Ecohydrological Footprint and Climate Trends in Lotic Ecosystems of Central Western Ghats
Abstract
:1. Introduction
2. Study Area
3. Methods
3.1. Data Collation and Preprocessing
3.2. Land-Use Analyses
3.3. Analysis of Climatic Patterns and Trends
3.4. Ecohydrological Footprint
4. Results and Discussion
4.1. Land Use
4.2. Climatic Trends
4.3. Hydrological Regime and Ecological Footprint
4.4. Limitation of the Approach
4.5. Scope for Further Research
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ramachandra, T.V.; Vinay, S.; Bharath, S.; Shashishankar, A. Eco-Hydrological Footprint of a River Basin in Western Ghats. Yale J. Biol. Med. 2018, 91, 431–444. [Google Scholar]
- Su, R.; Sun, R. Impact of climate change on the hydrological cycle. J. Water Clim. Change 2021, 12, V. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W. Climate change impacts on the hydrological cycle. Ecohydrol. Hydrobiol. 2008, 8, 195–203. [Google Scholar] [CrossRef]
- Watson, R.; Baste, I.; Larigauderie, A.; Leadley, P.; Pascual, U.; Baptiste, B.; Demissew, S.; Dziba, L.; Erpul, G.; Fazel, A.; et al. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; IBPES: Bonn, Germany, 2019. [Google Scholar]
- Verones, F.; Saner, D.; Pfister, S.; Baisero, D.; Rondinini, C.; Hellweg, S. Effects of consumptive water use on biodiversity in wetlands of international importance. Environ. Sci. Technol. 2013, 47, 12248–12257. [Google Scholar] [CrossRef]
- System of Environmental-Economic Accounting 2012—Central Framework. In White Cover Publication; Food and Agricultural Organization: Rome, Italy, 2012; Available online: https://unstats.un.org/unsd/envaccounting/seearev/seea_cf_final_en.pdf (accessed on 20 January 2023).
- Millenium Ecosystem Assessment. In Ecosystems and Human Well-Being: A Framework for Assessment; Island Press: Washington, DC, USA, 2005; Available online: https://www.millenniumassessment.org/documents/document.356.aspx.pdf (accessed on 20 January 2023).
- UNDESA. Sustainable Development Goals. Division for Sustainable Development Goals. 2022. Available online: https://sdgs.un.org/ (accessed on 20 January 2023).
- Xu, Z.X.; Li, L.; Zhao, J. A distributed eco-hydrological model and its application. Water Sci. Eng. 2017, 10, 257–264. [Google Scholar] [CrossRef]
- Veettil, A.V.; Mishra, A.K. Water security assessment using blue and green water footprint concepts. J. Hydrol. 2016, 542, 589–602. [Google Scholar] [CrossRef]
- Gopal, B. Environmental Flows: An Introduction for Water Resources Managers; National Institute of Ecology: Delhi, India, 2013. [Google Scholar]
- Poff, N.L.; Allan, J.D.; Bain, M.B.; Karr, J.R.; Prestegaard, K.L.; Richter, B.D.; Sparks, R.E.; Stromberg, J.C. The Natural Flow Regime. BioScience 1997, 47, 769–784. [Google Scholar] [CrossRef]
- Central Water Commission. National Water Policy. Available online: http://cwc.gov.in/sites/default/files/nwauser/nwp-lectnote6.pdf (accessed on 20 January 2023).
- National Green Tribunal. Environmental/Minimum Flow of the Rivers Despite Hydro Projects; National Green Tribunal: New Delhi, India, 2023; Volume 628. [Google Scholar]
- Mutreja, K.N. Applied Hydrology; Tata McGraw-Hill: New Delhi, India, 1995. [Google Scholar]
- Ramachandra, T.V.; Vinay, S.; Bharath, S.; Chandran, M.D.S.; Bharath, H. Aithal. Insights into riverscape dynamics with the hydrological, ecological and social dimensions for water sustenance. Curr. Sci. 2020, 118, 1379–1393. [Google Scholar] [CrossRef]
- Bruijnzeel, L.A. Forest Hydrology. In The Forests Handbook; Evans, J., Ed.; Blackwell Science Ltd.: Oxfod, UK, 2001; pp. 301–343. [Google Scholar] [CrossRef]
- Pereira, H.C. Hydrology of moist tropical forests and effects of conversion: A state of knowledge review. J. Hydrol. 1991, 129, 397–399. [Google Scholar] [CrossRef]
- Putty, M.R.Y.; Prasad, R. Understanding runoff processes using a watershed model—A case study in the Western Ghats in South India. J. Hydrol. 2000, 228, 215–227. [Google Scholar] [CrossRef]
- Wu, J.; Deng, G.; Zhou, D.; Zhu, X.; Ma, J.; Cen, G.; Jin, Y.; Zhang, J. Effects of climate change and land-use changes on spatiotemporal distributions of blue water and green water in Ningxia, Northwest China. J. Arid Land 2021, 13, 674–687. [Google Scholar] [CrossRef]
- Acreman, M. Environmental flows—Basics for novices. Interdiscip. Rev. Water 2016, 3, 622–628. [Google Scholar] [CrossRef]
- Richter, B.D. Re-thinking environmental flows: From allocations and reserves to sustainability boundaries. River. Res. Appl. 2009, 26, 1052–1063. [Google Scholar] [CrossRef]
- Hewlett, J.D. Principles of Forest Hydrology. EOS 1983, 64, 572. [Google Scholar] [CrossRef]
- Risser, P.G. Landscape ecology: State of the art. In Landscape Heterogeneity and Disturbance; Springer: New York, NY, USA, 1983; pp. 3–14. [Google Scholar]
- Bormann, F.H. Landscape ecology and air pollution. In Landscape Heterogeneity and Disturbance; Springer: New York, NY, USA, 1983; pp. 37–57. [Google Scholar]
- Forman, R.T.T. Some general principles of landscape and regional ecology. Landsc. Ecol. 1995, 10, 133–142. [Google Scholar] [CrossRef]
- Harris, L.D. The Fragmented Forest: Island Biogeography Theory and the Preservation of Biotic Diversity; University of Chicago Press: Chicago, IL, USA, 1984. [Google Scholar]
- Gregory, S.; Ashkenas, L. Riparian management guide—Willamette National Forest; USDA Forest Service, Willamette National Forest: Eugene, OR, USA, 1990. [Google Scholar]
- Turner, M.G. Landscape Ecology: The Effect of Pattern on Process. Annu. Rev. Ecol. Syst. 1989, 20, 171–197. [Google Scholar] [CrossRef]
- Daniels, R.R.J.; Venkatesan, J. Western Ghats-Biodiversity, People, Conservation; Rupa & Company: New Delhi, India, 2008. [Google Scholar]
- India Water Portal. Western Ghats: The Green Gold of India. Available online: http://www.indiawaterportal.org/articles/western-ghats-green-gold-india (accessed on 12 December 2022).
- India Biodiversity Portal. The Western Ghats. Available online: https://thewesternghats.indiabiodiversity.org/ (accessed on 12 December 2022).
- Ray, R.; Subash Chandran, M.D.; Ramachandra, T.V. Hydrological importance of sacredforest fragments in Central Western Ghats of India. Trop. Ecol. 2015, 56, 87–99. [Google Scholar]
- Ramachandra, T.V.; Bharath, S. Global Warming Mitigation Through Carbon Sequestrations in the Central Western Ghats. Remote Sens. Earth Syst. Sci. 2019, 2, 39–63. [Google Scholar] [CrossRef]
- Lindsey, R.; Dahlman, L. Climate Change: Global Temperature. Climate Watch Magazine NOAA Climate.org. 2020. Available online: https://www.climate.gov/news-features/understanding-climate/climate-change-global-temperature (accessed on 10 May 2020).
- EMPRI. Agroclimatic Zones of Karnataka. ENVIS Centre Karnataka. 2013. Available online: https://empri.karnataka.gov.in/uploads/media_to_upload1682581208.pdf (accessed on 13 August 2021).
- Shankar, R.K. Digital Flora of Karnataka. Herbarium JCB, IISc. 2016. Available online: http://florakarnataka.ces.iisc.ac.in/hjcb2/contact.php (accessed on 13 August 2021).
- Ramachandra, T.V.; Vinay, S.; Bharath, S.; Bharath, H.A. Profile of Rivers in Karnataka; Sahyadri Concervation Series 71; ENVIS Technical Report 129; Indian Institute of Science: Bangalore, India, 2017. [Google Scholar]
- Ramachandra, T.V.; Bharath, S.; Nimish, G. Modelling landscape dynamics with LST in protected areas of Western Ghats, Karnataka. J. Environ. Manag. 2018, 206, 1253–1262. [Google Scholar] [CrossRef]
- Ramachandra, T.V.; Bharath, S. Geoinformatics based Valuation of Forest Landscape Dynamics in Central Western Ghats, India. J. Remote Sens. GIS 2018, 7, 1000227. [Google Scholar]
- Ramachandra, T.V.; Bharath, S.; Vinay, S.; Bharath, H.A. Ecosystem Extent Account for Karnataka State, India—Report on NCAVES Project; NCAVES: Southern Pines, NC, USA, 2021. [Google Scholar]
- Office of the Registrar General & Census Commissioner. Census of India 2011. Ministry of Home Affairs, Government of India. Available online: http://www.censusindia.gov.in (accessed on 13 August 2020).
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. WorldClim Version 1.4. Available online: http://www.worldclim.org (accessed on 13 August 2020).
- Jarvis, A.; Reuter, H.I.; Nelson, A.; Guevara, E. SRTM 90m Digital Elevation Database v4.1. Cgiar-Csi. Available online: https://csidotinfo.wordpress.com/data/srtm-90m-digital-elevation-database-v4-1/ (accessed on 22 June 2021).
- Central Ground Water Board. Watershed Atlas of India. Ministry of Water Resources, Government of India. Available online: http://cgwb.gov.in/sites/default/files/MainLinks/Karnataka_State_Report_Resource_2020.pdf (accessed on 12 September 2021).
- National Bureau of Soil Survey and Land Use Planning. ICAR-NBSS&LUP. Available online: https://www.nbsslup.in/ (accessed on 10 October 2021).
- U.S. Geological Survey. Earthexplorer. Available online: https://earthexplorer.usgs.gov (accessed on 31 January 2022).
- Pascal, J.P. Explanatory Booklet on the Forest Map of South India; French Institute of Pondicherry: Puducherry, France, 1986. [Google Scholar]
- Google Earth. Available online: https://www.google.com/intl/en_in/earth/ (accessed on 7 June 2022).
- National Remote Sensing Centre. Bhuvan. Indian Space Research Organisation, Government of India. Available online: http://bhuvan.nrsc.gov.in/ (accessed on 6 June 2022).
- Department of Animal Husbandry and Veterinary Services. Livestock Census. Government of Karnataka. Available online: http://www.ahvs.kar.nic.in/en-reportsstat.html (accessed on 2 June 2022).
- Department of Economics and Statistics. Agriculture. Available online: www.tn.gov.in/deptst/agriculture.pdf (accessed on 2 June 2022).
- My Agriculture Information Bank. AgriInfo. Available online: http://www.agriinfo.in/ (accessed on 1 June 2022).
- Karnataka State Department of Agriculture. Profile of Agriculture Statistics-Karnataka State. Available online: http://raitamitra.kar.nic.in/KAN/Document/agriprop.pdf (accessed on 1 June 2022).
- Food and Agriculture Organisation. Crop Water Needs; Food and Agriculture Organisation: Rome, Italy; Available online: http://www.fao.org/docrep/S2022E/s2022e07.htm (accessed on 10 June 2022).
- Karnataka State Department of Agriculture. Raitamitra. Available online: http://raitamitra.kar.nic.in (accessed on 12 July 2022).
- Indian Meterological Department. Hydrometerological Services; Ministry of Earth Sciences Government of India: New Delhi, India. Available online: https://mausam.imd.gov.in/responsive/servicesHydrological.php (accessed on 1 June 2022).
- Terrestrial Hydrology Research Group. Global Meteorological Forcing Dataset for Land Surface Modeling; Princeton University: Princeton, NJ, USA; Available online: https://data.ucar.edu/dataset/global-meteorological-forcing-dataset-for-land-surface-modeling (accessed on 25 January 2021).
- Berkeley Earth. Regional Climate Change: Global Data. Available online: http://berkeleyearth.org/ (accessed on 25 June 2021).
- NASA. NASA Prediction of World Energy Resources. The Power Project. Available online: https://power.larc.nasa.gov/data-access-viewer/ (accessed on 20 June 2022).
- Lillesand, T.M.; Kiefer, R.W.; Chipman, J.W. Remote Sensing and Image Interpretation; Wiley: New York, NY, USA, 2004. [Google Scholar]
- International Water Centre. The Brisbane Declaration. Available online: http://www.watercentre.org/news/declaration (accessed on 28 January 2023).
- Raghunath, H.M. Hydrology-Principles, Analysis and Design; Wiley Eastern Limited: New Delhi, India, 1985. [Google Scholar]
- Ramachandra, T.V. Integrated Ecological Carrying Capacity of Uttara Kannada District, Karnataka; Sahyadri Conservation Series 47; ENVIS Technical Report 87; Indian Institute of Science: Bangalore, India, 2014. [Google Scholar]
- Ramachandra, T.V.; Vinay, S.; Bharath, S.; Subash Chandran, M.D.; Bharath, H.A. Eco-Hydrological Footprint of Sharavathi River Basin. In Proceedings of the Lake 2018: Conference on Conservation and Sustainable Management of Riverine Ecosystems, Bangalore, India, 22–25 November 2018. [Google Scholar]
- Vinay, S.; Vishnu, D.M.; Srikanth, N.; Chandran, M.D.S.; Bharath, S.; Shashishankar, A.; Ramachandra, T.V. Landscapes and Hydrological Regime Linkages: Case Study of Chandiholé, Aghanashini. In Proceedings of National Seminar for Research Scholars, Coimbatore; Indian Institute of Science: Bangalore, India, 2017. [Google Scholar]
- Ramachandra, T.V.; Bharath, S. Carbon Sequestration Potential of the Forest Ecosystems in the Western Ghats, a Global Biodiversity Hotspot. Nat. Resour. Res. 2019, 29, 2753–2771. [Google Scholar] [CrossRef]
Sl.no | Description | Ghataprabha | Malaprabha | Mahadayi |
---|---|---|---|---|
1 | Direction of Flow | East | East | West |
2 | Basin | Krishna | Krishna | Mahadayi |
3 | Catchment Area | 8771 km2 | 12,480 km2 | 2007 km2 |
4 | Flow Length | 283 km | 306 km | 87 km |
5 | Tributaries | Hiranyakesi, Markandeya | Bennihalla, Hirehalla, Tuparihalla, Alurhalla, Sasivehalla, Saraswathihalla, | Kotrachi nadi, Surla nadi, Ragada nadi |
6 | Origin | Maharashtra | Karnataka | Karnataka |
7 | Demography | 14.14% increase between 2001 and 2011 | 13.4% increase between 2001 and 2011 | 7.1% increase between 2001 and 2011 |
8 | Precipitation | 650 mm (Plains) to 3000 mm (Ghats) | Average 3200 mm | |
9 | Temperature | 15.34 °C December to 34.6 °C April | 17.84 °C December to 32.51 °C April | |
10 | Soil | Lateritic, black, and red soils | Lateritic, medium black, red sandy, red loamy, mixed soils | Lateritic |
11 | Lithology | Gneiss, Granite, Quartzite, Schist, Laterite, Basalt, Alluvium | Granite, gneiss, Deccan trap, schists, and limestone | Gneiss, Granite, Schist, Laterite |
12 | Topography | 450 m to 1050 m AMSL | 0 m to 1024 m AMSL | |
13 | Forests | Evergreen—GhatsDeciduous and Scrub Jungles—Transition and Plains | Evergreen, Moist Deciduous | |
14 | Sanctuaries and National Parks | Bhimgad wildlife sanctuary, Ghataprabha bird sanctuary | Bhimgad wildlife sanctuary | Mhadei Wildlife, Mollem National Park, and Bhagwan Mahavir Wildlife Sanctuary |
15 | Major Crops | Maize, groundnut, sunflower, chickpea, tomatoes, brinjal, potato, cotton, sugarcane | Groundnut, sorghum, maize, paddy, pearl millet, soybean, green gram, horse gram, cotton, sugarcane, and tobacco | Paddy, sugarcane, banana, areca nut, coconut, cashew nut, mango |
16 | Others | Joins Alamatti Reservoir | Joins Krishna at Koodalsangama | Joins Arabian Sea |
Crop Water Demand | |||||||||
---|---|---|---|---|---|---|---|---|---|
Crop | Delta (mm) | Crop | Delta (mm) | Crop | Delta (mm) | ||||
Paddy | 900–2500 | Wheat | 400–450 | Cotton | 600–700 | ||||
Jowar | 200–300 | Other Millets | 400–450 | Coconut | 1500–2000 | ||||
Bajra | 300–400 | Pulses | 250–300 | Arecanut | 1800–2200 | ||||
Maize | 400–600 | Fruits/Vegetables | 2000–3000 | Sugarcane | 1400–3000 | ||||
Ragi | 250–300 | Oil Seed | 400–500 | Tobacco | 400–500 | ||||
Water Requirement in Liters per Animal per Day | Domestic Demand lpcd | ||||||||
Season/Animal | Cattle | Buffalo | Sheep | Goat | Pigs | Rabbits | Dogs | Poultry | |
Monsoon | 20–25 | 25–30 | 4–6 | 4–6 | 6–8 | 0.3–0.35 | 2–6 | 0.2–0.25 | 85 |
Summer | 30–35 | 35–40 | 6–8 | 6–8 | 9–12 | 0.5–0.6 | 6–8 | 0.3–0.35 | 135 |
Winter | 25–30 | 30–35 | 6–8 | 6–8 | 8–10 | 0.4–0.45 | 2–6 | 0.25–0.3 | 100 |
Catchment | Year | Runoff | Vadose | Evapotranspiration | Agriculture | Domestic |
---|---|---|---|---|---|---|
Ghataprabha | 1972 | 2500.87 | 2125.48 | 1300 | 4433.75 | 98.23 |
2018 | 4542.77 | 1564.55 | 731 | 5091.57 | 142.76 | |
Malaprabha | 1972 | 4128.37 | 1982.07 | 1093.52 | 4794.42 | 119.39 |
2018 | 4442.54 | 1655.29 | 986.67 | 5455.91 | 174.99 | |
Mahadayi | 1972 | 1138.15 | 1236.77 | 937.92 | 113.58 | 18.24 |
2018 | 1534.59 | 946.80 | 620.71 | 1483.15 | 22.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramachandra, T.V.; Shivamurthy, V. Ecohydrological Footprint and Climate Trends in Lotic Ecosystems of Central Western Ghats. Water 2023, 15, 3169. https://doi.org/10.3390/w15183169
Ramachandra TV, Shivamurthy V. Ecohydrological Footprint and Climate Trends in Lotic Ecosystems of Central Western Ghats. Water. 2023; 15(18):3169. https://doi.org/10.3390/w15183169
Chicago/Turabian StyleRamachandra, T. V., and Vinay Shivamurthy. 2023. "Ecohydrological Footprint and Climate Trends in Lotic Ecosystems of Central Western Ghats" Water 15, no. 18: 3169. https://doi.org/10.3390/w15183169