-Inf. 2017, 6, 125. [Google Scholar] [CrossRef]
- Pal, M.; Mather, P.M. An assessment of the effectiveness of decision tree methods for land cover classification. Remote Sens. Environ. 2003, 86, 554–565. [Google Scholar] [CrossRef]
- Roberts, D.A.N.; Holmes, K.I.; Batista, G.; Krug, T. Large area mapping of land-cover change in Rondônia using multitemporal spectral mixture analysis and decision tree classifiers. J. Geophys. Res. 2002, 107, LBA-40-1–LBA-40-18. [Google Scholar] [CrossRef]
- Liu, S.; Su, H.; Cao, G.; Wang, S.; Guan, Q. Learning from data: A post classification method for annual land cover analysis in urban areas. ISPRS J. Photogramm. Remote Sens. 2019, 154, 202–215. [Google Scholar] [CrossRef]
- Hu, Y.; Batunacun; Zhen, L.; Zhuang, D. Assessment of Land-Use and Land-Cover Change in Guangxi, China. Sci. Rep. 2019, 9, 2189. [Google Scholar] [CrossRef]
- Ke, N.; Lu, X.; Zhang, X.; Kuang, B.; Zhang, Y. Urban land use carbon emission intensity in China under the “double carbon” targets: Spatiotemporal patterns and evolution trend. Environ. Sci. Pollut. Res. 2022, 30, 18213–18226. [Google Scholar] [CrossRef]
- Zong, S.; Hu, Y.; Bai, Y.; Guo, Z.; Wang, J. Analysis of the distribution characteristics and driving factors of land use conflict potentials in the Bohai Rim coastal zone. Ocean. Coast. Manag. 2022, 226, 106260. [Google Scholar] [CrossRef]
- Liu, F.; Qin, T.; Girma, A.; Wang, H.; Weng, B.; Yu, Z.; Wang, Z. Dynamics of Land-Use and Vegetation Change Using NDVI and Transfer Matrix: A Case Study of the Huaihe River Basin. Pol. J. Environ. Stud. 2018, 28, 213–223. [Google Scholar] [CrossRef]
- Chen, C.; Liu, Y. Spatiotemporal changes of ecosystem services value by incorporating planning policies: A case of the Pearl River Delta, China. Ecol. Model. 2021, 461, 109777. [Google Scholar] [CrossRef]
- Liang, L.; Chen, M.; Lu, D. Revisiting the Relationship Between Urbanization and Economic Development in China Since the Reform and Opening-Up. Chin. Geogr. Sci. 2022, 32, 1–15. [Google Scholar] [CrossRef]
- Zhao, D. Study on the evolution of rural land use function in developed areas of China. In Proceedings of the Post-Oil City Planning for Urban Green Deals Virtual Congress, Doha, Qatar, 8 November 2020–4 February 2021. [Google Scholar]
- Wang, D. Study on the Influence, Problems and Countermeasures of the Development of Crawfish Industry in Qianjiang, Hubei Province. In Proceedings of the 2018 5th International Conference on Social Science and Humanity, Hangzhou, China, 27–29 May 2018. [Google Scholar]
- Tang, Q. Study on the Effect of “Crayfish-Rice Continuous Cropping” on Grain Production: A Case Study of Hubei Province. Asian Agric. Res. 2019, 11, 4. [Google Scholar]
Year | 1990 | 2006 | 2015 | 2020 |
---|---|---|---|---|
Product | Landsat TM | Landsat TM | Landsat OLI | Landsat OLI |
Dates | 23 July 1990 | 20 August 2020 | 17 July 2017 | 8 August 2022 |
5 June 1990 | 8 April 2020 | 23 May 2017 | 9 March 2022 |
Area (km2) | Built-Up | Forest/Grass | Farmland | Water Body | Aquaculture | |
---|---|---|---|---|---|---|
1990–2006 | Built-up | 45.09 | 37.85 | 33.65 | 2.68 | 0.18 |
Forest/grass | 8.18 | 122.57 | 78.93 | 11.97 | 3.25 | |
Farmland | 28.28 | 330.32 | 1154.50 | 38.14 | 19.17 | |
Water body | 1.53 | 5.54 | 5.78 | 38.45 | 0.47 | |
Aquaculture | 2.55 | 10.20 | 22.53 | 8.92 | 12.91 | |
Change | 33.82 | −281.58 | 275.02 | −48.38 | 21.13 | |
2006–2017 | Built-up | 93.85 | 33.96 | 174.36 | 5.32 | 9.77 |
Forest/grass | 2.94 | 66.70 | 59.89 | 0.87 | 1.61 | |
farmland | 18.66 | 108.26 | 1128.61 | 5.78 | 18.73 | |
Water body | 0.90 | 1.63 | 12.71 | 37.66 | 0.62 | |
Aquaculture | 3.10 | 14.35 | 194.84 | 2.15 | 26.39 | |
Change | 197.80 | −92.89 | −290.37 | 1.74 | 183.72 | |
2017–2022 | Built-up | 207.07 | 23.99 | 132.62 | 3.36 | 27.29 |
Forest/grass | 21.30 | 56.31 | 121.89 | 1.47 | 15.98 | |
farmland | 60.90 | 41.87 | 907.61 | 8.89 | 113.87 | |
Water body | 4.47 | 1.43 | 7.12 | 38.75 | 2.76 | |
Aquaculture | 23.51 | 8.41 | 110.80 | 1.06 | 80.93 | |
Change | 77.08 | 84.94 | −146.90 | 1.01 | −16.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Mu, M.; Liu, Y.; Zhou, Z.; Zhuo, H.; Qiu, G.; Chen, J.; Lei, M.; Huang, X.; Zhang, Y.; et al. Assessing 30-Year Land Use and Land Cover Change and the Driving Forces in Qianjiang, China, Using Multitemporal Remote Sensing Images. Water 2023, 15, 3322. https://doi.org/10.3390/w15183322
Xu J, Mu M, Liu Y, Zhou Z, Zhuo H, Qiu G, Chen J, Lei M, Huang X, Zhang Y, et al. Assessing 30-Year Land Use and Land Cover Change and the Driving Forces in Qianjiang, China, Using Multitemporal Remote Sensing Images. Water. 2023; 15(18):3322. https://doi.org/10.3390/w15183322
Chicago/Turabian StyleXu, Jie, Meng Mu, Yunbing Liu, Zheng Zhou, Haihua Zhuo, Guangsheng Qiu, Jie Chen, Mingjun Lei, Xiaolong Huang, Yichi Zhang, and et al. 2023. "Assessing 30-Year Land Use and Land Cover Change and the Driving Forces in Qianjiang, China, Using Multitemporal Remote Sensing Images" Water 15, no. 18: 3322. https://doi.org/10.3390/w15183322