Tillage Practices Affected Yield and Water Use Efficiency of Maize (Zea mays L., Longdan No.8) by Regulating Soil Moisture and Temperature in Semi-Arid Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design and Agronomic Management
2.3. Measurements and Calculation
2.3.1. Soil Water Content and Evapotranspiration
2.3.2. Soil Temperature
2.3.3. Biomass Yield, Grain Yield, and Yield Components
2.3.4. Water Use Efficiency (WUE) and Harvest Index (HI)
2.4. Statistical Analysis
3. Results
3.1. Effects of Different Tillage Practices on Soil Volumetric Water Content during Maize Growth Period
3.2. Effects of Different Tillage Practices on Soil Temperature during Maize Growth Period
3.3. Effects of Different Tillage Practices on Water Consumption Structure of Maize during the Growth Period
3.4. Effects of Different Tillage Practices on Yield and Water Use Efficiency of Maize
3.5. Correlation Analysis of Soil Water Content, Temperature and Yield, Yield Components and Harvest Index
3.6. Effects of Different Tillage Practices on Economic Benefits of Maize Planting
4. Discussion
4.1. Effects of Different Tillage Measures on Soil Volumetric Moisture Content and Soil Temperature
4.2. Effects of Different Tillage Practices on Water Consumption Structure and Water Use Efficiency of Maize
4.3. Effects of Different Tillage Practices on Maize Yield, Yield Composition, and Economic Benefits
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Erenstein, O.; Jaleta, M.; Sonder, K.; Mottaleb, K.; Prasanna, B.M. Global maize production, consumption and trade: Trends and R&D implications. Food Secur. 2022, 14, 1295–1319. [Google Scholar]
- Wang, Y.; Wang, Z.; He, K.; Guo, J. Transgenic Maize and Its Potential Commercialization in China; CSIRO Publishing: Clayton, Australia, 2021. [Google Scholar]
- Wei, Y.Q. Analysis on the Production Efficiency of Typical Cereal-Cash-Forage Crops in Longdong Region. Master’s Thesis, Lanzhou University, Lanzhou, China, 2021. [Google Scholar]
- Zhou, J.J.; Feng, W.; Xiang, J.; Huang, M.H. Analysis of drought characteristics in Gansu Province in recent 58 years based on SPEI index. J. Meteorol. Sci. 2022, 42, 99–107. [Google Scholar]
- Kant, S.; Bi, Y.M.; Rothstein, S.J. Understanding plant response to nitrogen limitation for the improvement of crop nitrogen use efficiency. J. Exp. Bot. 2011, 62, 1499–1509. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Wang, Z.K.; Cao, Q.; Zhang, X.M.; Shen, Y.Y. Effects of precipitation and air temperature changes on yield of several crops in Eastern Gansu of China. Trans. CSAE 2016, 32, 106–114. [Google Scholar]
- Maitah, M.; Malec, K.; Maitah, K. Influence of precipitation and temperature on maize production in the Czech Republic from 2002 to 2019. Sci. Rep. 2021, 11, 10467. [Google Scholar] [CrossRef] [PubMed]
- Cudjoe, G.P.; Antwi-Agyei, P.; Gyampoh, B.A. The effect of climate variability on maize production in the Ejura-Sekyedumase Municipality, Ghana. Climate 2021, 9, 145. [Google Scholar] [CrossRef]
- Mumo, L.; Yu, J.H.; Fang, K. Assessing impacts of seasonal climate variability on maize yield in Kenya. Int. J. Plant Prod. 2018, 12, 297–307. [Google Scholar] [CrossRef]
- Hood, R.C. The effect of soil temperature and moisture on organic matter decomposition and plant growth. Isot. Environ. Health Stud. 2001, 37, 25–41. [Google Scholar] [CrossRef]
- Wang, P.F.; Yu, A.Z.; Wang, Y.L.; Su, X.X.; Chai, J.; Li, Y.; Lv, H.Q.; Shang, Y.P.; Yang, X.H. Effects of multiple cropping green manure after wheat harvest combined with reduced nitrogen application on soil hydrothermal characteristics and maize yield. Acta Agron. Sin. 2023, 49, 2793–2805. [Google Scholar]
- Cao, H.J.; Han, Y.G.; Peng, J.; Peng, X.R. Improving soil moisture content to increase strawberry growth indicators using the hydroponic method. Water Supply 2023, 158, 2927–2939. [Google Scholar] [CrossRef]
- Yin, W.; Fan, Z.L.; Hu, F.L.; Fan, H.; He, W.; Zhao, C.; Yu, A.Z.; Chai, Q. No-tillage with straw mulching promotes wheat production via regulating soil drying-wetting status and reducing soil-air temperature variation at arid regions. Eur. J. Agron. 2023, 145, 126778. [Google Scholar] [CrossRef]
- Deng, H.L.; Zhang, H.J.; Li, F.Q.; Xiao, R.; Zhou, H.; Zhang, Y.L.; Wang, Y.C.; Li, X.; Wu, K.Q.; Yu, H.Y. Effects of mulching methods on soil water and temperature characteristics and yield of spring maize in semi-humid region of the Loess Plateau. Acta Agric. Boreali-Sin. 2020, 35, 195–205. [Google Scholar]
- Li, S.Z.; Fan, T.L.; Zhao, G.; Dang, Y.; Wang, L.; Zhang, J.J.; Tang, X.M.; Cheng, W.L. Effects of different cultivation patterns on soil moisture, temperature, yield and quality of dryland maize. Acta Prataculturae Sin. 2018, 27, 34–44. [Google Scholar]
- Dong, Q.; Dang, T.H.; Guo, S.L.; Hao, M.D. Effect of different mulching measures on nitrate nitrogen leaching in spring maize planting system in south of Loess Plateau. Agric. Water Manag. 2019, 213, 654–658. [Google Scholar] [CrossRef]
- Liu, S.; Li, J.Y.; Zhang, X.Y. Simulations of soil water and heat processes for no tillage and conventional tillage systems in mollisols of China. Land 2022, 11, 417. [Google Scholar] [CrossRef]
- Liu, L. Effects of Straw Mulching and Tillage Measures on Soil Water and Temperature and Maize Yield Formation in Black Soil Region. Master’s Thesis, Northeast Agricultural University, Harbin, China, 2019. [Google Scholar]
- Yu, H.L.; Wu, X.; Wu, Y.L.; Sun, X.J.; Du, W.N.; Yu, L.N. Effects of deep tillage on the characteristics of soil and grain yield in summer maize field. J. Maize Sci. 2019, 27, 99–105. [Google Scholar]
- Zhang, J.L.; Sikander, K.T.; Xue, J.; Zou, H.; Dong, X.M.; Li, K.; Bai, Y.S. Effects of different tillage systems on soil temperature and moisture in dryland field and summer maize yield. Acta Agric. Boreali-Occident. Sin. 2017, 26, 1446–1452. [Google Scholar]
- Li, Z.; Lai, X.F.; Yang, Q.; Yang, X.; Cui, S.; Shen, Y.Y. In search of long-term sustainable tillage and straw mulching practices for a maize-winter wheat-soybean rotation system in the Loess Plateau of China. Field Crops Res. 2018, 217, 199–210. [Google Scholar] [CrossRef]
- Han, Q.F.; Siddique, K.H.M.; Li, F.M. Adoption of conservation tillage on the semi-arid Loess Plateau of northwest China. Sustainability 2018, 10, 2621. [Google Scholar] [CrossRef]
- Feng, Q.Q.; Han, H.F.; Zhang, Y.Y.; Xu, J.; Cao, Y.Q.; Wang, S.B.; Ning, T.Y.; Li, Z.J. Effects of tillage methods on soil carbon sequestration and water holding capacity and yield in wheat–maize rotation. J. Plant Nutr. Fertil. 2018, 24, 869–879. [Google Scholar]
- He, J.H.; Wang, P.; Chen, J.; Wang, G.Y. Effects of different rotational tillage patterns on bulk density and moisture of soil and yield of spring maize (Zea Mays L.) in Arid Areas. Chin. J. Soil Sci. 2018, 49, 415–422. [Google Scholar]
- Wang, Y.F.; Li, Q.; Zhang, Y.F.; Fu, J.; Xue, Y.W.; Guo, W.; Yang, K.J. Effects of tillage on growth and water use of maize in Sanjiang Plain. J. Maize Sci. 2022, 30, 116–125. [Google Scholar]
- Wang, X.J.; Wang, G.Y.; Zhang, Y.W.; Cheng, J.F. Effects of agricultural machinery subsoiling on soil water storage and soil moisture conservation and maize yield in dryland area of Longdong. Farm Mach. 2016, 822, 103–105. [Google Scholar]
- Chen, S.Y. Effects of Subsoiling Depth on Soil Carbon and Nitrogen Dynamic Changes and Yield in Summer Maize Field. Master’s Thesis, Shandong Agricultural University, Tai’an, China, 2021. [Google Scholar]
- Yang, J.J.; Gai, H.; Zhang, M.X.; Cai, Y.R.; Wang, L.Y.; Wang, L.G. Effect of Subsoiling Combined with Straw Returning Measure on Pore Structure of Black Soil. Sci. Agric. Sin. 2023, 56, 892–906. [Google Scholar]
- Pittelkow, C.M.; Liang, X.Q.; Linquist, B.A.; van Groenigen, K.J.; Lee, J.; Lundy, M.E.; van Gestel, N.; Six, J.; Venterea, R.T.; van Kessel, C. Productivity limits and potentials of the principles of conservation agriculture. Nature 2015, 517, 365–368. [Google Scholar] [CrossRef]
- Zhao, Y.X.; Lu, J.Y.; Yang, H.M. Effect of conservation tillage on weeds in a rotation system on the Loess Plateau of eastern Gansu, Northwest China. Chin. J. Appl. Ecol. 2015, 26, 1223–1230. [Google Scholar]
- O’Kelly, B.C. Accurate determination of moisture content of organic soils using the oven drying method. Dry. Technol. 2004, 22, 1767–1776. [Google Scholar] [CrossRef]
- Peng, Z.K.; Wang, L.L.; Xie, J.H.; Li, L.L.; Coulter, J.A.; Zhang, R.Z.; Luo, Z.Z.; Cai, L.Q.; Carberry, P.; Whitbread, A. Conservation tillage increases yield and precipitation use efficiency of wheat on the semi-arid Loess Plateau of China. Agric. Water Manag. 2020, 231, 106024. [Google Scholar] [CrossRef]
- Zhang, G.S.; Chan, K.Y.; Li, G.D.; Huang, G.B. Effect of straw and plastic film management under contrasting tillage practices on the physical properties of an erodible loess soil. Soil Tillage Res. 2008, 98, 113–119. [Google Scholar] [CrossRef]
- Liu, Z.J.; Meng, Y.; Cai, M.; Zhou, J.B. Coupled effects of mulching and nitrogen fertilization on crop yield, residual soil nitrate, and water use efficiency of summer maize in the Chinese Loess Plateau. Environ. Sci. Pollut. Res. 2017, 24, 25849–25860. [Google Scholar] [CrossRef]
- Daamen, C.C.; Simmonds, L.P.; Wallace, J.S.; Laryea, K.B.; Sivakumar, M.V.K. Use of microlysimeters to measure evaporation from sandy soils. Agric. For. Meteorol. 1993, 65, 159–173. [Google Scholar] [CrossRef]
- Peng, Z.K.; Wang, L.L.; Xie, J.H.; Li, L.L.; Coulter, J.A.; Zhang, R.Z.; Luo, Z.Z.; Kholova, J.; Choudhary, S. Conservation tillage increases water use efficiency of spring wheat by optimizing water transfer in a semi-arid environment. Agronomy 2019, 9, 583. [Google Scholar] [CrossRef]
- Wang, L.L.; Palta, J.A.; Chen, W.; Chen, Y.L.; Deng, X.P. Nitrogen fertilization improved water-use efficiency of winter wheat through increasing water use during vegetative rather than grain filling. Agric. Water Manag. 2018, 197, 41–53. [Google Scholar] [CrossRef]
- Wang, S.L.; Wang, H.; Hafeez, M.B.; Zhang, Q.; Yu, Q.; Wang, X.L.; Li, J. No-tillage and subsoiling increased maize yields and soil water storage under varied rainfall distribution: A 9-year site-specific study in a semi-arid environment. Field Crops Res. 2020, 255, 107867. [Google Scholar] [CrossRef]
- Zhang, P.; Wei, T.; Jia, Z.K.; Han, Q.F.; Ren, X.L. Soil aggregate and crop yield changes with different rates of straw incorporation in semiarid areas of northwest China. Geoderma 2014, 230, 41–49. [Google Scholar] [CrossRef]
- Peng, Z.K.; Li, L.L.; Xie, J.H.; Deng, C.C.; Essel, E.; Wang, J.B.; Xie, J.H.; Shen, J.C.; Kang, C.R. Effects of different tillage practices on water consumption structure and water use efficiency during crop growth period in Arid farmland. J. Soil Water Conserv. 2018, 32, 214–221. [Google Scholar]
- Dai, Z.J.; Hu, J.S.; Fan, J.; Fu, W.; Wang, H.; Hao, M.D. No-tillage with mulching improves maize yield in dryland farming through regulating soil temperature, water and nitrate-N. Agric. Ecosyst. Environ. 2021, 309, 107288. [Google Scholar] [CrossRef]
- Li, H.Y.; Zhang, Y.H.; Sun, Y.G.; Zhang, Q.; Liu, P.Z.; Wang, X.L.; Li, J.; Wang, R. No-tillage with straw mulching improved grain yield by reducing soil water evaporation in the fallow period: A 12-year study on the Loess Plateau. Soil Tillage Res. 2022, 224, 105504. [Google Scholar] [CrossRef]
- Liu, E.K.; Teclemariam, S.G.; Yan, C.R.; Yu, J.M.; Gu, R.S.; Liu, S.; He, W.Q.; Liu, Q. Long-term effects of no-tillage management practice on soil organic carbon and its fractions in the northern China. Geoderma 2014, 213, 379–384. [Google Scholar] [CrossRef]
- Cui, W.Q.; Zhao, J.; Yang, X.G. Effects of four conservation tillage on soil hydrothermal environment during maize growing season in Northeast China: A meta-analysis. J. China Agric. Univ. 2022, 27, 24–34. [Google Scholar]
- Wang, L.X.; Gao, Y.Y.; Qu, M.Y.; Wang, X.Y. Effects of maize straw and stubble mulch on soil moisture and temperature in soybean field. J. Irrig. Drain. 2015, 34, 66–69. [Google Scholar]
- Zheng, H.B. Effects of Tillage Methods on the Soil Properties and Maize Growth. Ph.D. Thesis, Shenyang Agricultural University, Shenyang, China, 2018. [Google Scholar]
- Zhang, H.B.; Hu, J.; Liu, C.X. Study on the effect of different maize straw returning methods on soil temperature before sowing. China South. Agric. Mach. 2020, 51, 1–2. [Google Scholar]
- Yin, B.Z.; Hu, Z.H.; Wang, Y.D.; Zhao, J.; Pan, Z.H.; Zhen, W.C. Effects of optimized subsoiling tillage on field water conservation and summer maize (Zea mays L.) yield in the North China Plain. Agric. Water Manag. 2021, 247, 106732. [Google Scholar] [CrossRef]
- Getahun, G.T.; Kätterer, T.; Munkholm, L.J.; Rychel, K.; Kirchmann, H. Effects of loosening combined with straw incorporation into the upper subsoil on soil properties and crop yield in a three-year field experiment. Soil Tillage Res. 2022, 223, 105466. [Google Scholar] [CrossRef]
- Kuang, N.K.; Ma, Y.Z.; Hong, S.Z.; Jiao, F.L.; Liu, C.Y.; Li, Q.Q.; Han, H.F. Simulation of soil moisture dynamics, evapotranspiration, and water drainage of summer maize in response to different depths of subsoiling with RZWQM2. Agric. Water Manag. 2021, 249, 106794. [Google Scholar] [CrossRef]
- Dai, X.Q.; Li, Y.S.; Ouyang, Z.; Wang, H.M.; Wilson, G.V. Organic manure as an alternative to crop residues for no-tillage wheat–maize systems in North China Plain. Field Crops Res. 2013, 149, 141–148. [Google Scholar] [CrossRef]
- Liu, J.; Li, L.L.; Xie, J.H.; Deng, C.C.; Peng, Z.K.; Stephen, Y.; Shirley, L. Soil total organic carbon and its light fractions in response to 14 years of conservation tillage. Agric. Res. Arid. Areas 2017, 35, 8–13. [Google Scholar]
- Rawls, W.J.; Pachepsky, Y.A.; Ritchie, J.C.; Sobecki, T.M.; Bloodworth, H. Effect of soil organic carbon on soil water retention. Geoderma 2003, 116, 61–76. [Google Scholar] [CrossRef]
- Liu, Z.; Ma, F.Y.; Hu, T.X.; Zhao, K.G.; Gao, T.P.; Zhao, H.X.; Ning, T.Y. Using stable isotopes to quantify water uptake from different soil layers and water use efficiency of wheat under long-term tillage and straw return practices. Agric. Water Manag. 2020, 229, 105933. [Google Scholar] [CrossRef]
- Liu, X.; Peng, C.; Zhang, W.J.; Li, S.Y.; An, T.T.; Xu, Y.D.; Ge, Z.; Xie, N.H.; Wang, J.K. Subsoiling tillage with straw incorporation improves soil microbial community characteristics in the whole cultivated layers: A one-year study. Soil Tillage Res. 2022, 215, 105188. [Google Scholar] [CrossRef]
- Tao, Z.Q.; Li, C.F.; Li, J.J.; Ding, Z.S.; Xu, J.; Sun, X.F.; Zhou, P.L.; Zhao, M. Tillage and straw mulching impacts on grain yield and water use efficiency of spring maize in Northern Huang–Huai–Hai Valley. Crop J. 2015, 3, 445–450. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, L.; Liu, J.; Fu, Q.; Xu, Q.; Idimesheva, O. Soil water and temperature characteristics under different straw mulching and tillage measures in the black soil region of China. J. Soil Water Conserv. 2021, 76, 256–262. [Google Scholar] [CrossRef]
- Li, Z.; Yang, X.; Cui, S.; Yang, Q.; Yang, X.L.; Li, J.C.; Shen, Y.Y. Developing sustainable cropping systems by integrating crop rotation with conservation tillage practices on the Loess Plateau, a long-term imperative. Field Crops Res. 2018, 222, 164–179. [Google Scholar] [CrossRef]
- Pramanick, B.; Kumar, M.; Naik, B.M.; Kumar, M.; Singh, S.K.; Maitra, S.; Naik, B.S.S.S.; Rajput, V.D.; Minkina, T. Long-term conservation tillage and precision nutrient management in maize–wheat cropping system: Effect on soil properties, crop production, and economics. Agronomy 2022, 12, 2766. [Google Scholar] [CrossRef]
- Memon, S.Q.; Mirjat, M.S.; Mughal, A.Q.; Amjad, N. Effect of conventional and non-conventional tillage practices on maize production. Pak. J. Agri. Agril. Engg. Vet. Sci. 2013, 29, 155–163. [Google Scholar]
- Ren, B.Z.; Li, X.; Dong, S.T.; Liu, P.; Zhao, B.; Zhang, J.W. Soil physical properties and maize root growth under different tillage systems in the North China Plain. Crop J. 2018, 6, 669–676. [Google Scholar] [CrossRef]
- Shao, Y.H.; Xie, Y.X.; Wang, C.Y.; Yue, J.Q.; Yao, Y.Q.; Li, X.D.; Liu, W.X.; Zhu, Y.J.; Guo, T.C. Effects of different soil conservation tillage approaches on soil nutrients, water use and wheat-maize yield in rainfed dry-land regions of North China. Eur. J. Agron. 2016, 81, 37–45. [Google Scholar] [CrossRef]
- Wang, C.B.; Wen, M.J.; Yang, S.C.; Huo, L.; Jiang, W.L. Effects of different tillage practices on physical characteristics of irrigated sierozem soil and maize yield. Agric. Res. Arid. Areas 2022, 40, 170–177. [Google Scholar]
Tillage Practices | Abbreviations | Description |
---|---|---|
Conventional tillage with no straw | T | The straw was being moved out of the plot in early October, and the tillage was harrowed once before the maize was sown in early April of the next year, with a depth of about 30 cm; the maize sown date is mid to late April. |
Conventional tillage with straw incorporated | TS | The treatment was the same as T, except the straw was chopped into about 5 cm and returned to plots after the previous crop (maize) was harvested in early October. |
Subsoiling tillage with no straw | SST | The treatment included that the straw was moved out of the plot after harvest in early October, and deep ploughing and shallow rotary harrowing were performed once before the maize was sown in early April; the tillage depth was about 30 cm. |
Subsoiling tillage with straw incorporated | SSTS | The treatment was the same as SST, except all straws were retained in plots, chopped into about 5 cm after harvest in early October. |
No-till with no straw | NT | The treatment had all aboveground crop residues removed after harvest in early October, and no tillage operations throughout the trial period. |
No-till with straw cover | NTS | The treatment was the same as NT, except that all residues from the previous crop (maize) were retained, chopped into about 5 cm, after harvest in early October. |
Year | Tillage Practice b | SWSb (mm) | SWSh (mm) | Pc (mm) | ETc (mm) | Ec (mm) | Tc (mm) |
---|---|---|---|---|---|---|---|
2021 | T | 302.95 | 219.34 ab c | 330.7 | 414.31 ab | 70.40 a | 343.90 b |
TS | 302.95 | 213.33 ab | 330.7 | 420.32 ab | 57.41 b | 362.91 a | |
SST | 302.95 | 202.72 b | 330.7 | 430.93 a | 70.41 a | 360.51 a | |
SSTS | 302.95 | 216.77 ab | 330.7 | 416.88 ab | 53.72 b | 363.16 a | |
NT | 302.95 | 208.82 b | 330.7 | 424.83 a | 70.38 a | 354.45 ab | |
NTS | 302.95 | 226.65 a | 330.7 | 407.00 b | 59.15 b | 347.85 ab | |
2022 | T | 377.73 ab | 309.85 bc | 359.5 | 427.38 b | 265.04 a | 162.34 c |
TS | 370.19 b | 332.46 a | 359.5 | 397.22 c | 236.79 b | 160.43 c | |
SST | 392.43 a | 334.59 a | 359.5 | 417.34 bc | 230.70 b | 186.65 bc | |
SSTS | 394.26 a | 333.41 a | 359.5 | 420.35 bc | 210.76 c | 209.59 b | |
NT | 386.66 ab | 321.21 ab | 359.5 | 424.95 b | 239.10 b | 185.86 bc | |
NTS | 393.33 a | 297.12 c | 359.5 | 455.71 a | 197.98 d | 257.73 a | |
Source of variance | |||||||
Year (Y) | ** | ** | NS | ** | ** | ||
Tillage (T) | ** | NS | * | ** | ** | ||
Straw (S) | NS | NS | NS | ** | ** | ||
Y × T | ** | ** | ** | ** | ** | ||
Y × S | NS | NS | NS | ** | ** | ||
T × S | NS | NS | NS | NS | NS | ||
Y × T × S | NS | ** | ** | * | ** |
Year | Tillage Practice b | Ear No. per Area | Grain No. per Ear | HGW (g) | GY (kg ha−1) | WUE (kg ha−1 mm−1) | BY (kg ha−1) | HI (%) |
---|---|---|---|---|---|---|---|---|
2021 | T | 4697 ab c | 511 c | 45.06 ab | 6751.78 b | 16.30 b | 18,280.87 b | 0.37 a |
TS | 4914 a | 532 bc | 45.45 a | 6730.06 b | 16.01 b | 18,522.24 b | 0.36 a | |
SST | 4914 a | 543 ab | 43.20 b | 7078.93 a | 16.44 b | 24,148.36 a | 0.29 bc | |
SSTS | 4480 b | 564 a | 44.78 ab | 7169.64 a | 17.20 a | 25,804.02 a | 0.28 c | |
NT | 4698 ab | 459 d | 45.46 a | 5425.47 c | 12.77 c | 15,040.40 c | 0.36 a | |
NTS | 4480 b | 470 d | 39.58 c | 5042.37 d | 12.39 c | 14,960.90 c | 0.34 ab | |
2022 | T | 4311 ab | 475 c | 27.84 abc | 5764.16 c | 13.51 b | 14,551.12 c | 0.40 ab |
TS | 4353 ab | 526 b | 28.70 ab | 5820.82 c | 14.67 ab | 15,419.73 c | 0.38 b | |
SST | 4442 a | 554 b | 31.36 a | 6160.66 b | 14.78 a | 18,870.80 b | 0.33 c | |
SSTS | 4435 a | 660 a | 31.38 a | 6556.28 a | 15.59 a | 22,340.72 a | 0.29 d | |
NT | 4179 b | 383 d | 22.23 c | 3297.59 d | 7.78 c | 8820.93 d | 0.37 b | |
NTS | 4273 ab | 473 c | 23.78 bc | 3569.27 d | 7.83 c | 8754.10 d | 0.41 a | |
Source of variance | ||||||||
Year (Y) | ** | NS | ** | ** | ** | ** | ** | |
Tillage (T) | ** | ** | ** | ** | ** | ** | ** | |
Straw (S) | NS | ** | NS | NS | NS | * | NS | |
Y × T | NS | ** | ** | ** | ** | * | NS | |
Y × S | * | ** | NS | ** | NS | NS | NS | |
T × S | ** | NS | NS | NS | NS | * | NS | |
Y × T × S | ** | NS | NS | NS | NS | NS | NS |
Index b | Ear No. per Area | Grain No. per Ear | HGW | GY | BY | HI |
---|---|---|---|---|---|---|
SW1 | −0.262 | 0.249 | 0.133 | −0.042 | 0.133 | −0.241 |
SW2 | 0.310 | 0.310 | 0.706 ** | 0.633 ** | 0.434 | −0.064 |
SW3 | −0.013 | −0.057 | 0.037 | −0.194 | −0.095 | −0.068 |
SW4 | −0.162 | −0.026 | −0.290 | −0.141 | −0.212 | 0.310 |
ST1 | −0.188 | −0.379 | −0.533 * | −0.458 | −0.394 | 0.233 |
ST2 | −0.310 | −0.734 ** | −0.492 * | −0.644 ** | −0.634 ** | 0.448 |
Tillage Practices a | Type of Input (CNY/hm2) | Total Input | Type of Earnings (CNY/hm2) | Ratio of Output to Input | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Year | Seeds | Fertilizer | Pesticide | Labor | Machinery | Grain Benefit | Net Benefit | |||
2021 | T | 1740 | 2971 | 150 | 4800 | 900 | 10,561 | 17,555 b b | 6994 b | 1.66 b |
TS | 1740 | 2971 | 150 | 4800 | 900 | 10,561 | 17,498 b | 6937 b | 1.66 b | |
SST | 1740 | 2971 | 150 | 4800 | 900 | 10,561 | 18,405 a | 7844 a | 1.74 a | |
SSTS | 1740 | 2971 | 150 | 4800 | 900 | 10,561 | 18,641 a | 8080 a | 1.77 a | |
NT | 1740 | 2971 | 150 | 4800 | 0 | 9661 | 14,106 c | 4445 c | 1.46 c | |
NTS | 1740 | 2971 | 150 | 4800 | 0 | 9661 | 13,110 d | 3449 d | 1.36 d | |
2022 | T | 1885 | 3075 | 150 | 4800 | 900 | 10,810 | 14,987 c | 4176 c | 1.39 c |
TS | 1885 | 3075 | 150 | 4800 | 900 | 10,810 | 15,134 c | 4324 c | 1.40 c | |
SST | 1885 | 3075 | 150 | 4800 | 900 | 10,810 | 16,018 b | 5208 b | 1.48 b | |
SSTS | 1885 | 3075 | 150 | 4800 | 900 | 10,810 | 17,046 a | 6236 a | 1.58 a | |
NT | 1885 | 3075 | 150 | 4800 | 0 | 9910 | 8574 d | −1336 d | 0.87 d | |
NTS | 1885 | 3075 | 150 | 4800 | 0 | 9910 | 9280 d | −630 d | 0.94 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, Z.; Yang, H.; Li, Q.; Cao, H.; Ma, J.; Ma, S.; Qiao, Y.; Jin, J.; Ren, P.; Song, Z.; et al. Tillage Practices Affected Yield and Water Use Efficiency of Maize (Zea mays L., Longdan No.8) by Regulating Soil Moisture and Temperature in Semi-Arid Environment. Water 2023, 15, 3243. https://doi.org/10.3390/w15183243
Peng Z, Yang H, Li Q, Cao H, Ma J, Ma S, Qiao Y, Jin J, Ren P, Song Z, et al. Tillage Practices Affected Yield and Water Use Efficiency of Maize (Zea mays L., Longdan No.8) by Regulating Soil Moisture and Temperature in Semi-Arid Environment. Water. 2023; 15(18):3243. https://doi.org/10.3390/w15183243
Chicago/Turabian StylePeng, Zhengkai, Hongwei Yang, Qian Li, Hong Cao, Jian Ma, Shengfa Ma, Yan Qiao, Jiaojiao Jin, Panrong Ren, Zhanshu Song, and et al. 2023. "Tillage Practices Affected Yield and Water Use Efficiency of Maize (Zea mays L., Longdan No.8) by Regulating Soil Moisture and Temperature in Semi-Arid Environment" Water 15, no. 18: 3243. https://doi.org/10.3390/w15183243