Comprehensive Evaluation and Distribution Prediction of River Water Quality in One Typical Resource-Depleted City, Central China
Abstract
:1. Introduction
2. Methods and Materials
2.1. Study Site
2.2. Sampling
2.3. Measurement of Physical and Chemical Parameters of Water Bodies and Sediment
2.4. Evaluation Method of River Water Quality
2.4.1. Evaluation Standard for River Water Quality
2.4.2. Evaluation Method of River Water Quality
2.5. Distribution Prediction of Main Water Quality Indexes
2.6. Data Analysis
3. Result
3.1. Monitoring Results of Physical and Chemical Indexes of River Water
3.2. The Physical and Chemical Indexes of Water Quality in Different Watersheds in Different Seasons
3.3. The Changes in Indicators When Rivers Flow through Urban Centers or Human Settlements
3.4. Detection Results of C, N, and P Content in Sediment
3.5. Water Quality Assessment Results
3.6. Correlation Analysis of Physical and Chemical Indexes of Water in Different Seasons
3.7. Principal Component Analysis
3.8. Distribution Prediction of Main River Water Quality Indexes in Jiaozuo City
4. Discussion
4.1. Evaluation and Analysis of Whole-Area Water Quality in Jiaozuo City
4.2. Analysis of Key Factors Affecting Water Quality
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, H.Q.; Cai, X.Y.; Zhang, C.J. An empirical study on the impact of urbanization process on water resources utilization efficiency. Manag. Mod. 2020, 40, 55–58. [Google Scholar]
- Wang, J.H.; Huang, H.M.; Jia, H.L.; Zheng, S.X.; Zhao, M.L.; Chen, M.R.; Zhang, X.H.; Zhuang, D. Discussion on the strategies of coastal ecosystem protection and restoration in the Guangdong-Hong Kong-Macao Greater Bay Area. Acta Ecol. Sin. 2020, 40, 8430–8439. (In Chinese) [Google Scholar]
- Ghosh, S.; Mujumdar, P.P. Risk minimization in water quality control problems of a river system. Adv. Water Resour. 2006, 29, 458–470. [Google Scholar] [CrossRef]
- Ercin, A.E.; Hoekstra, A.Y. Water footprint scenarios for 2050: A global analysis. Environ. Int. 2014, 64, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Mueller, N.D.; Siebert, S.; Jackson, R.B.; AghaKouchak, A.; Zimmerman, J.B.; Tong, D.; Hong, C.P.; Davis, S.J. Flexibility and intensity of global water use. Nat. Sustain. 2019, 2, 515–523. [Google Scholar] [CrossRef]
- Richter, B.D.; Bartak, D.; Caldwell, P.; Davis, K.F.; Debaere, P.; Hoekstra, A.Y.; Li, T.S.; Marston, L.; McManamay, R.; Mekonnen, M.M.; et al. Water scarcity and fish imperilment driven by beef production. Nat. Sustain. 2020, 3, 319–328. [Google Scholar] [CrossRef]
- Sotivoldievna, M.G.; Nabijonovich, A.N.; Solievna, A.G. Impact of waste water on the environment. Acad. Int. Multidiscip. Res. J. 2021, 11, 1033–1037. [Google Scholar] [CrossRef]
- Islam, N.; Irshad, K. Artificial ecosystem optimization with deep learning enabled water quality prediction and classification model. Chemosphere 2022, 309, 136615. [Google Scholar] [CrossRef]
- Chen, S.S.; Kimirei, I.A.; Yu, C.; Shen, Q.S.; Gao, Q. Assessment of urban river water pollution with urbanization in East Africa. Environ. Sci. Pollut. Res. 2022, 29, 40812–40825. [Google Scholar] [CrossRef]
- Mesfin, M.M.; Arjen, Y.H. Four billion people facing severe water scarcity. Sci. Adv. 2016, 2, e1500323. [Google Scholar]
- Zhang, X.H.; Lin, Z.K. Evaluation of water resource utilization efficiency in provincial areas of China based on the unexpected output SBM model. J. Environ. Public Health 2022, 2022, 9554730. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.B.; Wang, Z.L. Research on the impact of environmental regulation on water resources utilization efficiency in China based on the SYS-GMM model. Water Supply 2021, 21, 3643–3656. [Google Scholar] [CrossRef]
- Pan, Z.W.; Li, Z.X.; Xu, C.H. Environmental regulation and improvement of regional green water resources efficiency—An empirical analysis based on the Yangtze River economic belt. Surv. World 2020, 11, 2–19. [Google Scholar]
- Yang, Y.; Ok, Y.S.; Kim, K.H.; Kwon, E.E.; Tsang, Y.F. Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: A review. Sci. Total Environ. 2017, 596, 303–320. [Google Scholar] [CrossRef] [PubMed]
- Rao, S.M.; Mogili, N.V. New classification method to evaluate pollution levels of sewage contaminated lakes. Sustainability 2021, 13, 3677. [Google Scholar] [CrossRef]
- Hader, D.P.; Banaszak, A.T.; Villafane, V.E.; Narvarte, M.A.; Gonzalez, R.A.; Helbling, E.W. Anthropogenic pollution of aquatic ecosystems: Emerging problems with global implications. Sci. Total Environ. 2020, 713, 136586. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.F.; Song, Y.H.; Yuan, P.; Cui, X.Y.; Qiu, G.L. The remediation of heavy metals contaminated sediment. J. Hazard. Mater. 2009, 161, 633–640. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.Q.; Huang, X.; Chen, H.; Godfray, H.C.J.; Wright, J.S.; Hall, J.W.; Gong, P.; Ni, S.Q.; Qiao, S.C.; Huang, G.R.; et al. Managing nitrogen to restore water quality in China. Nature 2019, 567, 516–520. [Google Scholar] [CrossRef]
- Samuela, F.; Christina, W.T. Assessment of uncertainty sources in water quality modeling in the Niagara River. Adv. Water Resour. 2010, 33, 493–503. [Google Scholar]
- Ismail, N.S.; Dodd, H.; Sassoubre, L.M.; Horne, A.J.; Boehm, A.B.; Luthy, R.G. Improvement of urban lake water quality by removal of Escherichia coli through the action of the bivalve Anodonta californiensis. Environ. Sci. Technol. 2015, 49, 1664–1672. [Google Scholar] [CrossRef]
- Shang, H.L.; Xu, R.F.; Xiao, Y.X. Water quality evaluation of Duyun-Kaili section in the upper reaches of the Qingshui river basin. J. Landsc. Res. 2018, 10, 86–89. [Google Scholar]
- Pan, W.Y.; Wang, F.; Jiao, Z. Temporal variation and water quality assessment of Xiaoqing River catchment. IOP Conf. Ser. Earth Environ. Sci. 2021, 791, 012172. [Google Scholar] [CrossRef]
- Xu, S.G.; Cui, Y.X.; Yang, C.X.; Wei, S.J.; Dong, W.P.; Huang, L.H.; Liu, C.Q.; Ren, Z.M.; Wang, W.L. The fuzzy comprehensive evaluation (FCE) and the principal component analysis (PCA) model simulation and its applications in water quality assessment of Nansi Lake Basin, China. Environ. Eng. Res. 2021, 26, 222–232. [Google Scholar] [CrossRef]
- Bi, Y.L.; Wang, H.C.; Xi, A.B.; Jiang, S.S.; Wu, W.Y.; Li, Z.L.; Li, S.M.; Su, H.; Bai, Z.H.; Xu, S.J.; et al. Pollution characterization and comprehensive water quality assessment of rain-source river: A case study of the Longgang river in Shenzhen. Search Life Sci. Lit. 2022, 43, 782–794. [Google Scholar]
- Ouyang, L.L.; Shi, Y.R.; Yang, J.Q.; Mao, S.J.; Yuan, Q.; Wang, Y.L. Water quality assessment and pollution source analysis of Yaojiang River Basin: A case study of inland rivers in Yuyao City, China. Water Supply 2022, 22, 674–685. [Google Scholar] [CrossRef]
- GB 3838-2002; State Environmental Protection Administration. Surface Water Environmental Quality Standards. China Environmental Science Press: Beijing, China, 2002.
- Wang, T.F.; Zhang, W.J.; Liao, G.Y.; Zhang, M.Y.; Li, Q.L.; Wang, D.S. Occurrence and influencing factors of antibiotics and antibiotic resistance genes in sediments of the largest multi-habitat lakes in Northern China. Environ. Geochem. Health 2022, 45, 2567–2578. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.Q. Application of Improved Nemerow index method for evaluation of environmental quality of waterhead area of public drinking water supply. Sichuan Environ. 2010, 29, 47–51. [Google Scholar]
- McAvoy, D.C.; Masscheleyn, P.; Peng, C.; Morrall, S.W.; Casilla, A.B.; Lim, J.M.U.; Gregorio, E.G. Risk assessment approach for untreated wastewater using the QUAL2E water quality model. Chemosphere 2003, 52, 55–66. [Google Scholar] [CrossRef]
- Ghermandi, A.; van den Bergh, J.C.J.M.; Brander, L.M.; de Groot, H.L.F.; Nunes, P.A.L.D. Values of natural and human-made wetlands: A meta-analysis. Water Resour. Res. 2010, 46, W12516. [Google Scholar] [CrossRef]
- Han, F.; Zheng, Y. Multiple-response Bayesian calibration of watershed water quality models with significant input and model structure errors. Adv. Water Resour. 2016, 88, 109–123. [Google Scholar] [CrossRef]
- Song, S.Q. Water quality model structure identification using dynamic linear modeling: River cam case study revisited. Water Sci. Technol. 1997, 36, 27–34. [Google Scholar]
- Petty, J.D.; Jones, S.B.; Huckins, J.N.; Cranor, W.L.; Parris, J.T.; McTague, T.B.; Boyle, T.P. An approach for assessment of water quality using semipermeable membrane devices (SPMDs) and bioindicator tests. Chemosphere 2000, 41, 311–321. [Google Scholar] [CrossRef] [PubMed]
- Aaguilera, P.; Garridofrenich, A.; Torres, J.A. Application of the kohonen neural network in coastal water management: Methodological development for the assessment and prediction of water quality. Water Res. 2001, 35, 4053–4062. [Google Scholar] [CrossRef] [PubMed]
- Karandish, F.; Hoekstra, A.Y.; Hogeboom, R.J. Groundwater saving and quality improvement by reducing water footprints of crops to benchmarks levels. Adv. Water Resour. 2018, 121, 480–491. [Google Scholar] [CrossRef]
- Wang, Y.; Lu, S.G.; Liu, J.J.; Shi, W.Q.; Guo, Y.M. Spatial distribution characteristics of the physical and chemical properties of water in the Heihe river during low water periods in spring. J. Ecol. Rural. Environ. 2019, 35, 433–441. [Google Scholar]
- Zhao, X.; Xue, X.S.; Xu, S.; Xu, S.L.; Xu, Y.J. Scenario simulation of water environment improvement for plain river network of Changzhou. Chin. J. Environ. Eng. 2015, 9, 4637–4642. [Google Scholar]
- Wen, M.L.; Yang, L.; Fang, G.X.; Zhou, X.; Zhang, H.O. Spatio-temporal variation of nitrogen and phosphorus pollution in upriver water course of the Xinfengjiang reservoir in Guangdong province. Trop. Geogr. 2015, 35, 103–110. [Google Scholar]
- Guo, T.; Huang, X.S. Governance and improvement of drinking water source protection zones from the perspective of inclusive development. China Popul. Resour. Environ. 2020, 30, 167–176. [Google Scholar]
- Sun, Y.H. Research on the spatial and temporal pattern evolution and driving factors of gray water footprint in Yangtze River economic belt. J. Lanzhou Univ. Financ. Econ. 2020, 38, 1–15. [Google Scholar]
- Yang, T.T.; Yang, Z.J.; Liu, D.F. Seasonal distribution of Chlorophyll-a in Xiangxi Bay of three gorges reservoirand relationship to environment factors. J. Hydroecol. 2018, 38, 14–21. [Google Scholar]
- Patthamawan, K.; Keisuke, T.; Wu, X.Z. Real-time monitoring of dissolved oxygen at a vicinity of an aquatic plant. IOP Conf. Ser. Mater. Sci. Eng. 2019, 639, 012045. [Google Scholar] [CrossRef]
- Han, Z.C.; Li, H.P. Nitrogen budget balance characteristics of main landuse types in Qiandao lake Basin. Environ. Pollut. Control 2022, 44, 682–686. [Google Scholar]
- Dai, M.H.; Guo, X.H.; Zhai, W.D.; Yuan, L.Y.; Wang, B.W.; Wang, L.F.; Cai, P.H.; Tang, T.T.; Cai, W.J. Oxygen depletion in the upper reach of the Pearl River estuary during a winter drought. Mar. Chem. 2006, 102, 159–169. [Google Scholar] [CrossRef]
- Wang, Z.H. Determine COD by Spectrophotometry. Environ. Prot. Sci. 2003, 2, 43–44. [Google Scholar]
- Yu, Y.; Wang, X.H.; Wen, Y.; Zhao, Y.H. Study on the toxicity of organic pollutants to seven aquatic organisms based on Abraham model. Environ. Chem. 2015, 34, 23–36. [Google Scholar]
- Degetto, S.; Cantaluppi, C.; Schintu, M. Critical analysis of radiochemical methodologies for the assessment of sediment pollution and dynamics in the lagoon of Venice (Italy). Environ. Int. 2005, 31, 1023–1030. [Google Scholar] [CrossRef] [PubMed]
- Qin, B.Q.; Song, Y.Z.; Gao, G. The role of periphytes in the shift between macrophyte and phytoplankton dominated systems in a shallow, eutrophic lake (Lake Taihu, China). Sci. China Ser. C Life Sci. 2006, 49, 597–602. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.X.; Wang, J.F.; Jiang, S.H.; Yang, J.J.; Qiu, S.R.; Chen, J.A. Fuel from within: Can suspended phosphorus maintain algal blooms in Lake Dianchi. Environ. Pollut. 2022, 311, 119964. [Google Scholar] [CrossRef]
- Doug, W.; Darius, M. Innovative hypoxia measurement. Sea Technol. 2021, 62, 8–13. [Google Scholar]
- He, J.; Zhang, Y.; Wu, X.; Yang, Y.; Xu, X.M.; Zheng, B.H.; Deng, W.M.; Shao, Z.; Lu, L.; Wang, L.; et al. A study on the relationship between metabolism of Cyanobacteria and chemical oxygen demand in Dianchi Lake, China. Water Environ. Res. 2019, 91, 1650–1660. [Google Scholar] [CrossRef]
- Zhu, J.; Li, H.D.; Wang, P. The impact of environmental factors on COD, TN, TP release from sediment. Technol. Water Treat. 2009, 35, 44–49. [Google Scholar]
- Wang, S.T.; Hu, X.G.; Yu, F.B.; Qin, S.Y. Microbe regulates the mineral photochemical activity and organic matter compositions in water. Water Res. 2022, 225, 119164. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.G.; Zhang, Y.X.; Li, Z.Y.; Li, W.Y. Pilot-scale research on treatment of micro-polluted river water by Aquamats-oxidation pond. Chin. J. Environ. Eng. 2004, 8, 2833–2836. [Google Scholar]
- Zhong, Y.M. Study on correlation of total phosphorus, ammonia nitrogen and chemical oxygen demand in surface water. J. Green Sci. Technol. 2020, 63–66. (In Chinese) [Google Scholar] [CrossRef]
- Huang, Y.W.; Du, Y. Source and enrichment of ammonium in shallow confined aquifer in the west of Dongting Plain. Bull. Geol. Sci. Technol. 2020, 39, 165–174. [Google Scholar]
- Du, Y.; Ma, T.; Deng, Y.M.; Shen, S.; Lu, Z.J. Sources and fate of high levels of ammonium in surface water and shallow groundwater of the Jianghan Plain, Central China. Environ. Sci. Process. Impacts 2017, 19, 161–172. [Google Scholar] [CrossRef] [PubMed]
- Du, H.T.; Xu, R.; Xu, H.; Shi, W.Q.; Deng, H.Y.; He, J.L.; Zhu, L. Ammonia nitrogen removal by nitrifying bacteria from different habitats. J. Environ. Eng. Technol. 2022, 12, 81–91. [Google Scholar] [CrossRef]
- Ni, S.Q.; Ni, J.Y.; Hu, D.L.; Sung, S.W. Effect of organic matter on the performance of granular anammox process. Bioresour. Technol. 2012, 110, 701–705. [Google Scholar] [CrossRef]
- Xu, H.; Liu, Z.P.; Jiao, J.G.; Yang, L.Z. Nitrogen pollution status of various types of passing by water bodies in upper reaches of Taihu Lake. Chin. J. Ecol. 2008, 27, 43–49. [Google Scholar]
Monitoring Index | Unit | Analytical Method | Limit of Detection (mg/L) | Method Source |
---|---|---|---|---|
Chl-a | mg/L | Ethanol extraction spectrophotometry | - | - |
TOC | mg/L | Combustion oxidation non-dispersive infrared absorption method | 0.5 | GB 13193-91 |
COD | mg/L | Dichromate titration | 10 | GB 11914-89 |
TN | mg/L | Ultraviolet spectrophotometry for potassium persulfate digestion | 0.05 | GB 11894-89 |
NH4+-N | mg/L | Nasi reagent colorimetry | 0.05 | GB 7479-87 |
NO3−-N | mg/L | Phenol disulfonic acid photometry | 0.02 | GB 7480-87 |
TP | mg/L | Ammonium molybdate spectrophotometry | 0.01 | GB 11893-89 |
Classification of Standard Value | Ⅰ | Ⅱ | Ⅲ | Ⅳ | Ⅴ | |
---|---|---|---|---|---|---|
Items | ||||||
WT (℃) | The change in WT that is made by human should be limited in; Maximum temperature rise in one week ≤ 1; Maximum temperature decline in one week ≤ 2 | |||||
pH | 6–9 | |||||
DO | ≥ | 7.5 | 6 | 5 | 3 | 2 |
COD | ≤ | 15 | 15 | 20 | 30 | 40 |
NH4+-N | ≤ | 0.15 | 0.5 | 1.0 | 1.5 | 2.0 |
TP | ≤ | 0.02 | 0.1 | 0.2 | 0.3 | 0.4 |
TN | ≤ | 0.2 | 0.5 | 1.0 | 1.5 | 2.0 |
Basin | P’ | Improved Nemero Pollution Index Evaluation | Single-Factor Evaluation | Sections of River System | P’ | Improved Nemero Pollution Index Evaluation | River System | P’ | Improved Nemero Pollution Index Evaluation | Worst Index | Single-Factor Evaluation |
---|---|---|---|---|---|---|---|---|---|---|---|
H | 1.471 | Ⅳ | Ⅴ | DS-U | 4.500 | Ⅴ | D | 2.011 | Ⅴ | TN, COD | Ⅴ |
DS-M | 1.144 | Ⅳ | |||||||||
DS-DN | 1.027 | Ⅳ | |||||||||
DSL-U | 0.722 | Ⅲ | DSL | 0.775 | Ⅲ | TN | Ⅴ | ||||
DSL-M | 0.735 | Ⅲ | |||||||||
DSL-DN | 0.920 | Ⅲ | |||||||||
JG-U | - | JG | 1.212 | Ⅳ | TN, COD | Ⅴ | |||||
JG-M | 1.259 | Ⅳ | |||||||||
JG-DN | 1.188 | Ⅳ | |||||||||
W-U | 0.752 | Ⅲ | W | 1.021 | Ⅳ | TN | Ⅴ | ||||
W-M | 1.206 | Ⅳ | |||||||||
W-DN | 1.085 | Ⅳ | |||||||||
X-U | 7.703 | Ⅴ | X | 2.337 | Ⅴ | TN | Ⅴ | ||||
X-M | 0.806 | Ⅲ | |||||||||
X-DN | 0.850 | Ⅲ | |||||||||
Y | 1.370 | Ⅳ | Ⅴ | Y-U | - | Y | 1.239 | Ⅳ | TN, COD | Ⅴ | |
Y-M | - | ||||||||||
Y-DN | 1.239 | Ⅳ | |||||||||
XM-U | 1.569 | Ⅴ | XM | 1.384 | Ⅳ | TN | Ⅴ | ||||
XM-M | 1.434 | Ⅳ | |||||||||
XM-DN | 1.097 | Ⅳ | |||||||||
M-U | 0.706 | Ⅲ | M | 2.246 | Ⅴ | TN | Ⅴ | ||||
M-M | 1.822 | Ⅴ | |||||||||
M-DN | 4.895 | Ⅴ | |||||||||
Q-U | 2.063 | Ⅴ | Q | 1.510 | Ⅳ | TN | Ⅴ | ||||
Q-M | 1.307 | Ⅳ | |||||||||
Q-DN | 1.176 | Ⅳ | |||||||||
AQ-U | 1.289 | Ⅳ | AQ | 1.289 | Ⅳ | TN | Ⅴ | ||||
AQ-M | - | ||||||||||
AQ-DN | - | ||||||||||
RY-U | - | RY | 0.852 | Ⅲ | TN | Ⅴ | |||||
RY-M | 0.884 | Ⅲ | |||||||||
RY-DN | 0.789 | Ⅲ | |||||||||
D-U | 1.067 | Ⅳ | D | 1.067 | Ⅳ | TN | V | ||||
D-M | - | ||||||||||
D-DN | - |
River System | Season | |||||||
---|---|---|---|---|---|---|---|---|
Spring | Sumer | Autumn | Winter | |||||
P’ | Improved Nemero Pollution Index Evaluation | P’ | Improved Nemero Pollution Index Evaluation | P’ | Improved Nemero Pollution Index Evaluation | P’ | Improved Nemero Pollution Index Evaluation | |
DS | 2.07 | Ⅴ | 1.93 | Ⅴ | 2.13 | Ⅴ | 2.21 | Ⅴ |
DSL | 2.00 | Ⅴ | 1.78 | Ⅴ | 2.32 | Ⅴ | 2.44 | Ⅴ |
JG | 2.27 | Ⅴ | 1.74 | Ⅴ | 1.69 | Ⅴ | 2.14 | Ⅴ |
W | 1.97 | Ⅴ | 2.19 | Ⅴ | 2.10 | Ⅴ | 2.36 | Ⅴ |
X | 0.44 | Ⅱ | - | - | - | - | - | - |
Y | 2.59 | Ⅴ | 1.63 | Ⅴ | 1.71 | Ⅴ | 1.82 | Ⅴ |
XM | 3.35 | Ⅴ | 2.36 | Ⅴ | 2.59 | Ⅴ | 2.39 | Ⅴ |
M | 2.37 | Ⅴ | 2.18 | Ⅴ | 2.31 | Ⅴ | 2.62 | Ⅴ |
Q | 2.10 | Ⅴ | 1.83 | Ⅴ | 2.01 | Ⅴ | 2.02 | Ⅴ |
AQ | 2.15 | Ⅴ | 2.12 | Ⅴ | 2.17 | Ⅴ | - | - |
RY | 2.41 | Ⅴ | 1.75 | Ⅴ | 3.24 | Ⅴ | 2.48 | Ⅴ |
D | - | - | 1.64 | Ⅴ | 1.28 | Ⅳ | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huai, Z.; Ma, J.; Wang, S.; Qi, S.; Xu, T.; Riaz, L.; Huang, Y.; Bai, X.; Wang, J.; Lin, Q. Comprehensive Evaluation and Distribution Prediction of River Water Quality in One Typical Resource-Depleted City, Central China. Water 2023, 15, 3035. https://doi.org/10.3390/w15173035
Huai Z, Ma J, Wang S, Qi S, Xu T, Riaz L, Huang Y, Bai X, Wang J, Lin Q. Comprehensive Evaluation and Distribution Prediction of River Water Quality in One Typical Resource-Depleted City, Central China. Water. 2023; 15(17):3035. https://doi.org/10.3390/w15173035
Chicago/Turabian StyleHuai, Zhiwen, Jianmin Ma, Shishi Wang, Shang Qi, Tao Xu, Luqman Riaz, Yongwen Huang, Xiongxiong Bai, Jihua Wang, and Qingwei Lin. 2023. "Comprehensive Evaluation and Distribution Prediction of River Water Quality in One Typical Resource-Depleted City, Central China" Water 15, no. 17: 3035. https://doi.org/10.3390/w15173035