# The Influence of the Main Factors on the Accuracy of Hydrological Modelling of Flooded Lands

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Theoretical Approaches to Hydrological Modelling

#### 2.2. Manning’s Coefficients and Their Significance in Modelling

_{e}—energy slope of the channel.

#### 2.3. Block Diagram of Hydrological Modelling

#### 2.4. Modeling of Flood Zones in the Plain Part of the Dniester Riverbed Hydrology

^{3}/s. The main morphometric, meteorological, and hydrological characteristics of the Dniester River are presented in Table 1.

#### 2.5. Theoretical Approaches to Hydrological Modeling

## 3. Results

#### 3.1. Determination of Manning’s Coefficients

_{t}—accuracy of distance determination; k—number of turning points; m

_{х}—linear pixel size.

#### 3.2. Determination of the Water Level

#### 3.3. Determination of Hydrological Model Parameters

#### 3.4. Determination of Manning’s Coefficients for Different Types of Subgrade, Considering Their Changes

## 4. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## References

- Kovalchuk, I.; Mikhnovich, A. Assessment of the transformation of the Dniester hydrological regime and the risk of extreme floods. Hydrology, hydrochemistry and hydroecology. Sci. Collect.
**2002**, 3, 71–81. [Google Scholar] - Directive 2007/60/EC of the European Parliament and of the Council of 23 October 2007 on the Assessment and Management of Flood Risks. Available online: http://data.europa.eu/eli/dir/2007/60/oj (accessed on 25 December 2022).
- ISOK (Informatyczny System Osłony Kraju Przed Nadzwyczajnymi Zagrożeniami). Electronic Resource. Available online: https://www.gugik.gov.pl/projekty/isok (accessed on 25 December 2022).
- Kurczyński, Z.; Bakuła, K. The selection of aerial laser scanning parameters for countrywide digital elevation model creation. In Proceedings of the 13th SGEM GeoConference on Informatics, Geoinformatics and Remote Sensing. SGEM2013 Conference Proceedings, Albena, Bulgaria, 15–21 June 2013; Volume 2, pp. 695–702. [Google Scholar]
- Nash, J.; HRS. A unit hydrograph study, with particular reference to British catchments. Proc. Inst. Civ. Eng.
**1960**, 17, 249–282. [Google Scholar] [CrossRef] - Koren, W.; Kuchment, L. Determination of the geometric and hydraulic characteristics of the river channel by solving inverse problems for the Saint-Venant equations. Water Resour.
**1973**, 4, 83–100. [Google Scholar] - Singh, V.P. Hydrologic modelling: Progress and future directions. Geosci. Lett.
**2018**, 5, 15. [Google Scholar] [CrossRef] - Surian, N. Channel changes due to river regulation: The case of the Piave River, Italy. Earth Surface Processes and Landforms. J. Br. Geomorphol. Res. Group
**1999**, 24, 1135–1151. [Google Scholar] - Chow, V. Handbook of Applied Hydrology; McGraw-Hill Book Publishing Company: New York, NY, USA, 1964. [Google Scholar]
- Zimmerman, R.; Goodlett, J.; Comer, G. The influence of vegetation on channel form of small streams. In Symposium on River Morphology; International Association of Scientific Hydrology: Gentbrugge, Belgium, 1967; Volume 75, pp. 255–275. [Google Scholar]
- Wheater, H.; Sorooshian, S.; Sharma, K. Hydrological Modelling in Arid and Semi-Arid Areas; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Malaterre, P.; Baume, J. Modelling and regulation of irrigation canals: Existing applications and ongoing researches. In Proceedings of the SMC’98 Conference Proceedings. 1998 IEEE International Conference on Systems, Man, and Cybernetics, San Diego, CA, USA, 14 October 1998; Volume 4, pp. 3850–3855. [Google Scholar]
- Graham, D.; Butts, M. Flexible, integrated watershed modelling with MIKE SHE. In Watershed Models; CRC Press: Boca Raton, FL, USA, 2005; pp. 245–272. [Google Scholar]
- Ding, Y.; Wang, S. Identification of Manning’s roughness coefficients in channel network using adjoint analysis. Int. J. Comput. Fluid Dyn.
**2005**, 19, 3–13. [Google Scholar] [CrossRef] - Burshtynska, K.; Babushka, A.; Bubniak, I.; Babiy, L.; Tretyak, S. Influence of geological structures on the nature of riverbed displacements for the rivers of the Dnister basin upper part. Geodynamics
**2019**, 2, 24–38. [Google Scholar] [CrossRef] - Halochkin, M.; Burshtynska, K.; Zayats, I.; Tretyak, S. Determination of manning coefficients for hydrological modelling of riverbeds with complex characteristics. In Proceedings of the 2022 International Conference of Young Professionals, GeoTerrace, Lviv, Ukraine, 3–5 October 2022. [Google Scholar] [CrossRef]
- Nippgen, F.; McGlynn, B.; Marshall, L.A.; Emanuel, R. Landscape structure and climate influences on hydrologic response. Water Resour. Res.
**2011**, 47, W12528. [Google Scholar] [CrossRef] - Chen, Y.; Tsai, J.; Chang, L.; Ho, C.; Chen, C. The development of a real-time flooding operation model in the Tseng-Wen Reservoir. Hydrol. Res.
**2013**, 45, 490–503. [Google Scholar] [CrossRef] - Bakuła, K.; Stępnik, M.; Kurczyński, Z. Influence of elevation data source on 2D hydraulic modelling. Acta Geophys.
**2016**, 64, 1176–1192. [Google Scholar] [CrossRef] - Bakuła, K. Effective Application of LIDAR Data in Two-Dimensional Hydraulic Modelling. Arch. Fotogram. Kartogr. I Teledetekcji
**2014**, 26, 23–37. [Google Scholar] [CrossRef] - Brunner, G.W.; United States Army Corps of Engineers Institute for Water Resources (U.S.); Hydrologic Engineering Center (U.S.). HEC-RAS River Analysis System: Hydraulic Reference Manual (Version 4.1); US Army Corps of Engineers Institute for Water Resources Hydrologic Engineering Center: Davis, CA, USA, 2010. [Google Scholar]
- Cirella, G.; Iyalomhe, F. Flooding conceptual review: Sustainability-focalized best practices in Nigeria. Appl. Sci.
**2018**, 8, 1558. [Google Scholar] [CrossRef] - Myers, T.; Swanson, S. Impact of deferred rotation grazing on stream characteristics in central Nevada: A case study. N. Am. J. Fish. Manag.
**1995**, 15, 428–439. [Google Scholar] [CrossRef] - Burshtynska, K.V.; Babushka, A.V.; Halochkin, M. Hydrological processes modelling using GIS ARCGIS and module HEC-RAS. Geod. Cartogr. Aer. Photogr.
**2020**, 91, 28–40. [Google Scholar] [CrossRef] - Singh, V. Entropy Theory and Its Application in Environmental and Water Engineering; John Wiley: New York, NY, USA, 2013; p. 642. [Google Scholar]
- Chugaev, R. Hydraulics: Textbook for High Schools, 4th ed.; Energoizdat: Leningrad, Russia, 1982; 672p. [Google Scholar]
- Lakshmi, V. Remote Sensing of Hydrological Extremes; Springer: Berlin/Heidelberg, Germany, 2017; p. 250. [Google Scholar]
- Ye, A.; Zhou, Z.; You, J.; Ma, F.; Duan, Q. Dynamic Manning’s roughness coefficients for hydrological modelling in basins. Hydrol. Res.
**2018**, 49, 1379–1395. [Google Scholar] [CrossRef] - Chow, V.; Maidment, D.; Mays, L. Applied Hydrology; McGraw-Hill: New York, NY, USA, 1988. [Google Scholar]
- Merwade, V. Tutorial on Using HEC-GeoRAS with ArcGIS 10 and HEC-RAS Modelling; School of Civil Engineering, Purdue University: West Lafayette, IN, USA, 2012. [Google Scholar]
- Vovk, A.; Hlotov, V.; Hunina, A.; Malitskyi, A.; Tretyak, K.; Tserklevych, A. Analysis of the results for the creation of orthophotoplans and digital relief models using TRIMBLE UX-5 UAV. Geod. Cartogr. Aer. Photogr.
**2015**, 81, 90–103. Available online: http://nbuv.gov.ua/UJRN/Geodez_2015_81_11 (accessed on 10 September 2023). [CrossRef] - Volosetskyi, B.I. Geodesy in Nature Management; Education manual, Publishing House of Lviv Polytechnic: Lviv, Ukraine, 2012; p. 292. [Google Scholar]
- Chow, V. Open-Channel Hydraulics; McGraw-Hill: New York, NY, USA, 1959. [Google Scholar]
- Cook, A.; Merwade, V. Effect of topographic data, geometric configuration and modelling approach on flood inundation mapping. J. Hydrol.
**2009**, 377, 131–142. [Google Scholar] [CrossRef]

**Figure 4.**(

**a**) Vectorized contour lines of the topographic map; (

**b**) digital elevation model of the study area.

**Figure 5.**Vectorized flooded zones and sections with the same type of bedding surface. 1–6—sections with different characteristics of the territory (Table 2)

**Figure 8.**Flooding modeling results using different intervals of transverse relief profiles: (

**a**) 5 m; (

**b**) 50 m; (

**c**) 100 m; (

**d**) 200 m.

**Figure 9.**Detailing the modeling result at different intervals between the transverse profiles: (

**a**) 5 m; (

**b**) 50 m; (

**c**) 100 m; (

**d**) 200 m.

**Figure 10.**Flood zone modeling results using the minimum, average, and maximum values of Manning’s coefficients.

Parameter | Value |
---|---|

Length, km | 9 |

Stream slope, m/km | 0.34 |

Average monthly water consumption, m^{3}/s | 153 |

Runoff modulus, L/s per km^{2} | 10.4 |

Average river width, m | 100–120 |

Average river depth, m | 2–4 |

Flow rate, m/s | 0.8–1 |

Average sediment diameter, mm | 1 |

Average floodplain width, m | 2010 |

**Table 2.**Minimum, average, and maximum values of Manning’s coefficients for the studied channel section.

Section Number | Characteristics of the Territory | Minimum | Average | Maximum |
---|---|---|---|---|

Right bank | ||||

1 | Dense willows in summer | 0.110 | 0.150 | 0.200 |

2 | Tall grass | 0.030 | 0.035 | 0.050 |

3 | Dense willows in summer | 0.110 | 0.150 | 0.200 |

4 | Dense forest, several fallen trees, small undergrowth, flood level below branches | 0.080 | 0.100 | 0.120 |

5 | Low grass | 0.025 | 0.030 | 0.035 |

6 | Ripe row crops | 0.025 | 0.035 | 0.045 |

Left bank | ||||

1 | Dense willows in summer | 0.110 | 0.150 | 0.200 |

2 | Low grass | 0.025 | 0.030 | 0.035 |

3 | Ripe row crops | 0.025 | 0.035 | 0.045 |

Spacing between Transverse Profiles (m) | 5 | 50 | 100 | 200 |
---|---|---|---|---|

Area (ha) 600.6 | 570.2 | 558.9 | 551.4 | 536.1 |

Difference, (ha) | 30.4 | 41.7 | 49.2 | 64.5 |

Difference, (%) | 5.1 | 6.9 | 8.2 | 10.8 |

**Table 4.**Areas of actual and modeled flooded areas depending on selected Manning’s coefficients (M).

Test Area | M Minimum | M Average | M Maximum |
---|---|---|---|

Area (ha) 600.6 | 569.2 | 558.9 | 541.8 |

Difference, (ha) | 31.4 | 41.7 | 58.8 |

Difference, (%) | 5.2 | 6.9 | 9.8 |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Burshtynska, K.; Zayats, I.; Halochkin, M.; Bakuła, K.; Babiy, L.
The Influence of the Main Factors on the Accuracy of Hydrological Modelling of Flooded Lands. *Water* **2023**, *15*, 3303.
https://doi.org/10.3390/w15183303

**AMA Style**

Burshtynska K, Zayats I, Halochkin M, Bakuła K, Babiy L.
The Influence of the Main Factors on the Accuracy of Hydrological Modelling of Flooded Lands. *Water*. 2023; 15(18):3303.
https://doi.org/10.3390/w15183303

**Chicago/Turabian Style**

Burshtynska, Khrystyna, Iryna Zayats, Maksym Halochkin, Krzysztof Bakuła, and Lyubov Babiy.
2023. "The Influence of the Main Factors on the Accuracy of Hydrological Modelling of Flooded Lands" *Water* 15, no. 18: 3303.
https://doi.org/10.3390/w15183303