A Review of Karakoram Glacier Anomalies in High Mountains Asia
Abstract
:1. Introduction
2. Data Sources and Analytical Methods
3. Changes in the Area of Karakoram Glaciers
4. Changes in Elevation of the Karakoram Glacier
5. Changes in the Mass Balance of the Karakoram Glacier
6. Number of Glacier Surges in Karakoram
7. Mechanisms of Glacial Anomalies in the Karakoram Region
7.1. Hydrothermal Conditions
7.2. Atmospheric Circulation
7.3. Surface Moraine Thickness
7.4. Topographical Impacts
7.4.1. Influence of Glacier Elevation and Slope Direction
7.4.2. Surging Mechanism
8. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yao, T.D.; Yu, W.S.; Wu, G.J.; Xu, B.Q.; Yang, W.; Zhao, H.B.; Wang, W.C.; Li, S.H.; Wang, N.L.; Li, Z.Q. Glacier anomalies and relevant disaster risks on the Tibetan Plateau and surroundings. Chin. Sci. Bull. 2019, 64, 2770–2782. [Google Scholar]
- Kang, S.C.; Guo, W.Q.; Zhong, X.Y.; Xu, M. Changes in the mountain cryosphere and their impacts and adaptation measures. Clim. Chang. Res. 2020, 16, 143–152. [Google Scholar] [CrossRef]
- Hewitt, K. The Karakoram Anomaly? Glacier Expansion and the ‘Elevation Effect’,Karakoram Himalaya. Mt. Res. Dev. 2005, 25, 332–340. [Google Scholar] [CrossRef]
- Cogley, G. No ice lost in the Karakoram. Nat. Geosci. 2012, 5, 305–306. [Google Scholar] [CrossRef]
- Farinotti, D.; Immerzeel, W.W.; Kok, R.J.; Quincey, D.J.; Dehecq, A. Manifestations and mechanisms of the Karakoram glacier Anomaly. Nat. Geosci. 2020, 13, 8–16. [Google Scholar] [CrossRef]
- Hewitt, K. Glacier change, concentration, and elevation effects in the Karakoram Himalaya, upper Indus basin. Mt. Res. Dev. 2011, 31, 188–200. [Google Scholar] [CrossRef]
- Kääb, A.; Treichler, D.; Nuth, C.; Berthier, E. Brief communication: Contending estimates of 2003–2008 glacier mass balance over the Pamir-Karakoram-Himalaya. Cryosphere 2015, 9, 557–564. [Google Scholar] [CrossRef]
- Wang, Y.T.; Hou, S.G.; Huai, B.J.; An, W.L.; Pang, H.X.; Liu, Y.P. Glacier anomaly over the western Kunlun Mountains, Northwestern Tibetan Plateau, since the 1970s. J. Glaciol. 2018, 64, 624–636. [Google Scholar] [CrossRef]
- Hewitt, K.; Liu, J. Ice-dammed lakes and outburst floods, Karakoram Himalaya: Historical perspectives on emerging threats. Phys. Geogr. 2010, 31, 528–551. [Google Scholar] [CrossRef]
- Rashid, I.; Majeed, U.; Jan, A.; Glasser, N.F. The January 2018 to September 2019 surge of Shisper Glacier, Pakistan, detected from remote sensing observations. Geomorphology 2020, 351, 106957. [Google Scholar] [CrossRef]
- Yao, X.J.; Liu, S.Y.; Sun, M.P.; Zhang, X.J. Study on the Glacial Lake Outburst Flood Events in Tibet since the 20th Century. J. Nat. Resour. 2014, 29, 1377–1390. [Google Scholar] [CrossRef]
- Shangguan, D.H.; Liu, S.Y.; Ding, Y.J.; Guo, W.Q.; Xu, B.Q.; Xu, J.L.; Jiang, Z.L. Characterizing the May 2015 Karayaylak Glacier surge in the eastern Pamir Plateau using remote sensing. J. Glaciol. 2016, 62, 944–953. [Google Scholar] [CrossRef]
- Li, D.F.; Lu, X.X.; Overeem, I.; Walling, D.E.; Syvitski, J.; Kettner, A.J.; Bookhagen, B.; Zhou, Y.J.; Zhang, T. Exceptional increases in fluvial sediment fluxes in a warmer and wetter High Mountain Asia. Science 2021, 374, 599–603. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Van Beek, L.P.H.; Bierkens, M.F.P. Climate Change Will Affect the Asian Water Towers. Science 2010, 328, 1382–1385. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.Y. Preface of “Special Topics on Ice, Snow and Environment in High Asia”. China Sci. Data 2018, 3, 5–6. [Google Scholar] [CrossRef]
- Yao, T.D.; Thompson, L.; Yang, W.; Yu, W.S.; Gao, Y.; Guo, X.J.; Yang, X.X.; Duan, K.Q.; Zhao, H.B.; Xu, B.Q.; et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Clim. Chang. 2012, 2, 663–667. [Google Scholar] [CrossRef]
- Rounce, D.R.; Hock, R.; Shean, D.E. Glacier mass change in high mountain Asia through 2100 using the open- source Python Glacier Evolution Model (PyGEM). Front. Earth Sci. 2020, 7, 331. [Google Scholar] [CrossRef]
- Farinotti, D.; Huss, M.; Fürst, J.J.; Landmann, J.; Machguth, H.; Maussion, F.; Pandit, A. A consensus estimate for the ice thickness distribution of all glaciers on Earth. Nat. Geosci. 2019, 12, 168–173. [Google Scholar] [CrossRef]
- Pfeffer, W.T.; Arendt, A.A.; Bliss, A.; Bolch, T.; Cogley, J.G.; Gardner, A.S.; Hagen, J.O.; Hock, R.; Kaser, G.; Kienholz, C.; et al. The Randolph Glacier Inventory: A globally complete inventory of glaciers. J. Glaciol. 2014, 60, 537–552. [Google Scholar] [CrossRef]
- Wang, X.M.; Liu, S.W.; Zhang, J.L. A new look at roles of the cryosphere in sustainable development. Adv. Clim. Chang. Res. 2019, 10, 124–131. [Google Scholar] [CrossRef]
- Viviroli, D.; Kummu, M.; Meybeck, M.; Kallio, M.; Wada, Y. Increasing dependence of lowland populations on mountain water resources. Nat. Sustain. 2020, 3, 917–928. [Google Scholar] [CrossRef]
- Liu, S.Y.; Ding, Y.J.; Li, J.; Shangguan, D.H.; Zhang, Y. Glaciers in response to recent climate warming in western China. Quat. Res. 2006, 26, 762–771. [Google Scholar]
- Pritchard, H.D. Asia’s glaciers are a regionally important buffer against drought. Nature 2017, 545, 169. [Google Scholar] [CrossRef]
- Gardelle, J.; Berthier, E.; Arnaud, Y. Slight mass gain of Karakoram glaciers in the early twenty-first century. Nat. Geosci. 2012, 5, 322–325. [Google Scholar] [CrossRef]
- Gardelle, J.; Berthier, E.; Arnaud, Y.; Kääb, A. Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999–2011. Cryosphere 2013, 7, 1263–1286. [Google Scholar] [CrossRef]
- Kääb, A.; Berthier, E.; Nuth, C.; Gardelle, J.; Arnaud, Y. Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature 2012, 488, 495–498. [Google Scholar] [CrossRef]
- Hou, J.H.; Huo, Z.G. Review on the Application of CiteSpace at Home and Abroad. J. Mod. Inf. 2013, 33, 99–103. [Google Scholar] [CrossRef]
- Mingers, J.; Leydesdorff, L. A review of theory and practice in scientometrics. Eur. J. Oper. Res. 2015, 246, 1–19. [Google Scholar] [CrossRef]
- Xie, C.X.; Liang, L.M.; Wang, W.H. Keyword co-occurrence analysis of nanotechnology papers in China. J. Inf. 2005, 24, 69–73. [Google Scholar]
- Hugonnet, R.; Mcnabb, R.; Berthier, E.; Menounos, B.; Nuth, C.; Girod, L.; Farinotti, D.; Huss, M.; Dussaillant, I.; Brun, F. Accelerated global glacier mass loss in the early twenty-first century. Nature 2021, 592, 726–731. [Google Scholar] [CrossRef]
- Brun, F.; Berthier, E.; Wagnon, P.; Kääb, A.; Treichler, D. A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016. Nat. Geosci. 2017, 10, 668–673. [Google Scholar] [CrossRef]
- Lv, M.Y.; Guo, H.D.; Yan, S.Y.; Li, G.Y.; Jiang, D.; Zhang, H.L.; Zhang, Z.Y. A dataset of surge-type glaciers in the High Mountain Asia based on elevation change and satellite imagery. China Sci. Data 2022, 7, 1–17. [Google Scholar] [CrossRef]
- Liu, K.; Wang, N.L.; Bai, X.H. Variation of glaciers in the Nubra basin, Karakoram Mountains, revealed by remote sensing images during 1993–2015. J. Glaciol. Geocryol. 2017, 39, 710–719. [Google Scholar]
- Xu, A.W.; Yang, T.B.; Wang, C.Q.; Ji, Q. Variation of glaciers in the Shaksgam River Basin, Karakoram Mountains during 1978–2015. Prog. Geogr. 2016, 35, 878–888. [Google Scholar] [CrossRef]
- Li, Z.J.; Wang, N.L.; Chen, A.A.; Liu, K. Remote sensing monitoring of glacier changes in Shyok basin of the Karakoram Mountains,1993–2016. J. Glaciol. Geocryol. 2019, 41, 770–782. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, N.L.; Li, X.; Liu, K. Glacier changes and its response to climate change in the gilgit giver basin, Western Karakorum Mountains over the Past 20 Years. Mt. Res. 2019, 37, 347–358. [Google Scholar] [CrossRef]
- Wang, L.; Wang, N.L.; Li, Z.J.; Chen, A.A.; Xia, W.J. Spatial characteristics of glacier mass balance variations in Shigar basin of the central Karakoram Mountains,1993–2016. J. Glaciol. Geocryol. 2021, 43, 1–13. [Google Scholar] [CrossRef]
- Yan, L.L.; Wang, J. Study of extracting glacier information from remote sensing. J. Glaciol. Geocryol. 2013, 35, 110–118. [Google Scholar] [CrossRef]
- Shean, D.E.; Bhushan, S.; Montesano, P.; Rounce, D.R.; Arendt, A.; Osmanoglu, B. A Systematic, Regional Assessment of High Mountain Asia Glacier Mass Balance. Front. Earth Sci. 2020, 7, 363. [Google Scholar] [CrossRef]
- Xu, A.W.; Yang, T.B.; He, Y.; Ji, Q. Research for glaciers and climate change of K2 on the northern slope in the past 40 years. Res. Soil Water Conserv. 2016, 23, 77–82. [Google Scholar] [CrossRef]
- Xie, F.M.; Liu, S.Y.; Gao, Y.P.; Zhu, Y.; Bolch, T.; Kääb, A.; Duan, S.M.; Miao, W.F.; Kang, J.F.; Zhang, Y.N.; et al. Interdecadal glacier inventories in the Karakoram since the 1990s. Earth Syst. Sci. Data 2023, 15, 847–867. [Google Scholar] [CrossRef]
- Shen, C. Glacier Surface Elevation Change in High Mountain Asia Region Based on ICESat-1&2 Data. Master’s Thesis, University of Chinese Academy of Sciences (Institute of Space and Astronautical Information Innovation, Chinese Academy of Sciences), Beijing, China, 2022. [Google Scholar]
- Rankl, M.; Braun, M. Glacier elevation and mass changes over the central Karakoram region estimated from TanDEM-X and SRTM/X-SAR digital elevation models. Ann. Glaciol. 2016, 51, 273–281. [Google Scholar] [CrossRef]
- Sakai, A.; Fujita, K. Contrasting glacier responses to recent climate change in high-mountain Asia. Sci. Rep. 2017, 7, 13717. [Google Scholar] [CrossRef]
- Lin, H.; Li, G.; Cuo, L.; Hooper, A.; Ye, Q.H. A decreasing glacier mass balance gradient from the edge of the upper Tarim basin to the Karakoram during 2000–2014. Sci. Rep. 2017, 7, 6712–6719. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, V.; Bolch, T.; Syed, T.H.; Pieczonka, T.; Strozzi, T.; Nagaich, R. Area and mass changes of Siachen Glacier (EastKarakoram). J. Glaciol. 2017, 63, 148–163. [Google Scholar] [CrossRef]
- Zhou, Y.S.; LI, Z.Y.; Li, J. Slight glacier mass loss in the Karakoram region during the 1970s to 2000 revealed by KH-9 images and SRTM DEM. J. Glaciol. 2017, 63, 331–342. [Google Scholar] [CrossRef]
- Gardner, A.; Geir, M.J.; Graham, C.; Wouters, B.; Arendt, A.A.; Wahr, J.; Berthier, E.; Hock, R.; Pfeffer, W.T.; Kaser, G.; et al. A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science 2013, 340, 852–857. [Google Scholar] [CrossRef]
- Lhakpa, D.; Fan, Y.B.; Cai, Y. Continuous Karakoram Glacier Anomaly and Its Response to Climate Change during 2000–2021. Remote Sens. 2022, 14, 6281. [Google Scholar] [CrossRef]
- Meier, M.F.; Post, A. What are glacier surges? Can. J. Earth Sci. 1969, 6, 807–817. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, S.Y.; Wei, J.F.; Jiang, Z.L. Monitoring a glacier surge in the Kungey Mountain, eastern Pamir Plateau using remote sensing. Prog. Geogr. 2018, 37, 1545–1554. [Google Scholar]
- Goerlich, F.; Bolch, T.; Paui, F. More dynamic than expected: An updated survey of surging glaciers in the Pamir. Earth Syst. Sci. Data 2020, 12, 3161–3176. [Google Scholar] [CrossRef]
- Lv, M.Y.; Guo, H.D.; Lu, X.C.; Liu, G.; Yan, S.Y.; Ruan, Z.X.; Ding, Y.X.; Quincey, D.J. Characterizing the behaviour of surge-and non-surge-type glaciers in the Kingata Mountains, eastern Pamir, from 1999 to 2016. Cryosphere 2019, 13, 219–236. [Google Scholar] [CrossRef]
- Zhou, S.G.; Yao, X.J.; Zhang, D.H.; Zhang, Y.; Liu, S.Y.; Min, Y.F. Remote Sensing Monitoring of Advancing and Surging Glaciers in the Tien Shan, 1990–2019. Remote Sens. 2021, 13, 1973. [Google Scholar] [CrossRef]
- Mukherjee, K.; Bolch, T.; Goerlich, F.; Kutuzov, S.; Osmonov, A.; Pieczonka, T.; Shesterova, I. Surge-Type Glaciers in the Tien Shan (Central Asia). Arct. Antarct. Alp. Res. 2017, 49, 147–171. [Google Scholar] [CrossRef]
- Gao, Y.P.; Liu, S.Y.; Qi, M.M.; Zhu, Y.; Xie, F.M.; Wu, K.P.; Jiang, Z.L. Characterizing the behaviour of surge-type glaciers in the Geladandong Mountain Region, Inner Tibetan Plateau, from 1986 to 2020. Geomorphology 2021, 389, 107806. [Google Scholar] [CrossRef]
- Xu, J.L.; Shangguan, D.H.; Wang, J. Three dimensional glacier changes in Geladandong Peak region in the central Tibetan Plateau. Water 2018, 10, 1749. [Google Scholar] [CrossRef]
- Lv, M.Y. Distribution and Motion Patterns of the Surge-Type Glaciers in High Mountain Asia by Remote Sensing. Ph.D. Thesis, Nanjing University, Nanjing, China, 2020. [Google Scholar]
- Bhambri, R.; Hewitt, K.; Kawishwar, P.; Pratap, B. Surge-type and surge-modified glaciers in the Karakoram. Sci. Rep. 2017, 7, 15391. [Google Scholar] [CrossRef]
- Copland, L.; Sylvestre, T.; Bishop, M.P.; Shroder, J.F.; Seong, Y.B.; Owen, L.A.; Bush, A.; Kamp, U. Expanded and recently increased glacier surging in the Karakoram. Arct. Antarct. Alp. Res. 2011, 43, 503–516. [Google Scholar] [CrossRef]
- Zhou, S.G. Remote Sensing Identification and Spatiotemporal Distribution Characteristics of Surging Glaciers in High Mountain Asia from1986 to 2021. Master’s Thesis, Northwest Normal University, Lanzhou, China, 2021. [Google Scholar]
- Vale, A.B.; Arnold, N.S.; Rees, W.G.; Lea, J.M. Remote Detection of Surge-Related Glacier Terminus Change across High Mountain Asia. Remote Sens. 2021, 13, 1309. [Google Scholar] [CrossRef]
- Guan, W.J.; Cao, B.; Pan, B.T.; Chen, R.; Shi, M.H.; Li, K.J.; Zhao, X.R.; Sun, X.D. Updated Surge-Type Glacier Inventory in the West Kunlun Mountains, Tibetan Plateau, and Implications for Glacier Change. JGR Earth Surf. 2021, 127, e2021JF006369. [Google Scholar] [CrossRef]
- Sevestre, H.; Benn, D.I. Climatic and geometric controls on the global distribution of surge-type glaciers: Implications for a unifying model of surging. J. Glaciol. 2015, 61, 646–662. [Google Scholar] [CrossRef]
- Copland, L.; Sharp, M.J.; Dowdeswell, J.A. The distribution and flow characteristics of surge-type glaciers in the Canadian High Arctic. Ann. Glaciol. 2003, 36, 73–81. [Google Scholar] [CrossRef]
- Jiskoot, H.; Murray, T.; Luckman, A. Surge potential and drainage basin characteristics in East Greenland. Ann. Glaciol. 2003, 36, 142–148. [Google Scholar] [CrossRef]
- Gardner, J.S.; Hewitt, K. A surge of Bualtar Glacier, Karakoram Range, Pakistan: A possible landslide trigger. J. Glaciol. 1990, 36, 159–162. [Google Scholar] [CrossRef]
- Barrand, N.E.; Murray, T. Multivariate controls on the incidence of glacier surging in the Karakoram Himalaya. Arct. Antarct. Alp. Res. 2006, 38, 489–498. [Google Scholar] [CrossRef]
- Hewitt, K. Tributary glacier surges: An exceptional concentration at Panmah Glacier, Karakoram Himalaya. J. Glaciol. 2007, 53, 181–188. [Google Scholar] [CrossRef]
- Quincey, D.J.; Braun, M.; Glaser, N.F.; Bishop, M.P.; Hewitt, K.; Luckman, A. Karakoram glacier surge dynamics. Geophys. Res. Lett. 2011, 38, 1–6. [Google Scholar] [CrossRef]
- Tobias, B.; Tino, P.; Kriti, M.; Shea, J. Brief communication: Glaciers in the Hunza catchment (Karakoram) have been nearly in balance since the 1970s. Cryosphere 2017, 11, 531–539. [Google Scholar] [CrossRef]
- Yasuda, T.; Fueuya, M. Dynamics of surge-type glaciers in West Kunlun Shan, Northwestern Tibet. JGR Earth Surf. 2015, 120, 2393–2405. [Google Scholar] [CrossRef]
- Chudley, T.R.; Willis, I.C. Glacier surges in the north-west West Kunlun Shan inferred from 1972 to 2017 Landsat imagery. J. Glaciol. 2018, 65, 1–12. [Google Scholar] [CrossRef]
- Kotlyakov, V.M.; Osipova, G.B.; Tsvetkov, D.G. Monitoring surging glaciers of the Pamirs, Central Asia from space. Ann. Glaciol. 2008, 48, 125–134. [Google Scholar] [CrossRef]
- King, O.; Bhattacharya, A.; Bolch, T. The presence and influence of glacier surging around the Geladandong ice caps, North East Tibetan Plateau. Adv. Clim. Chang. Res. 2021, 12, 299–312. [Google Scholar] [CrossRef]
- Xu, J.L.; Shangguan, D.H.; Wang, J. Recent surging event of a glacier on Geladandong Peak on the Central Tibetan Plateau. J. Glaciol. 2021, 67, 967–973. [Google Scholar] [CrossRef]
- Rankl, M.; Kienholz, C.; Braun, M. Glacier changes in the Karakoram region mapped by multimission satellite imagery. Cryosphere 2014, 8, 977–989. [Google Scholar] [CrossRef]
- Guillet, G.; King, O.; Lv, M.Y.; Ghuffar, S.; Benn, D.; Quincey, D.; Bolch, T. A regionally resolved inventory of High Mountain Asia surge-type glaciers, derived from a multi-factor remote sensing approach. Cryosphere 2022, 16, 603–623. [Google Scholar] [CrossRef]
- Forsythe, N.; Fowler, H.J.; Li, X.F.; Blenkinsop, S.; Pritchard, D. Karakoram temperature and glacial melt driven by regional atmospheric circulation variability. Nat. Clim. Chang. 2017, 7, 664–670. [Google Scholar] [CrossRef]
- Kapnick, S.B.; Delworth, T.L.; Ashfaq, M.; Malyshev, S.; Milly, P.C.D. Snowfall less sensitive to warming in Karakoram than in Himalayas due to a unique seasonal cycle. Nat. Geosci. 2014, 7, 834–840. [Google Scholar] [CrossRef]
- Cannon, F.; Carvalho, L.M.V.; Jones, C.; Norris, J. Winter westerly disturbance dynamics and precipitation in the western Himalaya and Karakoram: A wave-tracking approach. Theor. Appl. Climatol. 2016, 125, 27–44. [Google Scholar] [CrossRef]
- Shi, Y.F. Concise Glaciers Inventory of China; Shanghai Science Popularization Press: Shanghai, China, 2005. [Google Scholar]
- Guo, W.Q.; Liu, S.Y.; Xu, J.L.; Wei, J.; Ding, L. Monitoring recent surging of the Yulinchuan Glacier on north slopes of Muztag range by remote sensing. J. Glaciol. Geocryol. 2012, 34, 765–774. [Google Scholar]
- Hewitt, K.; Wake, C.P.; Young, G.J.; David, C. Hydrological investigations at Biafo Glacier, Karakoram Himalaya, Pakistan: An important source of water for the Indus River. Ann. Glaciol. 1989, 13, 103–108. [Google Scholar] [CrossRef]
- Yan, Y.P.; You, Q.L.; Wu, F.Y.; Pepin, N.; Kang, S.C. Surface mean temperature from the observational stations and multiple reanalyses over the Tibetan Plateau. Clim. Dynam. 2020, 55, 405–419. [Google Scholar] [CrossRef]
- Zhang, G.Q.; Yao, T.D.; Xie, H.J.; Yang, K.; Zhu, L.P.; Shum, C.K.; Bolch, T.; Yi, S.; Allen, S.; Jiang, L.G.; et al. Response of Tibetan Plateau lakes to climate change: Trends, patterns, and mechanisms. Earth-Sci. Rev. 2020, 208, 103269. [Google Scholar] [CrossRef]
- You, Q.L.; Cai, Z.Y.; Pepin, N.; Chen, D.L.; Ahrens, B.; Jiang, Z.H.; Wu, F.Y.; Kang, S.C.; Zhang, R.N.; Wu, T.H.; et al. Warming amplification over the Arctic Pole and Third Pole: Trends, mechanisms and consequences. Earth-Sci. Rev. 2021, 217, 103625. [Google Scholar] [CrossRef]
- Li, B.F.; Chen, Y.N.; Shi, X. Does elevation dependent warming exist in high mountain Asia? Environ. Res. Lett. 2020, 15, 024012. [Google Scholar] [CrossRef]
- Yao, T.D.; Bolch, T.; Chen, D.L.; Gao, J.; Immerzeel, W.; Piao, S.L.; Su, F.G.; Thompson, L.; Wada, Y.; Wang, L.; et al. The imbalance of the Asian water tower. Nat. Rev. Earth Environ. 2022, 3, 618–632. [Google Scholar] [CrossRef]
- Kang, S.C.; Xu, Y.W.; You, Q.L.; Flügel, W.A.; Pepin, N.; Yao, T.D. Review of climate and cryospheric change in the Tibetan Plateau. Environ. Res. Lett. 2010, 5, 15101. [Google Scholar] [CrossRef]
- You, Q.L.; Min, J.Z.; Jiao, Y.; Sillanpää, M.; Kang, S. Observed trend of diurnal temperature range in the Tibetan Plateau in recent decades. Int. J. Climatol. 2016, 36, 2633–2643. [Google Scholar] [CrossRef]
- Wester, P.; Mishra, A.; Mukherji, A.; Shrestha, A.B. The Hindu Kush Himalaya Assessment. In Mountains, Climate Change, Sustainability and People; Springer: Cham, Switzerland, 2019; Volume 860. [Google Scholar] [CrossRef]
- Farinotti, D. Cryospheric science: Asia’s glacier changes. Nat. Geosci. 2017, 10, 621–622. [Google Scholar] [CrossRef]
- Xie, Z.C.; Zhou, Z.G.; Li, Q.Y.; Wang, S.H. Progress and prospects of mass balance characteristic and response to global change of glacier system in the high Asia. Adv. Earth Sci. 2009, 24, 1065–1072. [Google Scholar]
- Wake, C.P. Glaciochemical Investigations as a Tool for Determining the Spatial and Seasonal and Seasonal Variation of snow Accumulation in the Central Karakoram, Northern Pakistan. Ann. Glaciol. 1989, 13, 79–84. [Google Scholar] [CrossRef]
- Soncini, A.; Bocchiola, D.; Confortola, G.; Bianchi, A.; Rosso, R.; Mayer, C.; Lambrecht, A.; Palazzi, E.; Smiraglia, C.; Diolaiuti, G. Future Hydrological Regimes in the Upper Indus Basin: A Case Study from a High-Altitude Glacierized Catchment. J. Hydrometeorol. 2015, 16, 6–26. [Google Scholar] [CrossRef]
- Quencey, D.J.; Luckman, A. Brief Communication: On the magnitude and frequency of Khurdopin glacier surge evens. Cryosphere 2014, 8, 571–574. [Google Scholar] [CrossRef]
- Scherler, D.; Bookhagen, B.; Strecker, M.R. Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nat. Geosci. 2011, 4, 156–159. [Google Scholar] [CrossRef]
- Bolch, T.; Kulkarni, A.; Kääb, A.; Huggel, C.; Paul, F.; Cogley, J.G.; Frey, H.; Kargel, J.S.; Fujita, K.L.; Scheel, M.; et al. The state and fate of Himalayan glaciers. Science 2012, 336, 310–314. [Google Scholar] [CrossRef] [PubMed]
- Li, J.J.; Su, Z. Glaciers in the Hengduan Mountains; Science Publishing House: Beijing, China, 1996. [Google Scholar]
- Benn, D.I.; Evans, D.J. Glaciers and Glaciation; Hodder Education: London, UK, 2010. [Google Scholar]
- Kirkbride, M.P.; Deline, P. The formation of supraglacial debris covers by primary dispersal from transverse englacial debris bands. Earth Surf. Proc. Land. 2013, 38, 1779–1792. [Google Scholar] [CrossRef]
- Nagai, H.; Fujita, K.; Nuimura, T.; Sakai, A. Southwest-facing slopes control the formation of debris-covered glaciers in the Bhutan Himalaya. Cryosphere 2013, 7, 1303–1314. [Google Scholar] [CrossRef]
- Lejeune, Y.; Bertrand, J.M.; Wagnon, P.; Morin, S. A physically based model of the year-round surface energy and mass balance of debris-covered glaciers. J. Glaciol. 2013, 59, 327–344. [Google Scholar] [CrossRef]
- Collier, E.; Maussion, F.; Nicholson, L.I.; Mölg, T.; Immerzeel, W.W.; Bush, A.B.G. Impact of debris cover on glacier ablation and atmosphere-glacier feedbacks in the Karakoram. Cryosphere 2015, 9, 1617–1632. [Google Scholar] [CrossRef]
- Østrem, G. Ice melting under a thin layer of moraine, and the existence of ice cores in moraine ridges. Geogr. Ann. 1959, 41, 228–230. [Google Scholar] [CrossRef]
- Benn, D.I.; Bolch, I.; Hands, K.; Gulley, J.; Luckman, A.; Nicholson, L.I.; Quincey, D.; Thompson, S.; Toumi, R.; Wiseman, S. Response of debris-covered glaciers in the Mount Everest region to recent warming, and implications for outburst flood hazards. Earth-Sci. Rev. 2012, 114, 156–174. [Google Scholar] [CrossRef]
- Bolch, T.; Buchroithner, M.; Pieczonka, T.; Kunert, A. Planimetric and volumetric glacier changes in the Khumbu Himal, Nepal, since 1962 using Corona, Landsat TM and ASTER data. J. Glaciol. 2008, 54, 592–600. [Google Scholar] [CrossRef]
- Nicholson, L.; Benn, D.I. Calculating ice melt beneath a debris layer using meteorological data. J. Glaciol. 2006, 52, 463–470. [Google Scholar] [CrossRef]
- Nakawo, M.; Young, G.J. Field experiments to determine the effect of a debris layer on ablation of glacier ice. Ann. Glaciol. 1981, 2, 85–91. [Google Scholar] [CrossRef]
- Nakawo, M.; Young, G.J. Estimate of glacier ablation under a debris layer from surface temperature and meteorological variables. J. Glaciol. 1982, 28, 29–34. [Google Scholar] [CrossRef]
- Mattson, L.E.; Gardner, J.S.; Young, G.J. Ablation on debris covered glaciers: An example from the Rakhiot Glacier, Punjab, Himalaya. Int. Assoc. Hydrol. Sci. Publ. 1993, 218, 289–296. [Google Scholar]
- Fujii, Y. Experiment on glacier ablation under a layer of debris cover. J. Jpn. Soc. Snow Ice 1977, 39, 20–21. [Google Scholar] [CrossRef]
- Liu, W.G.; Xiao, C.D.; Liu, J.S.; Shen, Y.P.; Zhang, D.Q.; Liu, J.F.; Zhang, T.; Hou, J.F.; Lin, X. Analyzing the ablation rate characteristics of the Rongbuk on the Mt. Qomolangma, Central Himalayas. J. Glaciol. Geocryol. 2013, 35, 814–823. [Google Scholar] [CrossRef]
- Mihalcea, C.; Mayer, C.; Diolaiuti, G.; Dagata, C.; Smiraglia, C.; Lambrecht, A.; Vuillermoz, E.; Tartari, G. Spatial distribution of debris thickness and melting from remote-sensing and meteorological data, at debris-covered Baltoro glacier, Karakoram, Pakistan. Ann. Glaciol. 2008, 48, 49–57. [Google Scholar] [CrossRef]
- Muhammad, S.; Tian, L.; Ali, S.; Latif, Y.; Wazir, M.A.; Saifullah, M.; Hussain, I.; Liu, S.Y. Thin debris layers do not enhance melting of the Karakoram glaciers. Sci. Total Environ. 2020, 746, 141119. [Google Scholar] [CrossRef]
- Bosson, J.B.; Lambiel, C. Internal structure and current evolution of very small debris-covered glacier systems located in alpine permafrost environments. Front. Earth Sci. 2016, 4, 39. [Google Scholar] [CrossRef]
- Reznichenko, N.; Davies, T.; Shulmeister, J.; Saveney, M.M. Effects of debris on ice-surface melting rates: An experimental study. J. Glaciol. 2010, 56, 384–394. [Google Scholar] [CrossRef]
- Iturrizaga, L. Paraglacial landform assemblages in the Hindukush and Karakoram Mountains. Geomorphology 2008, 95, 27–47. [Google Scholar] [CrossRef]
- Scherler, D.; Bookhagen, B.; Strecker, M.R. Hillslope glacier coupling: The interplay of topography and glacial dynamics in High Asia. J. Geophys. Res. 2011, 116, F02019. [Google Scholar] [CrossRef]
- Zech, R.; Abramowski, U.; Glaser, B.; Sosinb, P.; Kubikc, P.W.; Zech, W. Late Quaternary glacial and climate history of the Pamir Mountains derived from cosmogenic 10 Be exposure ages. Quat. Res. 2005, 64, 212–220. [Google Scholar] [CrossRef]
- Quincey, D.J.; Glasser, N.F.; Cook, S.J.; Luckman, A. Heterogeneity in Karakoram glacier surges. JGR Earth Surf. 2015, 120, 1288–1300. [Google Scholar] [CrossRef]
- Clarke, G.K.C.; Schmok, J.P.; Ommanney, C.S.L. Characteristics of surge-type glaciers. J. Geophys. Res. Solid Earth 1986, 91, 7165–7180. [Google Scholar] [CrossRef]
- Robin, G.D.Q.; Weertman, J. Cyclic surging of glaciers. J. Glaciol. 1973, 12, 3–18. [Google Scholar] [CrossRef]
- Clarke, G.K.C.; Nitsan, U.; Paterson, W.S.B. Strain heating and creep instability in glaciers and ice sheets. Rev. Geophys. 1977, 15, 235–247. [Google Scholar] [CrossRef]
- Murray, T.; Stuart, G.W.; Miller, P.J.; Woodward, J.; Smith, A.M.; Porter, P.R.; Jiskoot, H. Glacier surge propagation by thermal evolution at the bed. JGR Earth Surf. 2000, 105, 13491–13507. [Google Scholar] [CrossRef]
- Fowler, A.C.; Murray, T.; Ng, F.S.L. Thermally controlled glacier surging. J. Glaciol. 2001, 47, 527–538. [Google Scholar] [CrossRef]
- Whiteman, C.A.; Son, J.W. Cold region hazards and risks. Polar Geogr. 2011, 34, 331–333. [Google Scholar] [CrossRef]
- Harrison, W.D.; Post, A.S. How much do we really know about glacier surging? Ann. Glaciol. 2003, 36, 1–6. [Google Scholar] [CrossRef]
- Bjornsson, H. Hydrological characteristics of the drainage system beneath a surging glacier. Nature 1998, 395, 771–774. [Google Scholar] [CrossRef]
- Striberger, J.; Björck, S.; Benediktsson, I.O.; Snowball, I.; Uvo, C.B.; Ingólfsson, O.; Kjaer, K.H. Climatic control of the surge periodicity of an Icelandic outlet glacier. J. Quat. Sci. 2011, 26, 561–565. [Google Scholar] [CrossRef]
- Gao, Y.P.; Yao, X.J.; Liu, S.Y.; Qi, M.M.; Duan, H.Y.; Liu, J.; Zhang, D.H. Remote sensing monitoring of advancing glaciers in the Bukatage Mountains from 1973 to 2018. J. Nat. Resour. 2019, 34, 1666–1681. [Google Scholar] [CrossRef]
- Iturrizaga, L. Trends in 20th century and recent glacier fluctuations in the Karakoram Mountains. Z. Geomorphol. 2011, 55, 205–231. [Google Scholar] [CrossRef]
- Lovell, A.M.; Carr, J.R.; Stokes, C.R. Topographic controls on the surging behaviour of Sabche Glacier, Nepal (1967 to 2017). Remote Sens. Environ. 2018, 210, 434–443. [Google Scholar] [CrossRef]
- Li, Z.J.; Wang, N.L.; Hou, S.S. Monitoring recent surging of the North Kyzkurgan Glacier in central Pamir by remote sensing. J. Glaciol. Geocryol. 2021, 43, 1267–1276. [Google Scholar]
- Zhang, Z.; Liu, S.Y.; Wei, J.F.; Jiang, Z.L.; Xu, J.L.; Guo, W.Q. Monitoring recent surging of the Karayaylak Glacier in Pamir by remote sensing. J. Glaciol. Geocryol. 2016, 38, 11–20. [Google Scholar]
- Mackintosh, A.N.; Anderson, B.M.; Lorrey, A.M.; Renwick, J.A.; Frei, P.; Dean, S.M. Regional cooling caused recent New Zealand glacier advances in a period of global warming. Nat. Commun. 2017, 8, 14202. [Google Scholar] [CrossRef]
- Frappet, P.; Clarke, G.K.C. Slow surge of Trapridge Glacier, Yukon Territory, Canada. JGR Earth Surf. 2007, 112, 1–17. [Google Scholar] [CrossRef]
- Bhambri, R.; Watson, C.S.; Hewitt, K.; Haritashya, U.K.; Kargel, J.S.; Shahi, A.P.; Chand, P.; Kumar, A.; Verma, A.; Govil, H. The hazardous 2017–2019 surge and river damming by Shispare Glacier, Karakoram. Sci. Rep. 2020, 10, 4685. [Google Scholar] [CrossRef] [PubMed]
Research Area | Area Change (km2) | Time Range (a) | Average Annual Area Change Rate (% a−1) | Data and Methodology | References |
---|---|---|---|---|---|
Karakoram | +23.45 ± 28.85 | 1990–2020 | +0.10 ± 0.13 | Landsat TM/ETM+/OLI, Computer-aided classification, and visual interpretation of remote sensing images Classification and Visual Interpretation Methods | [41] |
Nubra Basin | −103.24 | 1993–2015 | −0.20 | Landsat TM/ETM+/OLI, Ratio Thresholding, and Visual Interpretation Methods | [33] |
Shyok Basin | −83.53 ± 326.55 | 1993–2016 | −0.05 ± 0.20 | Landsat TM/ETM+/OLI, Visual Interpretation Methods | [35] |
Gilgit River Basin | −45.82 ± 9.07 | 1993–2016 | −0.18 ± 0.03 | Landsat TM/ETM+/OLI, Visual Interpretation Methods | [36] |
Shigar Basin | −2.67 ± 14.79 | 1993–2016 | −0.00 ± 0.02 | Landsat TM/ETM+/OLI, Visual Interpretation Methods | [37] |
Keleqing River Basin | −145.78 | 1978–2015 | −0.22 | Landsat TM/ETM+/OLI, Computer-aided classification and visual interpretation of remote sensing images Classification and Visual Interpretation of Remote Sensing Images | [34] |
Research Methods | Data Sources | Advantages | Disadvantages |
---|---|---|---|
Field survey method | Flower Rod Measurement, DGPS | High accuracy | High cost and highly influenced by terrain |
Satellite-carried LiDAR measurements | ICESat-1&2,GLAS | High data accuracy | Data sparsity |
Synthetic aperture radar measurements | SRTM DEM, ASTER GDEM, TerraSAR-X, TanDEM-X | Not affected by weather | Penetrating to snow and ice |
Optical stereo image pair measurements | SPOT, ZY-3,Hexagon KH-9 | Low cost, continuous observation, wide range | Highly cloud influenced and limited availability |
Research Area | Data Sources | Changes in Mass Balance (m w.e.a−1) | Time Range (a) | Glacier Area (km2) | References |
---|---|---|---|---|---|
Shigar Basin, Central Karakoram | SRTM DEM, Tan DEM-X DEM | −0.00 ± 0.03 | 2000–2013 | 2895.30 ± 80.69 | [37] |
Karakoram Mountains | SRTM DEM, SPOT5 DEM | +0.11 ± 0.22 | 1999–2008 | 19,950 | [24] |
Karakoram Mountains | SRTM DEM, ICESat | −0.03 ± 0.04 | 2003–2008 | 21,750 | [26] |
Karakoram Mountains | SRTM DEM, Tan DEM-X DEM | −0.020 ± 0.064 (West) −0.101 ± 0.058 (East) | 2000–2014 | [48] | |
Karakoram Mountains | KH-9, SRTM DEM | −0.09 ± 0.03 | 1973–2000 | 12,365 | [47] |
Karakoram Mountains | SRTM DEM, ICESat | −0.10 ± 0.06 | 2003–2008 | 21,000 | [7] |
Central Karakoram Glacier | TanDEM-X DEM, SRTM/X-SAR DEM | −0.08 ± 0.10 | 2000–2012 | 1107.23 | [43] |
Siachin Glacier East Karakoram | Cartosat-I, KH-9, SRTM DEM | –0.03 ± 0.21 | 1999–2007 | 937.7 ± 16.9 | [46] |
Karakoram Mountains | SRTM DEM, ICESat, SPOT, TerraSAR-X, TanDEM-X | −0.11 ± 0.18 | 2003–2019 | 24,700 | [45] |
Karakoram Mountains | SRTM DEM, ICESat-2 | +0.02 ± 0.09 | 2000–2021 | 16,800 | [49] |
Research Area | Number of Surging Glaciers | Data Sources | Surging Glacier Identification Method | Time Range (a) | References |
---|---|---|---|---|---|
HMA | 244 | Landsat TM/OLI, DEM, ITS_LIVE | Glacier surface (elevation, flow velocity, features) | 1986–2021 | [58] |
362 | Landsat TM/OLI/ETM+/MSS/TIRS, DEM, RGI V6.0 | Glacier surface (elevation, flow velocity, features), glacier-terminal changes | 1972–2019 | [32] | |
137 | Landsat TM/OLI | Glacier-terminal changes | 1989–2019 | [62] | |
666 | DEM, ITS_LIVE, Google Earth, Bing Maps | Glacier surface (elevation, flow velocity, features) | 2000–2018 | [78] | |
Karakoram | 94 | Landsat TM/OLI, DEM, ITS_LIVE | Glacier surface (elevation, flow velocity, features) | 1989–2021 | [58] |
127 | Landsat TM/OLI/ETM+/MSS/TIRS, DEM, RGI V6.0 | Glacier surface (elevation, flow velocity, features), glacier-terminal changes | 1972–2019 | [32] | |
172 | Landsat, ASTER | Glacier-terminal changes | 1840–2017 | [59] | |
137 | Landsat TM/OLI, DEM, RGI V6.0 | Glacier surface (elevation, flow velocity, features), glacier-terminal changes | 1975–2019 | [61] | |
90 | Landsat TM/ETM+/MSS, ASTER, JERS-1, DISP | Glacier surface (elevation, flow velocity, features), glacier-terminal changes | 1960–2011 | [60] | |
106 | ASTER, RGI V6.0 | Glacier-terminal changes | 1961–2013 | [64] | |
101 | Landsat, DEM, ASAR, TerraSAR-X, TanDEM-X, ERS-1/2 SAR | Glacier surface (elevation, flow velocity, features), glacier-terminal changes | 1976–2012 | [77] | |
221 | Landsat, ASTER | Glacier-terminal changes | 1984–2017 | [59] | |
Pamir | 91 | Landsat TM/OLI, DEM, ITS_LIVE | Glacier surface (elevation, flow velocity, features) | 1988–2020 | [58] |
134 | Landsat TM/OLI/ETM+/MSS/TIRS, DEM, RGI V6.0 | Glacier surface (elevation, flow velocity, features), glacier-terminal changes | 1972–2019 | [32] | |
202 | Landsat TM/OLI/ETM+/MSS, SRTN DEM, ASTER, Corona, Hexagon, TanDEM-X, Google Earth, Bing Maps | Glacier surface (elevation, flow velocity, features), glacier-terminal changes | 1960–2018 | [52] | |
151 | Landsat TM/OLI, DEM, RGI V6.0 | Glacier surface (elevation, flow velocity, features), glacier-terminal changes | 1977–2019 | [61] | |
215 | Landsat, ASTER, TerraSAR-X, | Glacier-terminal changes | 1975–2006 | [74] | |
820 | ASTER, RGI V6.0 | Glacier-terminal changes | 1861–2013 | [64] | |
186 | Landsat TM/OLI/ETM+/MSS, SRTN DEM, ASTER, Corona, Hexagon, TanDEM-X, Google Earth, Bing Maps | Glacier surface (elevation, flow velocity, features), glacier-terminal changes | 1988–2018 | [52] | |
Kunlun Shan | 24 | Landsat TM/OLI, DEM, ITS_LIVE | Glacier surface (elevation, flow velocity, features) | 1987–2021 | [58] |
20 | Landsat TM/OLI/ETM+/MSS/TIRS, DEM, RGI V6.0 | Glacier surface (elevation, flow velocity, features), glacier-terminal changes | 1972–2019 | [32,61] | |
10 | Landsat, TerraSAR-X, TanDEM-X, DEM | Glacier surface (elevation, flow velocity, features), glacier-terminal changes | 1970–2020 | [63] | |
9 | Landsat, ASAR, ERS-1/2 SAR, ALOS, TerraSAR-X | Glacier surface (elevation, flow velocity, features), glacier-terminal changes | 1972–1992 | [72] | |
Tien Shan | 10 | Landsat TM/OLI, DEM, ITS_LIVE | Glacier surface (elevation, flow velocity, features) | 1990–2010 | [58] |
32 | Landsat TM/OLI/ETM+/MSS/TIRS, DEM, RGI V6.0 | Glacier surface (elevation, flow velocity, features), glacier-terminal changes | 1972–2019 | [32,61] | |
39 | Landsat TM/OLI/ETM+/MSS, SPOT, Hexagon, Cartosat-1, SRTM DEM | Glacier surface (elevation, flow velocity, features) | 1964–2014 | [55] | |
48 | Landsat TM/OLI, DEM, ITS_LIVE | Glacier surface (elevation, flow velocity, features), glacier-terminal changes | 1990–2019 | [54] | |
Tibetain interior mountains | 4 | Landsat TM/OLI, DEM, ITS_LIVE | Glacier surface (elevation, flow velocity, features) | 1989–2021 | [58] |
23 | Landsat TM/OLI/ETM+/MSS/TIRS, DEM, RGI V6.0 | Glacier surface (elevation, flow velocity, features), glacier-terminal changes | 1972–2019 | [32] | |
11 | ASTER, Landsat, TerraSAR-X, TanDEM-X, NASA DEM | Glacier surface (elevation, flow velocity, features), glacier-terminal changes | 1986–2020 | [56] | |
11 | Landsat TM/OLI/MSS, SRTM DEM, SPOT, ASTER | Glacier surface (elevation, flow velocity, features), glacier-terminal changes | 1973–2013 | [57] | |
39 | Landsat TM/OLI, DEM, RGI V6.0 | Glacier surface (elevation, flow velocity, features), glacier-terminal changes | 1973–2018 | [61] | |
Himalaya | 3 | Landsat TM/OLI, DEM, ITS_LIVE | Glacier surface (elevation, flow velocity, features) | 1990–2020 | [58] |
7 | Landsat TM/OLI/ETM+/MSS/TIRS, DEM, RGI V6.0 | Glacier surface (elevation, flow velocity, features), glacier-terminal changes | 1972–2019 | [32] | |
9 | Landsat TM/OLI, DEM, RGI V6.0 | Glacier surface (elevation, flow velocity, features), glacier-terminal changes | 1977–2018 | [61] | |
Nyainqentanglha | 2 | Landsat TM/OLI, DEM, ITS_LIVE | Glacier surface (elevation, flow velocity, features) | 2015–2018 | [58] |
1 | Landsat TM/OLI/ETM+/MSS/TIRS, DEM, RGI V6.0 | Glacier surface (elevation, flow velocity, features), glacier-terminal changes | 1972–2019 | [32] | |
1 | Landsat TM/OLI, DEM, RGI V6.0 | Glacier surface (elevation, flow velocity, features), glacier-terminal changes | 2014–2018 | [61] | |
Hindu Kush | 2 | Landsat TM/OLI, DEM, ITS_LIVE | Glacier surface (elevation, flow velocity, features) | 1989–2020 | [58] |
6 | Landsat TM/OLI/ETM+/MSS/TIRS, DEM, RGI V6.0 | Glacier surface (elevation, flow velocity, features), glacier-terminal changes | 1972–2019 | [32] | |
6 | Landsat TM/OLI, DEM, RGI V6.0 | Glacier surface (elevation, flow velocity, features), glacier-terminal changes | 1989–2019 | [61] | |
Tanggula Shan | 10 | Landsat TM/OLI, DEM, ITS_LIVE | Glacier surface (elevation, flow velocity, features) | 1986–2015 | [58] |
Qilian Shan | 1 | Landsat TM/OLI, DEM, ITS_LIVE | Glacier surface (elevation, flow velocity, features) | 2002–2005 | [58] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Sun, M.; Yao, X.; Duan, H.; Zhang, C.; Wang, S.; Niu, S.; Yan, X. A Review of Karakoram Glacier Anomalies in High Mountains Asia. Water 2023, 15, 3215. https://doi.org/10.3390/w15183215
Li J, Sun M, Yao X, Duan H, Zhang C, Wang S, Niu S, Yan X. A Review of Karakoram Glacier Anomalies in High Mountains Asia. Water. 2023; 15(18):3215. https://doi.org/10.3390/w15183215
Chicago/Turabian StyleLi, Jiawei, Meiping Sun, Xiaojun Yao, Hongyu Duan, Cong Zhang, Shuyang Wang, Shuting Niu, and Xin Yan. 2023. "A Review of Karakoram Glacier Anomalies in High Mountains Asia" Water 15, no. 18: 3215. https://doi.org/10.3390/w15183215