Bathymetry Inversion Using Attention-Based Band Optimization Model for Hyperspectral or Multispectral Satellite Imagery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Analysis Area
2.2. Datasets
2.2.1. PRISMA Hyperspectral Satellite Images
2.2.2. Sentinel-2 Multispectral Satellite Images
2.2.3. Landsat 9 Multispectral Satellite Images
2.2.4. The Selection of Bands for Different Satellite Images
2.2.5. Reference Bathymetric Map
2.2.6. ICESat-2 Data
2.3. Methods
2.3.1. Methods Used for Comparison
2.3.2. ABO-CNN Model
2.3.3. Evaluation Method
3. Results
4. Discussion
4.1. Bathymetry Inversion Capability of Different Images and Models
4.2. Optimized Band Selection of PRISMA Hyperspectral Images Using ABO-CNN Model
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moffitt, D.L.; Kumar, L. Remote Sensing of a Shallow, Fringing Reef Platform for Analysis of Island Sector Susceptibility and Development of a Coastal Vulnerability Index. J. Coast. Res. 2018, 341, 122–135. [Google Scholar] [CrossRef]
- Kartal, S.K.; Hacıoğlu, R.; Görmüş, K.S.; Kutoğlu, H.; Leblebicioğlu, M.K. Modeling and Analysis of Sea-Surface Vehicle System for Underwater Mapping Using Single-Beam Echosounder. J. Mar. Sci. Eng. 2022, 10, 1349. [Google Scholar] [CrossRef]
- Ou, X.; Zhu, J.; Li, S.; Jia, Y.; Jia, Z.; Zhang, S.; Zhang, S.; Chen, R.; Chen, X.; Ding, D.; et al. Submarine Geomorphological Features and Their Origins Analyzed from Multibeam Bathymetry Data in the South China Sea. J. Mar. Sci. Eng. 2021, 9, 1419. [Google Scholar] [CrossRef]
- Guo, Q.; Fu, C.; Chen, Y.; Zhang, Y. Application of multi-beam bathymetry system in shallow water area. J. Phys. Conf. Ser. 2023, 2428, 12042. [Google Scholar] [CrossRef]
- Ji, X.; Yang, B.; Tang, Q.; Xu, W.; Li, J. Feature fusion-based registration of satellite images to airborne LiDAR bathymetry in island area. Int. J. Appl. Earth Obs. Geoinf. 2022, 109, 102778. [Google Scholar] [CrossRef]
- Xie, C.; Chen, P.; Pan, D.; Zhong, C.; Zhang, Z. Improved Filtering of ICESat-2 Lidar Data for Nearshore Bathymetry Estimation Using Sentinel-2 Imagery. Remote Sens. 2021, 13, 4303. [Google Scholar] [CrossRef]
- Hashim, N.S.; Yusof, O.M.; Windupranata, W.; Sulaiman, S.A.H. Integration of Satellite-Derived Bathymetry and Sounding Data in Providing Continuous and Detailed Bathymetric Information. IOP Conf. Ser. Earth Environ. Sci. 2020, 618, 012018. [Google Scholar] [CrossRef]
- Ashphaq, M.; Srivastava, P.K.; Mitra, D. Review of near-shore satellite derived bathymetry: Classification and account of five decades of coastal bathymetry research. J. Ocean Eng. Sci. 2021, 6, 340–359. [Google Scholar] [CrossRef]
- Wijesundara, A.; Rathnayake, R.M.D.I. Automated Estimation of Coastal Bathymetry from High Resolution Multi-Spectral Satellite Images. Eur. J. Eng. Technol. Res. 2019, 4, 74–81. [Google Scholar] [CrossRef]
- Collet, C.; Provost, J.N.; Rostaing, P.; Perez, P.; Bouthemy, P. SPOT Satellite Data Analysis for Bathymetric Mapping. In Proceedings of the IEEE International Conference on Image Processing, Vancouver, BC, Canada, 10–13 September 2000; Volume 463, pp. 464–467. [Google Scholar]
- Lyzenga, D.R. Shallow-water bathymetry using combined lidar and passive multispectral scanner data. Int. J. Remote Sens. 1985, 6, 115–125. [Google Scholar] [CrossRef]
- Stumpf, R.P.; Holderied, K.; Sinclair, M. Determination of water depth with high-resolution satellite imagery over variable bottom types. Limnol. Oceanogr. 2003, 48, 547–556. [Google Scholar] [CrossRef]
- Lyzenga, D.; Malinas, N.; Tanis, F. Multispectral bathymetry using a simple physically based algorithm. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2251–2259. [Google Scholar] [CrossRef]
- Dörnhöfer, K.; Göritz, A.; Gege, P.; Pflug, B.; Oppelt, N. Water Constituents and Water Depth Retrieval from Sentinel-2A—A First Evaluation in an Oligotrophic Lake. Remote Sens. 2016, 8, 941. [Google Scholar] [CrossRef]
- Pacheco, A.; Horta, J.; Loureiro, C.; Ferreira, Ó. Retrieval of nearshore bathymetry from Landsat 8 images: A tool for coastal monitoring in shallow waters. Remote Sens. Environ. 2015, 159, 102–116. [Google Scholar] [CrossRef]
- Yunus, A.P.; Dou, J.; Song, X.; Avtar, R. Improved Bathymetric Mapping of Coastal and Lake Environments Using Sentinel-2 and Landsat-8 Images. Sensors 2019, 19, 2788. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Y.; Feng, Y.; Dong, Z.; Liu, X. Multispectral Satellite-Derived Bathymetry Based on Sparse Prior Measured Data. Mar. Geod. 2023, 46, 426–440. [Google Scholar] [CrossRef]
- Chen, L.; Letu, H.; Fan, M.; Shang, H.; Tao, J.; Wu, L.; Zhang, Y.; Yu, C.; Gu, J.; Zhang, N.; et al. An Introduction to the Chinese High-Resolution Earth Observation System: Gaofen-1~7 Civilian Satellites. J. Remote Sens. 2022, 2022, 9769536. [Google Scholar] [CrossRef]
- Massimo, C.; Mauroa, M.; Enricoa, F.; Fabriziob, B.; Roberto, F. The PRISMAHyperspectral Imaging Spectrometer: Detectors and Front-end Electronics. In Proceedings of the Conference on Sensors, Systems, and Next-Generation Satellites XVII, Dresden, Germany, 23–26 September 2013. [Google Scholar]
- Kerr, G.; Avbelj, J.; Carmona, E.; Eckardt, A.; Gerasch, B.; Graham, L.; Günther, B.; Heiden, U.; Krutz, D.; Krawczyk, H.; et al. The Hyperspectral Sensor DESIS on MUSES: Processing and Applications. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 268–271. [Google Scholar]
- Chang, C.-I.; Du, Q.; Sun, T.-L.; Althouse, M.L.G. A joint band prioritization and band-decorrelation approach to band selection for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 1999, 37, 2631–2641. [Google Scholar] [CrossRef]
- Yang, H.; Du, Q.; Su, H.; Sheng, Y. An Efficient Method for Supervised Hyperspectral Band Selection. IEEE Geosci. Remote Sens. Lett. 2010, 8, 138–142. [Google Scholar] [CrossRef]
- Yang, H.; Chen, M.; Wu, G.; Wang, J.; Wang, Y.; Hong, Z. Double Deep Q-Network for Hyperspectral Image Band Selection in Land Cover Classification Applications. Remote Sens. 2023, 15, 682. [Google Scholar] [CrossRef]
- Xi, X.; Chen, M.; Wang, Y.; Yang, H. Band-Optimized Bidirectional LSTM Deep Learning Model for Bathymetry Inversion. Remote Sens. 2023, 15, 3472. [Google Scholar] [CrossRef]
- Misra, A.; Vojinovic, Z.; Ramakrishnan, B.; Luijendijk, A.; Ranasinghe, R. Shallow water bathymetry mapping using Support Vector Machine (SVM) technique and multispectral imagery. Int. J. Remote Sens. 2018, 39, 4431–4450. [Google Scholar] [CrossRef]
- Manessa, M.D.M.; Kanno, A.; Sekine, M.; Haidar, M.; Yamamoto, K.; Imai, T.; Higuchi, T. Satellite-Derived Bathymetry Using Random Forest Algorithm and Worldview-2 Imagery. Geoplanning J. Geomat. Plan. 2016, 3, 117–126. [Google Scholar] [CrossRef]
- Al Najar, M.; Benshila, R.; El Bennioui, Y.; Thoumyre, G.; Almar, R.; Bergsma, E.W.J.; Delvit, J.-M.; Wilson, D.G. Coastal Bathymetry Estimation from Sentinel-2 Satellite Imagery: Comparing Deep Learning and Physics-Based Approaches. Remote Sens. 2022, 14, 1196. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, X.; Li, C.; Chen, Y.; Yang, L. Bathymetry Model Based on Spectral and Spatial Multifeatures of Remote Sensing Image. IEEE Geosci. Remote Sens. Lett. 2019, 17, 37–41. [Google Scholar] [CrossRef]
- Guo, X.; Jin, X.; Jin, S. Shallow Water Bathymetry Mapping from ICESat-2 and Sentinel-2 Based on BP Neural Network Model. Water 2022, 14, 3862. [Google Scholar] [CrossRef]
- Babbel, B.J.; Parrish, C.E.; Magruder, L.A. ICESat-2 Elevation Retrievals in Support of Satellite-Derived Bathymetry for Global Science Applications. Geophys. Res. Lett. 2021, 48, 90629. [Google Scholar] [CrossRef]
- Thomas, N.; Pertiwi, A.P.; Traganos, D.; Lagomasino, D.; Poursanidis, D.; Moreno, S.; Fatoyinbo, L. Space-Borne Cloud-Native Satellite-Derived Bathymetry (SDB) Models Using ICESat-2 And Sentinel-2. Geophys. Res. Lett. 2021, 48, 92170. [Google Scholar] [CrossRef]
- Storlazzi, C.; Logan, J.; Field, M. Quantitative morphology of a fringing reef tract from high-resolution laser bathymetry: Southern Molokai, Hawaii. Geol. Soc. Am. Bull. 2003, 115, 1344. [Google Scholar] [CrossRef]
- Liu, C.; Qi, J.; Li, J.; Tang, Q.; Xu, W.; Zhou, X.; Meng, W. Accurate Refraction Correction—Assisted Bathymetric Inversion Using ICESat-2 and Multispectral Data. Remote Sens. 2021, 13, 4355. [Google Scholar] [CrossRef]
- Asner, G.P.; Vaughn, N.R.; Balzotti, C.; Brodrick, P.G.; Heckler, J. High-Resolution Reef Bathymetry and Coral Habitat Complexity from Airborne Imaging Spectroscopy. Remote Sens. 2020, 12, 310. [Google Scholar] [CrossRef]
- PRISMA Algorithm Theoretical Basis Document. Available online: https://prisma.asi.it/missionselect/docs/PRISMA%20ATBD_v1.pdf (accessed on 18 June 2022).
- PRISMA Hyperspectral Images. Available online: https://prisma.asi.it/ (accessed on 8 June 2022).
- Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Available online: https://sentinel.esa.int/documents/247904/349490/S2_SP-1322_2.pdf (accessed on 18 June 2022).
- Sentinel-2 Multispectral Images. Available online: https://scihub.copernicus.eu/ (accessed on 12 June 2022).
- Masek, J.G.; Wulder, M.A.; Markham, B.; McCorkel, J.; Crawford, C.J.; Storey, J.; Jenstrom, D.T. Landsat 9: Empowering open science and applications through continuity. Remote Sens. Environ. 2020, 248, 111968. [Google Scholar] [CrossRef]
- Landsat 9 Multispectral Images. Available online: https://earthexplorer.usgs.gov/ (accessed on 23 November 2022).
- PRISMA User Manual. Available online: http://prisma.asi.it/missionselect/docs/PRISMA%20User%20Manual_Is1_3.pdf (accessed on 18 June 2022).
- Sentinel-2 User Handbook. Available online: https://sentinel.esa.int/documents/247904/685211/Sentinel-2_User_Handbook (accessed on 18 June 2022).
- Landsat 8-9 OLI/TIRS Collection 2 Level 2 Data Format Control Book. Available online: https://d9-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/s3fs-public/atoms/files/LSDS-1328_Landsat8-9-OLI-TIRS-C2-L2-DFCB-v6.pdf (accessed on 23 November 2022).
- Global Airborne Observatory: Hawaiian Islands Bathymetry. Available online: https://zenodo.org/record/4294324 (accessed on 20 November 2022).
- NOAA Tides and Currents. Available online: https://tidesandcurrents.noaa.gov/ (accessed on 11 November 2022).
- Wei, J.; Wang, M.; Lee, Z.; Briceño, H.O.; Yu, X.; Jiang, L.; Garcia, R.; Wang, J.; Luis, K. Shallow water bathymetry with multi-spectral satellite ocean color sensors: Leveraging temporal variation in image data. Remote Sens. Environ. 2020, 250, 112035. [Google Scholar] [CrossRef]
- ICESat-2 L2A Global Geolocated Photon Data. Available online: https://nsidc.org/data/atl03/versions/6 (accessed on 20 January 2023).
- Xu, N.; Ma, X.; Ma, Y.; Zhao, P.; Yang, J.; Wang, X.H. Deriving Highly Accurate Shallow Water Bathymetry from Sentinel-2 and ICESat-2 Datasets by a Multitemporal Stacking Method. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 6677–6685. [Google Scholar] [CrossRef]
- Le, Y.; Hu, M.; Chen, Y.; Yan, Q.; Zhang, D.; Li, S.; Zhang, X.; Wang, L. Investigating the Shallow-Water Bathymetric Capability of Zhuhai-1 Spaceborne Hyperspectral Images Based on ICESat-2 Data and Empirical Approaches: A Case Study in the South China Sea. Remote Sens. 2022, 14, 3406. [Google Scholar] [CrossRef]
- Li, S.; Wang, X.H.; Ma, Y.; Yang, F. Satellite-Derived Bathymetry with Sediment Classification Using ICESat-2 and Multispectral Imagery: Case Studies in the South China Sea and Australia. Remote Sens. 2023, 15, 1026. [Google Scholar] [CrossRef]
- Ester, M.; Kriegel, H.-P.; Sander, J.; Xu, X. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, Portland, OR, USA, 2–4 August 1996; pp. 226–231. [Google Scholar]
- Wang, J.; Chen, M.; Zhu, W.; Hu, L.; Wang, Y. A Combined Approach for Retrieving Bathymetry from Aerial Stereo RGB Imagery. Remote Sens. 2022, 14, 760. [Google Scholar] [CrossRef]
- Panda, R.K.; Pramanik, N.; Bala, B. Simulation of river stage using artificial neural network and MIKE 11 hydrodynamic model. Comput. Geosci. 2010, 36, 735–745. [Google Scholar] [CrossRef]
- Rosenblatt, F. The perceptron: A probabilistic model for information storage and organization in the brain. Psychol. Rev. 1958, 65, 386–408. [Google Scholar] [CrossRef]
- Kiranyaz, S.; Avci, O.; Abdeljaber, O.; Ince, T.; Gabbouj, M.; Inman, D.J. 1D convolutional neural networks and applications: A survey. Mech. Syst. Signal Process. 2020, 151, 107398. [Google Scholar] [CrossRef]
- Annala, L.; Honkavaara, E.; Tuominen, S.; Pölönen, I. Chlorophyll Concentration Retrieval by Training Convolutional Neural Network for Stochastic Model of Leaf Optical Properties (SLOP) Inversion. Remote Sens. 2020, 12, 283. [Google Scholar] [CrossRef]
- Xu, K.; Ba, J.L.; Kiros, R.; Cho, K.; Courville, A.; Salakhutdinov, R.; Zemel, R.S.; Bengio, Y. Show, Attend and Tell: Neural Image Caption Generation with Visual Attention. In Proceedings of the 32nd International Conference on International Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 2048–2057. [Google Scholar]
- Bahdanau, D.; Cho, K.; Bengior, Y. Neural Machine Translation by Jointly Learning to Align and Translate. In Proceedings of the 3rd International Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Ma, Y.; Xu, N.; Liu, Z.; Yang, B.; Yang, F.; Wang, X.H.; Li, S. Satellite-derived bathymetry using the ICESat-2 lidar and Sentinel-2 imagery datasets. Remote Sens. Environ. 2020, 250, 112047. [Google Scholar] [CrossRef]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
PRISMA Band | Wavelength (nm) | Sentinel-2 Band | Wavelength (nm) | Landsat 9 Band | Wavelength (nm) |
---|---|---|---|---|---|
63–66 | 400–432 | ||||
60–62 | 432–452 | 1 | 433–453 | 1 | 433–451 |
51–59 | 452–521 | 2 | 458–523 | 2 | 452–512 |
48–50 | 521–542 | 3 | 533–590 | ||
44–47 | 542–575 | 3 | 543–578 | ||
41–43 | 575–603 | ||||
38–40 | 603–628 | ||||
36–37 | 628–647 | 4 | 636–673 | ||
32–35 | 647–685 | 4 | 650–680 | ||
31 | 685–696 | ||||
29–30 | 696–716 | 5 | 698–713 | ||
27–28 | 716–736 | ||||
26 | 736–745 | 6 | 733–748 | ||
23–25 | 745–778 | ||||
21–22 | 778–798 | 7 | 773–793 | ||
18–20 | 798–830 | ||||
17 | 830–841 | 8 | 830–865 | ||
15–16 | 841–863 | 5 | 851–879 | ||
13–14 | 863–884 | 8a | 865–885 | ||
11–12 | 884–905 | ||||
8–10 | 905–935 | ||||
6–7 | 935–958 | 9 | 935–955 | ||
4–5 | 958–979 | ||||
11 | 1565–1655 | 6 | 1566–1651 | ||
12 | 2100–2280 | 7 | 2107–2294 |
Acquired Data | Time (UTC) | Track Identification | Geographic Coordinates |
---|---|---|---|
21 July 2019 | 18:37 | GT2L | 111°42′44″ E, 16°35′48″ N (top-left) 111°42′56″ E, 16°33′51″ N (bottom-right) |
19 August 2019 | 17:14 | GT1L | 111°43′16′’ E, 16°35′7″ N (top-left) 111°43′25″ E, 16°33′48″ N (bottom-right) |
18 November 2019 | 12:53 | GT1R | 111°43′17″ E, 16°35′36″ N (top-left) 111°43′28″ E, 16°33′49″ N (bottom-right) |
19 January 2020 | 09:57 | GT3R | 111°43′2″ E, 16°35′18″ N (top-left) 111°43′12″ E, 16°33′37″ N (bottom-right) |
Model | Key Parameters | |||||
---|---|---|---|---|---|---|
Layers | Structure of Input Data | Activation Function | Loss Function | Optimizer | Others | |
FNN | 4 | 1000 × 14 (Molokai—Sentinel-2) 1000 × 9 (Molokai—Landsat 9) 1000 × 65 (Molokai—PRISMA) 3100 × 14 (Yinyu—Sentinel-2) 3100 × 9 (Yinyu—Landsat 9) 3100 × 64 (Yinyu—PRISMA) | ReLU | Mean Square Error | Adam | the number of neurons in each layer: 256, 128, 64, 1 |
1D-CNN | 5 | filters: the feature dimension of the image kernel size: 3 pool size: 3 |
Study Area | Model | Satellite Image | Used Bands | RMSE (m) | R2 |
---|---|---|---|---|---|
Molokai Island | Stumpf | Sentinel-2 | 2, 3 | 2.99 | 0.79 |
Landsat 9 | 1, 3 | 2.91 | 0.80 | ||
PRISMA | 55, 51 | 2.61 | 0.85 | ||
FNN | Sentinel-2 | 1–9a, 11, 12 | 2.54 | 0.87 | |
Landsat 9 | 1–7 | 2.25 | 0.89 | ||
PRISMA | 4–66 | 2.14 | 0.90 | ||
1D-CNN | Sentinel-2 | 1–9a, 11, 12 | 2.24 | 0.90 | |
Landsat 9 | 1–7 | 2.02 | 0.91 | ||
PRISMA | 4–66 | 2.00 | 0.92 | ||
ABO-CNN | Sentinel-2 | 1–9a, 11, 12 | 1.82 | 0.93 | |
Landsat 9 | 1–7 | 1.78 | 0.93 | ||
PRISMA | 4–66 | 1.43 | 0.96 | ||
Yinyu Island | Stumpf | Sentinel-2 | 1, 3 | 1.50 | 0.73 |
Landsat 9 | 1, 3 | 1.24 | 0.76 | ||
PRISMA | 48, 46 | 1.19 | 0.82 | ||
FNN | Sentinel-2 | 1–9a, 1, 12 | 0.90 | 0.88 | |
Landsat 9 | 1–7 | 0.98 | 0.88 | ||
PRISMA | 4–65 | 0.82 | 0.92 | ||
1D-CNN | Sentinel-2 | 1–9a, 11, 12 | 0.88 | 0.89 | |
Landsat 9 | 1–7 | 1.04 | 0.86 | ||
PRISMA | 4–65 | 0.86 | 0.91 | ||
ABO-CNN | Sentinel-2 | 1–9a, 11, 12 | 0.79 | 0.90 | |
Landsat 9 | 1–7 | 0.86 | 0.90 | ||
PRISMA | 4–65 | 0.73 | 0.94 |
Study Area | Depth Range (m) | RMSE (m) | Level | Required Accuracy (m) |
---|---|---|---|---|
Molokai Island | 0–10 | 1.19 | A2 & B | 1.2 |
10–23 | 1.85 | C | 3.5 | |
Yinyu Island | 0–10 | 0.75 | A2 & B | 1.2 |
10–14 | 0.29 | A1 | 0.8 |
Study Area | PRISMA Band | Wavelength (nm) | Weights in ABO-CNN | Weights in 1D-CNN |
---|---|---|---|---|
Molokai Island | 41 | 597 | 12.09% | 3.78% |
40 | 606 | 11.45% | 4.32% | |
39 | 615 | 4.19% | 2.26% | |
42 | 588 | 3.79% | 2.98% | |
43 | 572 | 3.65% | 2.81% | |
Yinyu Island | 44 | 572 | 5.45% | 1.85% |
35 | 651 | 4.94% | 1.68% | |
47 | 547 | 3.66% | 2.64% | |
42 | 588 | 3.19% | 1.98% | |
43 | 580 | 3.18% | 2.17% |
Model | Satellite Image | Bands or Band Ratios | Training Data | RMSE (m) |
---|---|---|---|---|
BoBiLSTM [24] | PRISMA | 30, 35–38, 42–44, 47, 50, 51, 53, 54, 58–60, 64–66, 42/58, 50/54 | ICESat-2 | 2.72 |
7, 27, 40–49, 54, 56, 62–65, 49/56, 43/54, 44/54 | Multibeam | 2.35 | ||
Sentinel-2 | 2–4, 3/2 | ICESat-2 | 2.54 | |
Multibeam | 3.13 | |||
ABO-CNN | PRISMA | 4–66 | Reference Bathymetric Map | 2.15 |
Sentinel-2 | 4–66 | Reference Bathymetric Map | 5.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Chen, M.; Xi, X.; Yang, H. Bathymetry Inversion Using Attention-Based Band Optimization Model for Hyperspectral or Multispectral Satellite Imagery. Water 2023, 15, 3205. https://doi.org/10.3390/w15183205
Wang Y, Chen M, Xi X, Yang H. Bathymetry Inversion Using Attention-Based Band Optimization Model for Hyperspectral or Multispectral Satellite Imagery. Water. 2023; 15(18):3205. https://doi.org/10.3390/w15183205
Chicago/Turabian StyleWang, Yingxi, Ming Chen, Xiaotao Xi, and Hua Yang. 2023. "Bathymetry Inversion Using Attention-Based Band Optimization Model for Hyperspectral or Multispectral Satellite Imagery" Water 15, no. 18: 3205. https://doi.org/10.3390/w15183205