Addressing the Spatiotemporal Patterns of Heatwaves in Portugal with a Validated ERA5-Land Dataset (1980–2021)
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
- Montalegre, MOAL (2.37 km from P0059);
- Bragança, BRAG (2.78 km from P0070);
- Penhas Douradas, PNDO (4.61 km from P0384);
- Castelo Branco, CBRA (4.67 km from P0515);
- Santarém, SATR (2.84 km from P0636);
- Portalegre, POAL (3.07 km from P0752);
- Lisboa Geofísico, LIGE (2.65 km from P0761);
- Beja, BEJA (3.53 km from P0911);
- Faro, FARO (3.49 km from P1062).
3.1. Heatwave Magnitude Index
3.2. Frequency Analysis of Heatwave Days during a Year
3.3. Methodology in a Snapshot
- Firstly, ERA5-Land temperature data were validated against IPMA ground-based records at a monthly scale over a common 39-year period from January 1980 to December 2018. This validation process involved:
- –
- Utilising monthly boxplot graphs, Pearson’s linear correlation coefficient, and long-term mean and standard deviation line plots.
- –
- Calculating the root mean square error (RMSE) for the long-term line plots.
- Secondly, the identification and analysis of heatwave frequency were based on ERA5-Land daily data from 1 October 1980 to 30 September 2021. This was achieved by:
- –
- Employing the Heatwave Magnitude Index (HWMI) to establish temperature thresholds and identify heatwaves for the daily Tmin and Tmax data.
- –
- Using the Kernel Occurrence Rate Estimator (KORE) method to examine the frequencies of Tmin and Tmax heatwaves, along with confidence bands.
4. Results
4.1. Validation of ERA5-Land Temperature Data
4.2. Heatwave Magnitude Index (HWMI) Calculation
4.3. Analysis of Heatwave Frequency for Tmin and Tmax
5. Discussion
5.1. The Use of Reanalysis Data over Temperature Records
5.2. Comparing Heatwaves in Portugal and Other Parts of Europe
5.3. Frequency of Heatwave Days Versus Hot Days
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Robinson, P.J. On the definition of a heat wave. J. Appl. Meteorol. Climatol. 2001, 40, 762–775. [Google Scholar] [CrossRef]
- Perkins, S.; Alexander, L.; Nairn, J. Increasing frequency, intensity and duration of observed global heatwaves and warm spells. Geophys. Res. Lett. 2012, 39, L20714. [Google Scholar] [CrossRef]
- IPCC. Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate CHANGE, Sustainable Development, and Efforts to Eradicate Poverty; IPCC: Geneva, Switzerland, 2018. [Google Scholar]
- AA News. Extreme Heatwave in Portugal Caused 1063 Deaths; Anadolu Agency: Ankara, Türkiye, 2022. [Google Scholar]
- Wunderground. Heat Wave Smashes All-Time Heat Records in Portugal and Spain; Wunderground: Ann Arbor, MI, USA, 2018. [Google Scholar]
- Barriopedro, D.; Sousa, P.; Trigo, R.; García-Herrera, R.; Ramos, A. The exceptional Iberian heatwave of summer 2018. Bull. Am. Meteorol. Soc. 2020, 101, S29–S34. [Google Scholar] [CrossRef]
- Gouveia, C.M.; Liberato, M.L.; DaCamara, C.C.; Trigo, R.M. Assessing the impacts of extreme temperatures on population mortality in Lisbon during the heatwaves of 2004 and 2005. Environ. Sci. Pollut. Res. 2016, 23, 10159–10170. [Google Scholar]
- European Environment Agency. Europe’s Changing Climate Hazards—An Index-Based Interactive EEA Report; European Environment Agency: Copenhagen, Denmark, 2021.
- Ramos, A.M.; Russo, A.; DaCamara, C.C.; Nunes, S.; Sousa, P.; Soares, P.M.M.; Lima, M.M.; Hurduc, A.; Trigo, R.M. The compound event that triggered the destructive fires of October 2017 in Portugal. Iscience 2023, 26. [Google Scholar] [CrossRef] [PubMed]
- Barriopedro, D.; Fischer, E.M.; Luterbacher, J.; Trigo, R.M.; García-Herrera, R. The hot summer of 2003: A perspective from objective data. Clim. Chang. 2009, 102, 29–53. [Google Scholar]
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Hor’anyi, A.; Mu noz Sabater, J.; Dee, D. ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Hydrol. Earth Syst. Sci. 2020, 24, 6483–6505. [Google Scholar]
- Yilmaz, M. Accuracy assessment of temperature trends from ERA5 and ERA5-Land. Sci. Total Environ. 2023, 856, 159182. [Google Scholar] [CrossRef]
- Bissolli, P.; Stepanek, P.; Fink, A.H.; Brönnimann, S.; Dobrovolný, P.; Liniger, M.A.; Seneviratne, S.I. Heatwaves over Central Europe in ERA5 and their links to large-scale circulation patterns. Weather Clim. Dyn. 2021, 2, 377–394. [Google Scholar]
- Dom’ınguez-Navarro, J.A.; Garcia-Herrera, R.; Barriopedro, D.; Trigo, R.M. An objective method for identifying heatwaves and cold spells in the ERA5 reanalysis. Weather Clim. Extrem. 2020, 30, 100293. [Google Scholar] [CrossRef]
- Ceglar, A.; Dentener, F.; Kurnik, B.; Butler, T.M. Assessment of the impact of extreme temperature and precipitation events on crop yields in Europe. J. Clim. 2020, 33, 4293–4313. [Google Scholar]
- Cuculeanu, V.; Kurnik, B.; Bissolli, P.; Dobrovolný, P.; Dentener, F.; Butler, T.M. Heatwaves and human health in Europe: A review. Sci. Total Environ. 2021, 757, 143811. [Google Scholar]
- Cuculeanu, V.; Kurnik, B.; Bissolli, P.; Dobrovolný, P.; Dentener, F.; Butler, T.M. Assessing the impacts of climate change on energy demand in Europe. Energies 2020, 13, 1275. [Google Scholar]
- Pires, C.A.; de Lima, M.I.P.; Miranda, P.M.A.; Cordeiro, C.F. Extreme hot temperature analysis in mainland Portugal: A case study using ERA5 data. Atmosphere 2020, 11, 590. [Google Scholar] [CrossRef]
- Vieira, V.B.; Russo, A.; Trigo, R.M. A new climatology of heatwaves in Portugal based on ERA5 data. Int. J. Climatol. 2021, 41, 1753–1765. [Google Scholar] [CrossRef]
- Teixeira, R.F.; Alcoforado, M.J.; Amraoui, M. Spatiotemporal analysis of heatwaves and their impacts on energy consumption in Portugal. Energy Build. 2022, 251, 111190. [Google Scholar] [CrossRef]
- Barriopedro, D.; Fischer, E.M.; Luterbacher, J.; Trigo, R.M.; García-Herrera, R. The hot summer of 2010: Redrawing the temperature record map of Europe. Science 2011, 332, 220–224. [Google Scholar] [CrossRef] [PubMed]
- Sousa, P.M.; Trigo, R.M.; Barriopedro, D.; Ramos, A.M.; Santo, F.E.; Pinto, J.G. Heatwaves in Portugal: Drivers, historical evolution and future projections. Reg. Environ. Chang. 2021, 21, 10. [Google Scholar]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Gouveia, C.M.; Bastos, A.; Trigo, R.M. Drought impacts on vegetation in the pre- and post-fire events over Portugal. Nat. Hazards Earth Syst. Sci. 2012, 12, 3123–3137. [Google Scholar] [CrossRef]
- Muñoz Sabater, J.; Hersbach, H.; Bell, B.; Berrisford, P.; Horányi, A.; Renshaw, R.; Dee, D. The ERA5-Land validation system. Hydrol. Earth Syst. Sci. 2021, 25, 469–482. [Google Scholar]
- Stepanek, P.; Miksovsky, J.; Mueller-Westermeier, G.; Haimberger, L. The ERA5-Land dataset: Version 1. A dataset of harmonized surface reanalysis products for land climate applications. Earth Syst. Sci. Data 2021, 13, 4349–4395. [Google Scholar] [CrossRef]
- The World Bank. The World Bank—Population, Total—Portugal Portugal. 2022. Available online: https://data.worldbank.org/country/PT (accessed on 1 May 2023).
- IPMA. The Portuguese Institute for Sea and Atmosphere, I. P. (IPMA, IP). 2023. Available online: https://www.ipma.pt/en/index.html (accessed on 1 February 2023).
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 1–12. [Google Scholar] [CrossRef] [PubMed]
- EEA. The European Environment Agency: Present and Future Köppen-Geiger Climate Classification Maps at 1-km Resolution. 2021. Available online: https://www.eea.europa.eu/data-and-maps/data/external/koppen-geiger-climate-classification (accessed on 8 August 2023).
- Gouveia, C.M.; Russo, A.; Trigo, R.M.; DaCamara, C.C. The impacts of droughts in Portugal: A spatiotemporal perspective. Climate 2020, 8, 6. [Google Scholar] [CrossRef]
- Britannica. “Portugal”. Encyclopedia Britannica. 2023. Available online: https://www.britannica.com/place/Portugal (accessed on 28 April 2023).
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Muñoz-Sabater, J.; Dutra, E.; Agustí-Panareda, A.; Albergel, C.; Arduini, G.; Balsamo, G.; Boussetta, S.; Choulga, M.; Harrigan, S.; Hersbach, H. ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data 2021, 13, 4349–4383. [Google Scholar] [CrossRef]
- Russo, S.; Dosio, A.; Graversen, R.G.; Sillmann, J.; Carrao, H.; Dunbar, M.B.; Singleton, A.; Montagna, P.; Barbola, P.; Vogt, J.V. Magnitude of extreme heat waves in present climate and their projection in a warming world. J. Geophys. Res. Atmos. 2014, 119, 12–500. [Google Scholar] [CrossRef]
- Silva, A. Nonstationarity and Uncertainty of Extreme Hydrological Events. Ph.D. Dissertation, IST/UTL, Lisbon, Portugal, 2017. [Google Scholar]
- Silva, A.T.; Portela, M.; Naghettini, M. Nonstationarities in the occurrence rates of flood events in Portuguese watersheds. Hydrol. Earth Syst. Sci. 2012, 16, 241–254. [Google Scholar] [CrossRef]
- Espinosa, L.A.; Portela, M.M.; Rodrigues, R. Spatio-temporal variability of droughts over past 80 years in Madeira Island. J. Hydrol. Reg. Stud. 2019, 25, 100623. [Google Scholar] [CrossRef]
- Espinosa, L.A.; Portela, M.M.; Matos, J.P.; Gharbia, S. Climate Change Trends in a European Coastal Metropolitan Area: Rainfall, Temperature, and Extreme Events (1864–2021). Atmosphere 2022, 13, 1995. [Google Scholar] [CrossRef]
- Silverman, B.W. Monographs on statistics and applied probability. In Density Estimation for Statistics and Data Analysis; Chapman and Hall: London, UK, 1986; Volume 26. [Google Scholar]
- Mudelsee, M. The bootstrap in climate risk analysis. In Extremis; Springer: Berlin/Heidelberg, Germany, 2011; pp. 44–58. [Google Scholar]
- Sousa, P.M.; Barriopedro, D.; Ramos, A.M.; García-Herrera, R.; Espírito-Santo, F.; Trigo, R.M. Saharan air intrusions as a relevant mechanism for Iberian heatwaves: The record breaking events of August 2018 and June 2019. Weather Clim. Extrem. 2019, 26, 100224. [Google Scholar] [CrossRef]
- Adinolfi, M.; Raffa, M.; Reder, A.; Mercogliano, P. Investigation on potential and limitations of ERA5 Reanalysis downscaled on Italy by a convection-permitting model. Clim. Dyn. 2023, 1–24. [Google Scholar] [CrossRef]
- Johnson, R.; McGregor, G.; Pitman, A. Are anthropogenic heat emissions a significant influence on the spatial structure of heatwaves? Geophys. Res. Lett. 2017, 44, 12021–12029. [Google Scholar]
- Garcia, S.; Naranjo-Barrera, C.; Polo, J. Heatwaves in southern Europe: Synoptic patterns, climatology and trends in the second half of the 20th century. Int. J. Climatol. 2020, 40, 2136–2152. [Google Scholar]
- Chen, X.; Chen, D.; Xu, Y. Spatiotemporal patterns of heatwaves over China and their associations with large-scale atmospheric circulation and sea surface temperatures. Int. J. Climatol. 2021, 41, 3215–3229. [Google Scholar]
- Parente, J.; Pereira, M.G.; Amraoui, M.; Fischer, E.M. Heat waves in Portugal: Current regime, changes in future climate and impacts on extreme wildfires. Sci. Total Environ. 2018, 631–632, 534–549. [Google Scholar] [CrossRef] [PubMed]
- Horton, R.M.; Hall, J.; Hochrainer-Stigler, S.; Dadson, S. Changing risks of simultaneous global breadbasket failure. Nat. Clim. Chang. 2020, 10, 54–57. [Google Scholar]
- Sanderson, M.G.; Ford, G.P. Projections of severe heat waves in the United Kingdom. Clim. Res. 2016, 71, 63–73. [Google Scholar] [CrossRef]
- Fischer, E.M.; Knutti, R.; Schär, C. European heat waves in a changing climate. Clim. Chang. 2015, 132, 221–233. [Google Scholar]
- Schär, C.; Vidale, P.L.; Lüthi, D.; Frei, C.; Häberli, C.; Liniger, M.A.; Appenzeller, C. The role of increasing temperature variability in European summer heatwaves. Nature 2004, 427, 332–336. [Google Scholar] [CrossRef]
- Vincent, L.A.; Peterson, T.; Barros, V.; Marino, M.; Rusticucci, M.; Carrasco, G.; Ramirez, E.; Alves, L.; Ambrizzi, T.; Berlato, M.; et al. Observed trends in indices of daily temperature extremes in South America 1960–2000. J. Clim. 2005, 18, 5011–5023. [Google Scholar] [CrossRef]
- Data, C. Guidelines on Analysis of Extremes in a Changing Climate in Support of Informed Decisions for Adaptation; World Meteorological Organization: Geneva, Switzerland, 2009. [Google Scholar]
- Royé, D.; Ezpeleta, A.M. Analysis of tropical nights on the Atlantic coast of the Iberian peninsula. A proposed methodology. In Boletín de la Asociación de Geógrafos Españoles; Departamento de Geografía, Fundación DIALNET, Universidad de La Rioja (DIALNET Foundation from the University of La Rioja): Logroño, Spain, 2015; Volume 69, pp. 569–572. [Google Scholar]
- Marx, W.; Haunschild, R.; Bornmann, L. Heat waves: A hot topic in climate change research. Theor. Appl. Climatol. 2021, 146, 781–800. [Google Scholar] [CrossRef]
- Reda, K.W.; Liu, X.; Tang, Q.; Gebremicael, T.G. Evaluation of global gridded precipitation and temperature datasets against gauged observations over the Upper Tekeze River Basin, Ethiopia. J. Meteorol. Res. 2021, 35, 673–689. [Google Scholar] [CrossRef]
- Mahto, S.S.; Mishra, V. Does ERA-5 outperform other reanalysis products for hydrologic applications in India? J. Geophys. Res. Atmos. 2019, 124, 9423–9441. [Google Scholar] [CrossRef]
- Miloshevich, G.; Rouby-Poizat, P.; Ragone, F.; Bouchet, F. Robust intra-model teleconnection patterns for extreme heatwaves. arXiv 2023, arXiv:2306.11769. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Espinosa, L.A.; Portela, M.M.; Moreira Freitas, L.M.; Gharbia, S. Addressing the Spatiotemporal Patterns of Heatwaves in Portugal with a Validated ERA5-Land Dataset (1980–2021). Water 2023, 15, 3102. https://doi.org/10.3390/w15173102
Espinosa LA, Portela MM, Moreira Freitas LM, Gharbia S. Addressing the Spatiotemporal Patterns of Heatwaves in Portugal with a Validated ERA5-Land Dataset (1980–2021). Water. 2023; 15(17):3102. https://doi.org/10.3390/w15173102
Chicago/Turabian StyleEspinosa, Luis Angel, Maria Manuela Portela, Laryssa Mariana Moreira Freitas, and Salem Gharbia. 2023. "Addressing the Spatiotemporal Patterns of Heatwaves in Portugal with a Validated ERA5-Land Dataset (1980–2021)" Water 15, no. 17: 3102. https://doi.org/10.3390/w15173102