Geophysical Constraints to Reconstructing the Geometry of a Shallow Groundwater Body in Caronia (Sicily)
Abstract
:1. Introduction
2. Geology and Hydrogeology
2.1. Geomorphological and Geological Setting
2.2. Hydrogeological Setting
- Present and recent alluvial hydrogeological complex (Holocene): deposits with high permeability (10−2 m/s > k > 10−4 m/s) which form the main part of the CGWB, extending in length for about 6 km and just under a kilometer wide.
- Hydrogeological complex constituted by river and marine terrace deposits (middle-late Pleistocene) and “Ghiaie e sabbie di Messina” (middle Pleistocene): it does not outcrop as it is covered by recent alluvial deposits. These deposits have high permeability (10−2 m/s > k > 10−4 m/s) due to primary porosity, even if very heterogeneous.
- Hydrogeological complex of the Reitano Flysch (early-middle Miocene): it presents localized and variable permeability, mainly due to fracturing. It is composed of micaceous sandstone and lithic arkoses with medium-large grain, lightly cemented, with decimetric intercalations of silty-clays. In the upper part of this complex, decametric conglomeratic bodies relative to the so-called “Conglomerati di Caronia”, intercalated with the arenaceous deposits of Reitano Flysch, are often present. These lithotypes vary from moderately permeable (10−4 m/s > k > 10−5 m/s) to semi-permeable (10−6 m/s > k > 10−7 m/s) and constitute the main substrate of the CGWB.
- Hydrogeological complex of the Numidian Flysch belonging to the Monte Maragone Unit (Late Oligocene-early Miocene): it consists of argillites alternated with silty-clays, followed upwards by quartzarenites and quartzosiltites in large banks. These lithotypes have low and very low permeability (10−7 m/s > k> 10−9 m/s). For these characteristics, the Numidian Flysch deposits constitute the impermeable substrate of the southernmost part of CGWB.
3. Materials and Methods
3.1. Previous Geognostic and Geophysical Investigation
3.2. New Processing and Interpretation of Vertical Electrical Soundings
3.3. New Geophysical Surveys
4. Results and Discussion
4.1. MASW and HVSR Results
4.2. A Tridimensional Model of the Electrical Resistivity
4.3. Estimate of the Bottom of the CGWB
4.4. Numerical Flow Model for the CGWB
- (A)
- Refill value: 161 mm/year for 365 days. This refill was applied only to layer 1, which defines the portion of the model identifiable with the topographic surface.
- (B)
- Constant load: An area representing the portion of the model (red cells in Figure 11) where the flow stops being considered as having a constant hydraulic load. It was defined by assigning the value 0 to the coastline downstream of the domain.
- (C)
- Top-up refill: This parameter represents the sub-alveal contributions. This feature describes the direct contributions provided by the upstream hydrological basin. These values were assigned, as saturated cells (green cells in Figure 11), corresponding to the groundwater depth measured in the observation well n.5.
- (D)
- The area outside the modeled area was considered to be zero flow (gray sectors in Figure 11).
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chenini, I.; Zghibi, A.; Kouzana, L. Hydrogeological investigations and groundwater vulnerability assessment and mapping for groundwater resource protection and management: State of the art and a case study. J. Afr. Earth Sci. 2015, 109, 11–26. [Google Scholar] [CrossRef]
- Erdoğan, M.; Karagüzel, R. A new hydrogeologically based approach to determining protected areas in drinking water supply reservoirs: A case study in the Ağlasun sub-basin (Burdur, Turkey). Environ. Earth Sci. 2016, 75, 126. [Google Scholar] [CrossRef]
- Käser, D.; Hunkeler, D. Contribution of alluvial groundwater to the outflow of mountainous catchments. Water Resour. Res. 2016, 52, 680–697. [Google Scholar] [CrossRef]
- Paillet, F.L.; Reese, R.S. Integrating Borehole Logs and Aquifer Tests in Aquifer Characterization. Groundwater 2000, 38, 713–725. [Google Scholar] [CrossRef]
- Zuffetti, C.; Comunian, A.; Bersezio, R.; Renard, P. A new perspective to model subsurface stratigraphy in alluvial hydrogeological basins, introducing geological hierarchy and relative chronology. Comput. Geosci. 2020, 140, 104506. [Google Scholar] [CrossRef]
- Straface, S.; Yeh, T.-C.J.; Zhu, J.; Troisi, S.; Lee, C.H. Sequential aquifer tests at a well field, Montalto Uffugo Scalo, Italy. Water Resour. Res. 2007, 43. [Google Scholar] [CrossRef]
- Alexander, M.; Berg, S.J.; Illman, W.A. Field Study of Hydrogeologic Characterization Methods in a Heterogeneous Aquifer. Groundwater 2011, 49, 365–382. [Google Scholar] [CrossRef]
- Fontana, M.; Grassa, F.; Cusimano, G.; Favara, R.; Hauser, S.; Scaletta, C. Geochemistry and potential use of groundwater in the Rocca Busambra area (Sicily, Italy). Environ. Geol. 2008, 57, 885–898. [Google Scholar] [CrossRef]
- Cangemi, M.; Madonia, P.; Albano, L.; Bonfardeci, A.; Di Figlia, M.G.; Di Martino, R.M.R.; Nicolosi, M.; Favara, R. Heavy Metal Concentrations in the Groundwater of the Barcellona-Milazzo Plain (Italy): Contributions from Geogenic and Anthropogenic Sources. Int. J. Environ. Res. Public Health 2019, 16, 285. [Google Scholar] [CrossRef]
- Chen, Q.; Jia, C.; Wei, J.; Dong, F.; Yang, W.; Hao, D.; Jia, Z.; Ji, Y. Geochemical process of groundwater fluoride evolution along global coastal plains: Evidence from the comparison in seawater intrusion area and soil salinization area. Chem. Geol. 2020, 552, 119779. [Google Scholar] [CrossRef]
- Massey, A.C.; Taylor, G.K. Coastal evolution in south-west England, United Kingdom: An enhanced reconstruction using geophysical surveys. Mar. Geol. 2007, 245, 123–140. [Google Scholar] [CrossRef]
- Sauret, E.S.G.; Beaujean, J.; Nguyen, F.; Wildemeersch, S.; Brouyere, S. Characterization of superficial deposits using electrical resistivity tomography (ERT) and horizontal-to-vertical spectral ratio (HVSR) geophysical methods: A case study. J. Appl. Geophys. 2015, 121, 140–148. [Google Scholar] [CrossRef]
- Larkin, R.G.; Sharp, J.M., Jr. On the relationship between river-basin geomorphology, aquifer hydraulics, and ground-water flow direction in alluvial aquifers. Geol. Soc. Am. Bull. 1992, 104, 1608–1620. [Google Scholar] [CrossRef]
- Gregory, K.; Benito, G.; Downs, P. Applying fluvial geomorphology to river channel management: Background for progress towards a palaeohydrology protocol. Geomorphology 2008, 98, 153–172. [Google Scholar] [CrossRef]
- Cimino, A.; Cosentino, C.; Oieni, A.; Tranchina, L. A geophysical and geochemical approach for seawater intrusion assessment in the Acquedolci coastal aquifer (Northern Sicily). Environ. Geol. 2007, 55, 1473–1482. [Google Scholar] [CrossRef]
- Hamzah, U.; Samsudin, A.R.; Malim, E.P. Groundwater investigation in Kuala Selangor using vertical electrical sounding (VES) surveys. Environ. Geol. 2006, 51, 1349–1359. [Google Scholar] [CrossRef]
- Alile, O.M.; Ujuanbi, O.; Evbuomwan, I.A. Geoelectric investigation of groundwater in Obaretin Iyanomon locality, Edo state, Nigeria. J. Geol. Min. Res. 2011, 3, 13–20. [Google Scholar] [CrossRef]
- Coker, J.O. Vertical electrical sounding (VES) methods to delineate potential groundwater aquifers in Akobo area, Ibadan, South-western, Nigeria. J. Geol. Min. Res. 2012, 4, 35–42. [Google Scholar] [CrossRef]
- Fadele, S.I.; Sule, P.O.; Dewu, B.B.M. The use of vertical electrical sounding (VES) for groundwater exploration around Nigerian College of Aviation Technology (NCAT), Zaria, Kaduna State, Nigeria. Pac. J. Sci. Technol. 2013, 14, 549–555. [Google Scholar]
- Abdullahi, M.G.; Toriman, M.E.; Gasim, M.B. The Application of Vertical Electrical Sounding (VES) for Groundwater Exploration in Tudun Wada Kano State, Nigeria. J. Geol. Geosci. 2015, 4, 1–3. [Google Scholar] [CrossRef]
- van Overmeeren, R.A. A combination of electrical resistivity, seismic refraction, and gravity measurements for groundwater exploration in Sudan. Geophysics 1981, 46, 1304–1313. [Google Scholar] [CrossRef]
- Haeni, F.P. Application of seismic refraction methods in groundwater modeling studies in New England. Geophysics 1986, 51, 236–249. [Google Scholar] [CrossRef]
- Grelle, G.; Guadagno, F.M. Seismic refraction methodology for groundwater level determination: “Water seismic index”. J. Appl. Geophys. 2009, 68, 301–320. [Google Scholar] [CrossRef]
- Dafflon, B.; Irving, J.; Holliger, K. Use of high-resolution geophysical data to characterize heterogeneous aquifers: Influence of data integration method on hydrological predictions. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef]
- Khan, U.; Faheem, H.; Jiang, Z.; Wajid, M.; Younas, M.; Zhang, B. Integrating a GIS-Based Multi-Influence Factors Model with Hydro-Geophysical Exploration for Groundwater Potential and Hydrogeological Assessment: A Case Study in the Karak Watershed, Northern Pakistan. Water 2021, 13, 1255. [Google Scholar] [CrossRef]
- Bowling, J.C.; Rodriguez, A.B.; Harry, D.L.; Zheng, C. Delineating Alluvial Aquifer Heterogeneity Using Resistivity and GPR Data. Groundwater 2005, 43, 890–903. [Google Scholar] [CrossRef]
- Kim, J.-W.; Choi, H.; Lee, J.-Y. Characterization of hydrogeologic properties for a multi-layered alluvial aquifer using hydraulic and tracer tests and electrical resistivity survey. Environ. Geol. 2005, 48, 991–1001. [Google Scholar] [CrossRef]
- Goldman, M.; Kafri, U. Hydrogeophysical Applications in Coastal Aquifers. In Applied Hydrogeophysics; Springer: Dordrecht, The Netherlands, 2007; pp. 233–254. [Google Scholar] [CrossRef]
- Wattanasen, K.; Elming, S. Direct and indirect methods for groundwater investigations: A case-study of MRS and VES in the southern part of Sweden. J. Appl. Geophys. 2008, 66, 104–117. [Google Scholar] [CrossRef]
- Doro, K.O.; Leven, C.; Cirpka, O.A. Delineating subsurface heterogeneity at a loop of River Steinlach using geophysical and hydrogeological methods. Environ. Earth Sci. 2013, 69, 335–348. [Google Scholar] [CrossRef]
- Dickson, N.E.M.; Comte, J.-C.; McKinley, J.; Ofterdinger, U. Coupling ground and airborne geophysical data with upscaling techniques for regional groundwater modeling of heterogeneous aquifers: Case study of a sedimentary aquifer intruded by volcanic dykes in Northern Ireland. Water Resour. Res. 2014, 50, 7984–8001. [Google Scholar] [CrossRef]
- Vilhelmsen, T.N.; Behroozmand, A.A.; Christensen, S.; Nielsen, T.H. Joint inversion of aquifer test, MRS, and TEM data. Water Resour. Res. 2014, 50, 3956–3975. [Google Scholar] [CrossRef]
- Michael, H.A.; Post, V.E.A.; Wilson, A.M.; Werner, A.D. Science, society, and the coastal groundwater squeeze. Water Resour. Res. 2017, 53, 2610–2617. [Google Scholar] [CrossRef]
- Daniels, J.J.; Roberts, R.; Vendl, M. Ground penetrating radar for the detection of liquid contaminants. J. Appl. Geophys. 1995, 33, 195–207. [Google Scholar] [CrossRef]
- Benson, A.K.; Payne, K.L.; Stubben, M.A. Mapping groundwater contamination using dc resistivity and VLF geophysical methods–A case study. Geophysics 1997, 62, 80–86. [Google Scholar] [CrossRef]
- Frohlich, R.K.; Urish, D.W.; Fuller, J.; O’Reilly, M. Use of geoelectrical methods in groundwater pollution surveys in a coastal environment. J. Appl. Geophys. 1994, 32, 139–154. [Google Scholar] [CrossRef]
- Cosentino, P.; Capizzi, P.; Fiandaca, G.; Martorana, R.; Messina, P.; Pellerito, S. Study and Monitoring of Salt Water Intrusion in The Coastal Area Between Mazara Del Vallo And Marsala (South-Western Sicily). In Methods and Tools for Drought Analysis and Management; Springer: Berlin/Heidelberg, Germany, 2007; pp. 303–321. [Google Scholar] [CrossRef]
- Capizzi, P.; Cellura, D.; Cosentino, P.; Fiandaca, G.; Martorana, R.; Messina, P.; Schiavone, S.; Valenza, M. Integrated hydrogeochemical and geophysical surveys for a study of sea-water intrusion. Boll. Geofis. Teor. Appl. 2010, 51, 285–300. [Google Scholar]
- Di Napoli, R.; Martorana, R.; Orsi, G.; Aiuppa, A.; Camarda, M.; De Gregorio, S.; Candela, E.G.; Luzio, D.; Messina, N.; Pecoraino, G.; et al. The structure of a hydrothermal system from an integrated geochemical, geophysical, and geological approach: The Ischia Island case study. Geochem. Geophys. Geosyst. 2011, 12. [Google Scholar] [CrossRef]
- Martorana, R.; Lombardo, L.; Messina, N.; Luzio, D. Integrated geophysical survey for 3D modelling of a coastal aquifer polluted by seawater. Near Surf. Geophys. 2013, 12, 45–59. [Google Scholar] [CrossRef]
- Capizzi, P.; Martorana, R.; Favara, R.; Albano, L.; Bonfardeci, A.; Catania, M.; Costa, N.; Gagliano, A. Geophysical Contribution to the Reconstruction of the Hydrological Model of “Barcellona-Milazzo Plain” Groundwater Body, Northen Sicily. In 25th European Meeting of Environmental and Engineering Geophysics; European Association of Geoscientists & Engineers: Moscow, Russia, 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Paz, M.C.; Alcalá, F.J.; Medeiros, A.; Martínez-Pagán, P.; Pérez-Cuevas, J.; Ribeiro, L. Integrated MASW and ERT Imaging for Geological Definition of an Unconfined Alluvial Aquifer Sustaining a Coastal Groundwater-Dependent Ecosystem in Southwest Portugal. Appl. Sci. 2020, 10, 5905. [Google Scholar] [CrossRef]
- Park, C.B.; Miller, R.D.; Xia, J. Multimodal Analysis of High Frequency Surface Waves. In Proceedings of the Symposium on the Application of Geophysics to Engineering and Environmental Problems, Oakland, CA, USA, 14–18 June 1999. [Google Scholar]
- Alcalá, F.J.; Martínez-Pagán, P.; Paz, M.C.; Navarro, M.; Pérez-Cuevas, J.; Domingo, F. Combining of MASW and GPR Imaging and Hydrogeological Surveys for the Groundwater Resource Evaluation in a Coastal Urban Area in Southern Spain. Appl. Sci. 2021, 11, 3154. [Google Scholar] [CrossRef]
- Nakamura, Y. A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Quat. Rep. Railw. 1989, 30, 25–33. [Google Scholar]
- Martorana, R.; Capizzi, P.; Avellone, G.; D’alessandro, A.; Siragusa, R.; Luzio, D. Assessment of a geological model by surface wave analyses. J. Geophys. Eng. 2016, 14, 159–172. [Google Scholar] [CrossRef]
- Martorana, R.; Agate, M.; Capizzi, P.; Cavera, F.; D’Alessandr, A. Seismo-stratigraphic model of “La Bandita” area in the Palermo Plain (Sicily, Italy) through HVSR inversion constrained by stratigraphic data. Ital. J. Geosci. 2018, 137, 73–86. [Google Scholar] [CrossRef]
- Sorensen, C.; Asten, M. Microtremor methods applied to groundwater studies. Explor. Geophys. 2007, 38, 125–131. [Google Scholar] [CrossRef]
- Delgado, J.; Casado, C.L.; Estévez, A.; Giner, J.; Cuenca, A.; Molina, S. Mapping soft soils in the Segura river valley (SE Spain): A case study of microtremors as an exploration tool. J. Appl. Geophys. 2000, 45, 19–32. [Google Scholar] [CrossRef]
- Martorana, R.; Capizzi, P.; D’Alessandro, A.; Luzio, D.; Di Stefano, P.; Renda, P.; Zarcone, G. Contribution of HVSR measures for seismic microzonation studies. Ann. Geophys. 2018, 61, 225. [Google Scholar] [CrossRef]
- Pino, P.; D’Amico, S.; Orecchio, B.; Presti, D.; Scolaro, S.; Torre, A.; Totaro, C.; Farrugia, D.; Neri, G. Integration of geological and geophysical data for revaluation of local seismic hazard and geological structure: The case study of Rometta, Sicily (Italy). Ann. Geophy. 2018, 61, SE227. [Google Scholar] [CrossRef]
- Scolaro, S.; Pino, P.; D’Amico, S.; Orecchio, B.; Presti, D.; Torre, A.; Totaro, C.; Farrugia, D.; Neri, G. Ambient noise measurements for preliminary microzoning studies in the city of Messina, Sicily. Ann. Geophys. 2018, 61, 228. [Google Scholar] [CrossRef]
- Dal Moro, G. Surface Wave Analysis for Near Surface Applications; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Cafiso, F.; Canzoneri, A.; Capizzi, P.; Carollo, A.; Martorana, R.; Romano, F. Joint interpretation of electrical and seismic data aimed at modelling the foundation soils of the Maredolce monumental complex in Palermo (Italy). Archaeol. Prospect. 2020, 30, 69–85. [Google Scholar] [CrossRef]
- Gisser, M.; Sánchez, D.A. Competition versus optimal control in groundwater pumping. Water Resour. Res. 1980, 16, 638–642. [Google Scholar] [CrossRef]
- Percopo, C.; Brandolin, D.; Canepa, M.; Capodaglio, P.; Cipriano, G.; Gafà, R.; Iervolino, D.; Marcaccio, M.; Mazzola, M.; Mottola, A.; et al. Criteri tecnici per l’analisi dello stato quantitativo e il monitoraggio dei corpi idrici sotterranei. ISPRA Man. E Linee Guid. 2017, 157, 1–108. [Google Scholar]
- Heilweil, V.M.; Brooks, L.E. Conceptual Model of the Great Basin Carbonate and Alluvial Aquifer System: US Geological Survey Scientific Investigations Report; U.S. Geological Survey: Reston, VA, USA, 2011.
- Granata, A.; Castrianni, G.; Pasotti, L.; Gagliano Candela, E.; Scaletta, C.; Madonia, P.; Morici, S.; Bellomo, S.; La Pica, L.; Gagliano, A.L.; et al. Studio per la definizione dei modelli concettuali dei corpi idrici sotterranei di Peloritani, Nebrodi e ragusano e indagini geofisiche correlate. Atti del 37° Convegno del Gruppo Nazionale di Geofisica della Terra Solida-GNGTS. OGS 2018, 37, 104–108. [Google Scholar]
- Canzoneri, A.; Capizzi, P.; Martorana, R.; Albano, L.; Bonfardeci, A.; Costa, N.; Gagliano, A.L.; Favara, R. Modello idrogeoligoco del corpo idrico “Fiumara di Caronia” (Sicilia Settentrionale). Atti del 38°Convegno del Gruppo Nazionale di Geofisica della Terra Solida-GNGTS. OGS 2019, 38, 636–640. Available online: https://gngts.ogs.it/atti-del-38-convegno-nazionale-2/ (accessed on 1 July 2023).
- Catalano, R.; Di Stefano, P.; Sulli, A.; Vitale, F. Paleogeography and structure of the central Mediterranean: Sicily and its offshore area. Tectonophysics 1996, 260, 291–323. [Google Scholar] [CrossRef]
- Giunta, G.; Giorgianni, A. Note Illustrative del F.598 “S. Agata di Militello” Della Carta Geologica d’Italia Alla scala 1:50.000. SystemCart; ISPRA—Università degli Studi di Palermo: Rome, Italy, 2013. [Google Scholar]
- Catalano, R.; Valenti, V.; Albanese, C.; Accaino, F.; Sulli, A.; Tinivella, U.; Gasparo Morticelli, M.; Zanolla, C.; Giustiniani, M. Sicily’s fold/thrust belt and slab rollback: The SI.RI.PRO. seismic crustal transect. J. Geol. Soc. 2013, 170, 451–464. [Google Scholar] [CrossRef]
- Basilone, L. Lithostratigraphy of Sicily: UNIPA Springer Series; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 1–349. [Google Scholar]
- Amodio-Morelli, L.; Bonardi, G.; Colonna, V.; Dietrich, D.; Giunta, G.; Ippolito, F.; Liguori, V.; Lorenzoni, F.; Paglionico, A.; Perrone, V.; et al. L’Arco Calabro-Peloritano nell’orogene Appenninico-Maghrebide. Mem. Soc. Geol. Ital. 1976, 17, 1–60. [Google Scholar]
- Bigi, G.; Cosentino, D.; Parotto, M.; Sartori, R.; Scandone, P. Structural Model of Italy (scale 1:500.000): Geodinamic Project: Consiglio Nazionale delle Ricerche, S.EL.CA: Rome, Italy. 1990. Available online: https://www.socgeol.it/438/structural-model-of-italy-scale-1-500-000.html/ (accessed on 1 July 2023).
- Giunta, G.; Nigro, F. Tectono-sedimentary constraints to the Oligocene-to-Miocene evolution of the Peloritani thrust belt (NE Sicily). Tectonophysics 1999, 315, 287–299. [Google Scholar] [CrossRef]
- Nigro, F.; Renda, P. Evoluzione geologica ed assetto strutturale della Sicilia centro- settentrionale. Boll. Soc. Geol. Ital. 1999, 118, 375–388. [Google Scholar]
- Giunta, G.; Luzio, D.; Agosta, F.; Calò, M.; Di Trapani, F.; Giorgianni, A.; Oliveri, E.; Orioli, S.; Perniciaro, M.; Vitale, M.; et al. An integrated approach to investigate the seismotectonics of northern Sicily and southern Tyrrhenian. Tectonophysics 2009, 476, 13–21. [Google Scholar] [CrossRef]
- Bianchi, F.; Carbone, S.; Grasso, M.; Invernizzi, G.; Lentini, F.; Longaretti, G.; Merlini, S.; Mostardini, F. Sicilia orientale: Profilo geologico Nebrodi-Iblei. Mem. Soc. Geol. Ital. 1987, 38, 429–458. [Google Scholar]
- Catalano, R.; Franchino, A.; Merlini, S.; Sulli, A. Central western Sicily structural setting interpreted from seismic reflection profiles. Mem. Soc. Geol. Ital. 2000, 55, 5–16. [Google Scholar]
- Catalano, R.; Gatti, V.; Avellone, G.; Basilone, L.; Frixa, A.; Ruspi, R.; Sulli, A. Subsurface Geometries in Central Sicily FTB as a Premise for Hydrocarbon Exploration. In Proceedings of the 70th EAGE Conference and Exhibition Incorporating SPE EUROPEC, Nuova Fiera Di Roma, Italy, 9–12 June 2008. [Google Scholar] [CrossRef]
- Lentini, F.; Carbone, S. Geologia della Sicilia (Geology of Sicily). Mem. Descr. Carta Geol. d’It. 2014, XCV, 7–414. [Google Scholar]
- Morticelli, M.G.; Valenti, V.; Catalano, R.; Sulli, A.; Agate, M.; Avellone, G.; Albanese, C.; Basilone, L.; Gugliotta, C. Deep controls on foreland basin system evolution along the Sicilian fold and thrust belt. BSG-Earth Sci. Bull. 2015, 186, 273–290. [Google Scholar] [CrossRef]
- Basilone, L.; Bonfardeci, A.; Romano, P.; Sulli, A. Natural Laboratories for Field Observation About Genesis and Landscape Effects of Palaeo-Earthquakes: A Proposal for the Rocca Busambra and Monte Barracù Geosites (West Sicily). Geoheritage 2018, 11, 821–837. [Google Scholar] [CrossRef]
- Giunta, G.; Bellomo, D.; Carnemolla, S.; Pisano, A.; Profeta, R.; Runfola, P. La “Linea di Taormina”: Residuo epidermico di una paleostruttura crostale del fronte cinematico maghrebide? Acts 8° GNGTS Congr. 1989, 8, 1197–2013. [Google Scholar]
- Lentini, F.; Catalano, S.; Carbone, S. Note Illustrative Della Carta Geologica Della Provincia di Messina, Scala 1:50.000: S.EL.CA, Firenze. 2000; pp. 1–70. Available online: https://www.isprambiente.gov.it/Media/carg/note_illustrative/601_Messina_Reggio_Calabria.pdf (accessed on 1 July 2023).
- Giunta, G.; Nigro, F.; Renda, P. Extensional tectonics during Maghrebides chain building since Late Miocene: Examples from Northern Sicily. Ann. Soc. Geol. Polon. 2000, 70, 81–89. [Google Scholar]
- Giunta, G.; Nigro, F.; Renda, P.; Giorgianni, A. The Sicilian–Maghrebides Tyrrhenian Margin: A neotectonic evolutionary model. Mem. Soc. Geol. Ital. 2000, 119, 553–565. [Google Scholar]
- Renda, P.; Tavarnelli, E.; Tramutoli, M.; Gueguen, E. Neogene deformations of Northern Sicily, and their implications for the geodynamics of the Southern Tyrrhenian Sea margin. Mem. Soc. Geol. Ital. 2000, 55, 53–59. [Google Scholar]
- Nigro, F.; Renda, P. Plio-Pleistocene stike-slip deformation in NE Sicily: The example of the area between Capo Calavà and Capo Tindari. Boll. Soc. Geol. Ital. 2005, 124, 377–394. [Google Scholar]
- Ogniben, L. Nota illustrativa dello schema geologico della Sicilia Nord-Orientale. Riv. Min. Sic. 1960, 2, 183–212. [Google Scholar]
- Wezel, F.C. Geologia del flysch numidico della Sicilia nord-orientale. Mem. Soc. Geol. Ital. 1970, 9, 225–280. [Google Scholar]
- Wezel, F.C. Flysch succession and the tectonic evolution of Sicily during the Oligocene and early Miocene. In Geology of Italy; Squires, C.H., Ed.; Earth Sciences Soc. Libyan Arabian Republic: Tripoli, Libya, 1974; pp. 105–127. [Google Scholar]
- Giunta, G. Problematiche ed ipotesi sul bacino numidico nelle Maghrebidi siciliane. Boll. Soc. Geol. Ital. 1985, 104, 239–256. [Google Scholar]
- Lentini, F. Carta Geologica della Provincia di Messina, Scala 1:50.000: S.EL.CA, Firenze. 2000. Available online: https://www2.regione.sicilia.it/beniculturali/dirbenicult/bca/ptpr/documentazione%20tecnica%20messina/CARTOGRAFIA/ANALISI/03_Geologia.pdf (accessed on 1 July 2023).
- APAT. Carta Geologica d’Italia in scala 1:50.000—Foglio 598, S. Agata di Militello: ISPRA-Regione Siciliana-D.S.G.-uni., Palermo, SystemCart, Roma. 2013. Available online: https://www.isprambiente.gov.it/Media/carg/598_SANTAGATA_MILITELLO/Foglio.html (accessed on 1 July 2023).
- Celico, P. Prospezioni Idrogeologiche, Vol. I e Vol. II.; Liguori Editore Napoli: Naples, Italy, 1988. [Google Scholar]
- Pantaleone, D.V.; Vincenzo, A.; Fulvio, C.; Silvia, F.; Cesaria, M.; Giuseppina, M.; Ilaria, M.; Vincenzo, P.; Rosa, S.A.; Gianpietro, S.; et al. Hydrogeology of continental southern Italy. J. Maps 2018, 14, 230–241. [Google Scholar] [CrossRef]
- Ferrara, V.; Amantia, A.; Pennisi, A. Lineamenti idrogeologici e vulnerabilità all’inquinamento degli acquiferi della fascia costiera tirrenica del messinese (versante settentrionale dei M. Peloritani—Sicilia NE). In Proceedings of the Congresso Biennale, Palermo Torre Normanna, Palermo, Italy, 21–23 September 1993. [Google Scholar]
- Ferrara, V. Vulnerabilità all’inquinamento degli Acquiferi dell’area Peloritana (Sicilia Nord-Orientale), Studi Sulla Vulnerabilità Degli Acquiferi 14. In Quaderni di Tecniche di Protezione Ambientale: Edizione Pitagora; Pitagora Editrice Srl.: Bologna, Italy, 1999. [Google Scholar]
- Civita, M. Idrogeologia Applicata e Ambientale; CEA Editore: Rozzano, Italy, 2005; p. 800. ISBN 8808087417. [Google Scholar]
- Castany, G. Idrogeologia. In Principi e Metodi: Edizione Flaccovio Dario, Palermo; Pitagora Editrice Srl.: Bologna, Italy, 1985. [Google Scholar]
- Hiscock, K.M.; Bense, V.F. Hydrogeology: Principles and Practice, 2nd ed.; Wiley-Blackwel: Oxford, UK, 2014. [Google Scholar]
- Gorla, M. Pozzi per acqua. In Manuale Tecnico di Progettazione: Edizione Flaccovio Dario; Pitagora Editrice Srl.: Bologna, Italy, 2010. [Google Scholar]
- Civita, M. Geologia Tecnica; ISED: Ottawa, ON, Canada, 1975. [Google Scholar]
- Mouton, J.; Mangano, F.; Fried, J.J. Studio Delle Risorse in Acque Sotterranee Dell’Italia; Schafer Druckerei: Hannover, Germany, 1982; p. 515. [Google Scholar]
- CASMEZ (CASsa per il MEZzogiorno)—Direzione Generale Progetti Speciali. Progetto Speciale n. 30: Utilizzazione delle acque degli schemi idrici intersettoriali della Sicilia. In Indagini Idrogeologiche e Geofisiche per il Reperimento di Acque Sotterranee per L’approvvigionamento Idrico del Sistema IV Zona Nord Orientale Della Sicilia (Messinese); CASMEZ: Palermo, Italy, 1978. [Google Scholar]
- Nogoshi, M.; Iragashi, T. On the propagation characteristic of the microtremors. J. Seismol. Soc. Jpn. 1970, 24, 24–40. [Google Scholar]
- Forte, G.; Chioccarelli, E.; De Falco, M.; Cito, P.; Santo, A.; Iervolino, I. Seismic soil classification of Italy based on surface geology and shear-wave velocity measurements. Soil Dyn. Earthq. Eng. 2019, 122, 79–93. [Google Scholar] [CrossRef]
- Harbaugh, A.W.; Banta, E.R.; Hill, M.C.; McDonald, M.G. MODFLOW2000, the U.S. Geological Survey modular ground-water model-User guide to modularization concepts and the Ground-Water Flow Process. U.S. Geol. Surv. Open-File Rep. 2000, 92, 121. [Google Scholar]
- Guzman, J.A.; Moriasi, D.N.; Gowda, P.H.; Steiner, J.L.; Starks, P.J.; Arnold, J.G.; Srinivasan, R. A model integration framework for linking SWAT and MODFLOW. Environ. Model. Softw. 2015, 73, 103–116. [Google Scholar] [CrossRef]
- McDonald, M.; Harbaugh, A. A Three Dimensional Finite Difference Ground Water Flow Model; U.S. Geological Survey: Reston, VA, USA, 1988.
- Batu, V. Numerical Flow and Solute Transport Modeling in Aquifers. In Applied Flow and Solute Transport Modeling in Aquifers: Fundamental Principles and Analytical and Numerical Methods; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2006; pp. 215–344. ISBN 9780849335747. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Canzoneri, A.; Capizzi, P.; Martorana, R.; Albano, L.; Bonfardeci, A.; Costa, N.; Favara, R. Geophysical Constraints to Reconstructing the Geometry of a Shallow Groundwater Body in Caronia (Sicily). Water 2023, 15, 3206. https://doi.org/10.3390/w15183206
Canzoneri A, Capizzi P, Martorana R, Albano L, Bonfardeci A, Costa N, Favara R. Geophysical Constraints to Reconstructing the Geometry of a Shallow Groundwater Body in Caronia (Sicily). Water. 2023; 15(18):3206. https://doi.org/10.3390/w15183206
Chicago/Turabian StyleCanzoneri, Alessandro, Patrizia Capizzi, Raffaele Martorana, Ludovico Albano, Alessandro Bonfardeci, Nunzio Costa, and Rocco Favara. 2023. "Geophysical Constraints to Reconstructing the Geometry of a Shallow Groundwater Body in Caronia (Sicily)" Water 15, no. 18: 3206. https://doi.org/10.3390/w15183206