Hydrogeophysical Investigation in Parts of the Eastern Dahomey Basin, Southwestern Nigeria: Implications for Sustainable Groundwater Resources Development and Management
Abstract
:1. Introduction
2. Geological Setting and Site Description
3. Materials and Methods
3.1. Data Acquisition Procedure
3.2. Data Processing and Inversion
3.3. Hydraulic Parameter Estimation
4. Results
4.1. Vertical Electrical Sounding
4.2. 2D Electrical Resistivity Imaging
4.3. Aquifers Hydraulic Parameters
5. Discussion
5.1. Subsurface Characterisation and Aquifer Delineation
5.2. Implications for Groundwater Resource Development and Management
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barlow, J.R.B.; Clark, B.R. Simulation of Water-Use Conservation Scenarios for the Mississippi Delta Using an Existing Regional Groundwater Flow Model: U.S. Geological Survey Scientific Investigations Report 2011–2019; U.S. Geological Survey: Reston, VA, USA, 2011; 14p. [Google Scholar]
- UNESCO. Water a Shared Responsibility. The United Nations World Water Development Report 2; UNESCO: New York, NY, USA, 2006; p. 601. [Google Scholar]
- WHO/UNICEF. Water for Life. Making it Happen. A Decade for Action 2005–2015; WHO: Geneva, Switzerland, 2005; p. 44. [Google Scholar]
- Rubin, Y.; Hubbard, S.S. Hydrogeophysics, Water Science and Technology Library; Springer: New York, NY, USA, 2005. [Google Scholar]
- Nwankwoala, H.O.; Udom, G.J. Influence of land reclamation on the status of groundwater in Borokiri area of Port Harcourt, Niger Delta, Nigeria. Int. J. Nat. Appl. Sci. 2008, 4, 431–434. [Google Scholar] [CrossRef]
- Kaya, M.A.; Ozürlan, G.S.; Engül, E. Delineation of soil and groundwater contamination using geophysical methods at a waste disposal site in çanakkale, Turkey. Environ. Monit. Assess. 2007, 135, 441–446. [Google Scholar] [CrossRef] [PubMed]
- Balkaya, Ç.; Kaya, M.A.; Goktürkler, G. Delineation of shallow resistivity structure in the city of Burdur, SW Turkey by vertical electrical sounding measurements. Environ. Geol. 2009, 57, 571–581. [Google Scholar] [CrossRef]
- Olaojo, A.A.; Oladunjoye, M.A.; Sanuade, O.A. Geoelectrical assessment of polluted zone by sewage efflent in University of Ibadan campus southwestern Nigeria. Environ. Monit. Assess. 2018, 190, 24. [Google Scholar] [CrossRef] [PubMed]
- Oyeyemi, K.D.; Aizebeokhai, A.P.; Ndambuki, J.M.; Sanuade, O.A.; Olofinade, O.M.; Adagunodo, T.A.; Olaojo, A.A.; Adeyemi, G.A. Estimation of aquifer parameters from surficial geophysical methods: A case study of Ota, Southwestern Nigeria. IOP Conf. Ser. Earth Environ. Sci. 2018, 173, 012028. [Google Scholar] [CrossRef]
- Oyeyemi, K.D.; Abuka-Joshua, J.; Rotimi, O.J.; Dieppos, B.; Gomo, M.; Olaojo, A.A.; Falae, P.O.; Metwaly, M. Geoelectrical Characterization of Coastal Aquifers in Agbado Ijaye, Lagos, Southwestern Nigeria; Implications for groundwater resources. Sustainability 2023, 15, 3538. [Google Scholar] [CrossRef]
- Sendrós, A.; Himi, M.; Lovera, R.; Rivero, L.; Garcia-Artigas, R.; Urruela, A.; Casas, A. Geophysical Characterization of Hydraulic Properties around a Managed Aquifer Recharge System over the Llobregat River Alluvial Aquifer (Barcelona Metropolitan Area). Water 2020, 12, 3455. [Google Scholar] [CrossRef]
- Mohammed, M.A.A.; Abdelrahman, M.M.G.; Szabó, N.P.; Szűcs, P. 2023. Innovative hydrogeophysical approach for detecting the spatial distribution of hydraulic conductivity in Bahri city, Sudan: A comparative study of Csókás and Heigold methods. Sustain. Water Resour. Manag. 2023, 9, 107. [Google Scholar] [CrossRef]
- Mohammed, M.A.A.; Szabó, N.P.; Szűcs, P. Characterization of groundwater aquifers using hydrogeophysical and hydrogeochemical methods in the eastern Nile River area, Khartoum State, Sudan. Environ. Earth Sci. 2023, 82, 219. [Google Scholar] [CrossRef]
- Szabó, N.P.; Kormos, K.; Dobróka, M. Evaluation of hydraulic conductivity in shallow groundwater formations: A comparative study of the Csókás’ and Kozeny–Carman model. Acta Geod. Geophys. 2015, 50, 461–477. [Google Scholar] [CrossRef] [Green Version]
- Hasan, M.; Shang, Y.; Jin, W.; Akhter, G. Estimation of hydraulic parameters in a hard rock aquifer using integrated surface geoelectrical method and pumping test data in southeast Guangdong, China. Geosci. J. 2021, 25, 223–242. [Google Scholar] [CrossRef]
- El Osta, M.; Masoud, M.; Badran, O. Aquifer hydraulic parameters estimation based on hydrogeophysical methods in West Nile Delta, Egypt. Environ. Earth Sci. 2021, 80. [Google Scholar] [CrossRef]
- Benabdelouahab, S.; Salhi, A.; Himi, M.; Stitou El Messari, J.E.; Ponsati, A.C. Geoelectrical investigations for aquifer characterization and geoenvironmental assessment in northern Morocco. Environ. Earth Sci. 2019, 78, 209. [Google Scholar] [CrossRef]
- Nemer, Z.; Khaldaoui, F.; Benaissa, Z.; Belaroui, A.; Tebbouche, M.Y.; Ydri, A. Hydrogeophysical investigation of aquifer parameters and seawater intrusion: A case study from Eastern Mitidja plain, Algeria. Geomech. Geophys. Geo-Energy Geo-Resour. 2023, 9, 60. [Google Scholar] [CrossRef]
- Singh, S.; Tripura, J. Combined ERT survey and pumping test for correlation analysis of geoelectrical and aquifer parameters in hilly terrain. J. Earth Syst. Sci. 2023, 132, 43. [Google Scholar] [CrossRef]
- Ha, D.; Zheng, G.; Zhou, H.; Zeng, C.; Zhang, H. Estimation of hydraulic parameters from pumping tests in a multiaquifer system. Undergr. Space 2020, 5, 210–222. [Google Scholar] [CrossRef]
- Fleming, S.W.; Vesselinov, V.V.; Goodboy, A.G. Augmenting geophysical interpretation of data-driven operational water supply forecast modelling for a western US river using a hybrid machine learning approach. J. Hydrol. 2021, 597, 126327. [Google Scholar] [CrossRef]
- Aizebeokhai, A.P.; Oyebanjo, O.A. Applications of vertical electrical soundings to characterize aquifer potential in Ota, Southwestern Nigeria. Int. J. Phys. Sci. 2013, 8, 2077–2085. [Google Scholar]
- Aizebeokhai, A.P.; Oyeyemi, K.D.; Joel, E.S. Groundwater potential assessment in a sedimentary terrain, southwestern Nigeria. Arab. J. Geosci. 2016, 9, 496. [Google Scholar] [CrossRef]
- Adewumi, I.K.; Ogbiye, A.S.; Longe, E.O.; Omole, D.O. Effects of industrial effluents on water quality of River Atuwara in Ota, Nigeria. In Urban Agriculture, Cities, and Climate Change; Adeyemi, R., Ed.; Cuvallier: Gottinger, Germany, 2011; ISBN 978-3-86955-813-4. [Google Scholar]
- Omole, D.O. Reaeration Coefficient modelling: Case study of River Atuwara, Ota, Nigeria. Res. J. Appl. Sci. Eng. Technol. 2012, 4, 1237–1243. [Google Scholar]
- Adewuyi, G.B.; Badejo, O.T.; Idowu, F.F.; Ogunjobi, G.A.; Gbopa, A.O. Analysis of Physico-chemical parameters: An emperical study of Yewa River, Ogun state and part of Badagry creek, Lagos, Southwestern Nigeria. Int. J. Hydrol. 2017, 2, 36–46. [Google Scholar]
- Omatsola, M.E.; Adegoke, S.O. Tectonic Evaluation and Cretaceous Stratigraphy of the Dahomey Basin. Niger. J. Min. Geol. 1981, 18, 130–137. [Google Scholar]
- Jones, H.A.; Hockey, R.D. The geology of part of south western Nigeria. Geol. Surv. Niger. Bull. 1964, 31, 1–101. [Google Scholar]
- Ako, B.D.; Adegoke, O.S.; Petters, S.W. Stratigraphy of Oshoshun Formation in southwestern Nigeria. Nig. J. Min. Geol. 1980, 17, 99–106. [Google Scholar]
- Okosun, E.A. A review of the cretaceous stratigraphy of the Dahomey embayment, west Africa. Cretac. Res. 1990, 11, 17–27. [Google Scholar] [CrossRef]
- Elueze, A.A.; Nton, M.E. Organic geochemical appraisal of limestones and shales in part of eastern Dahomey basin, southwestern Nigeria. J. Min. Geol. 2004, 40, 29–40. [Google Scholar] [CrossRef]
- Adegoke, S.O.; Dessauvagie, T.F.J.; Whitman, A.J. Macrofauna of Ewekoro Formation (Paleocene) of Southwest Nigeria; African Geology; University of Ibadan: Ibadan, Nigeria, 1970; pp. 269–276. [Google Scholar]
- Gebhardt, H.; Adekeye, O.A.; Akande, S.O. Late Paleocene to initial Eocene thermal maximum foraminifera biostratigraphy and paleoecology of the Dahomey basin, southwestern Nigeria. Gjahrbuch Der Geologischem. Bundesantalt 2010, 150, 407–419. [Google Scholar]
- Griffiths, D.H.; Barker, R.D. Two-dimensional resistivity imaging and modelling in area of complex geology. J. Appl. Geophys. 1993, 29, 211–226. [Google Scholar] [CrossRef]
- Smith, D.L.; Ritter, D.F. Groundwater Geophysics: A tool for hydrogeology. Geophys. Explor. Eng. Environ. Investig. 2003, 18, 15–42. [Google Scholar]
- Dabas, M.; Taritis, P.; Hallouin, T. Interpretation of Geophysical Data. In Treatise of Geophysics, 2nd ed.; Archie, G.E., Logan, J.D., Richardson, M.H., Eds.; Elsevier: Amsterdam, The Netherlands, 2011; Volume 2, pp. 523–553. [Google Scholar]
- Minsley, B.J.; Sweeney, R.E.; Slater, L.D. Estimating Hydraulic conductivity with geophysicsical data: What’s Feasibl? Vadose Zone J. 2007, 6, 167–179. [Google Scholar]
- Auken, E.; Christiansen, A.V. Layered and Laterally constrained 2D inversion of resistivity data. Geophysics 2005, 70, G49–G59. [Google Scholar] [CrossRef]
- Archie, G. The electrical resistivity log as an aid in determining some reservoir characteristics. Pet. Trans. Am. Inst. Mineral. Metall. Eng. 1942, 146, 54–62. [Google Scholar] [CrossRef]
- Archie, G. Introduction to petrophysics of reservoir rocks. AAPG Bull. 1950, 34, 943–961. [Google Scholar]
- Lynch, E.J. Formation Evaluation; Harper and Row Publishers Inc.: New York, NY, USA, 1964. [Google Scholar]
- Kozeny, J. Hydraulics; Springer: Vienna, Austria, 1953. [Google Scholar]
- Carman, P.C. Fluid Flow through granular beds. Trans. Inst. Chem. Eng. 1937, 15, 150–166. [Google Scholar] [CrossRef]
- Fogg, G.E.; Noyes, C.D.; Carle, S.F. Geologically based model of heterogeneous hydraulic conductivity in an alluvial setting. Hydrogeol. J. 1998, 6, 131–143. [Google Scholar] [CrossRef]
- Olabode, S.O. Silclastics slope deposits from the Cretacious Abeokuta group, Dahome (Benin) basin, southwestern Nigeria. J. Afr. Earth Sci. 2006, 46, 187–200. [Google Scholar] [CrossRef]
- Aizebeokhai, A.P.; Oyeyemi, K.D. The use of the multiple gradient array for geoelectric resistivity and induced polarization imaging. J. Appl. Geophys. 2014, 111, 364–376. [Google Scholar] [CrossRef]
- Aizebeokhai, A.P.; Oyeyemi, K.D. Application of geoelectrical resistivity imaging and VLF-EM for subsurface characterization in a sedimentary terrain, southwestern Nigeria. Arab. J. Geosci. 2015, 8, 4083–4099. [Google Scholar] [CrossRef]
- Kumar, T.J.R.; Balasubramanian, A.; Kumar, R.S.; Dushiyanthan, C.; Thirumeelakandan, B.; Suresh, R.; Karthikeyan, K.; Davidraju, D. Assessment of groundwater potential based on aquifer properties of hard rock terrain in the Chittar-Uppodai watershed, Tamil Nadu, India. Appl. Water Sci. 2016, 6, 179–186. [Google Scholar] [CrossRef] [Green Version]
VES | Layer 1 | Layer 2 | Layer 3 | Layer 4 | Layer 5 | Layer 6 | Layer 7 | Layer 8 | |
---|---|---|---|---|---|---|---|---|---|
Lithology | Lateritic Clay | Clayey Sand | Sandy Clay | Sandy Clay | Fine Silty-Sand (Upper aquifer) | Coarse Sand (Lower aquifer) | Shale/Clay | ||
1 | Resistivity | 89 | 142.8 | 1039.3 | 1543.9 | 3107.6 | 347.4 | 125.4 | 86.6 |
Thickness | 1.3 | 2.4 | 4.6 | 8.4 | 16 | 12.8 | 12.5 | ||
Depth | 1.3 | 3.8 | 8.3 | 16.8 | 32.7 | 45.5 | 58 | ||
2 | Resistivity | 83.5 | 241.2 | 782.7 | 1034.5 | 3209.5 | 386.7 | 121 | 48.5 |
Thickness | 1.1 | 2 | 4 | 6.7 | 41.2 | 12.3 | 12.1 | ||
Depth | 1.1 | 3.1 | 7.1 | 13.8 | 55 | 67.3 | 79.3 | ||
3 | Resistivity | 108.9 | 214.2 | 915.2 | 2628.8 | 10,341.50 | 378.5 | 119.6 | 45.7 |
Thickness | 1 | 2.1 | 3.4 | 3.9 | 23 | 13.1 | 13 | ||
Depth | 1 | 3.1 | 6.5 | 10.4 | 33.4 | 46.5 | 59.5 | ||
4 | Resistivity | 51.7 | 222.7 | 874.1 | 980.2 | 5994.2 | 389.7 | 120.8 | 47.4 |
Thickness | 0.9 | 1.6 | 5.6 | 8.3 | 45 | 13.5 | 13.5 | ||
Depth | 0.9 | 2.6 | 8.2 | 16.5 | 61.5 | 75 | 88.1 | ||
5 | Resistivity | 24.5 | 376.7 | 399.5 | 971.8 | 3102 | 356.2 | 128 | 34.1 |
Thickness | 0.9 | 6.5 | 19.9 | 8 | 22 | 12 | 13.9 | ||
Depth | 0.9 | 7.4 | 27.2 | 35.3 | 57.3 | 69.2 | 83.2 | ||
6 | Resistivity | 59.3 | 287.2 | 1109.2 | 1355.6 | 9784.1 | 390.1 | 132 | 83.6 |
Thickness | 1 | 2.8 | 7.3 | 20.1 | 65.5 | 15.9 | 14.2 | ||
Depth | 1 | 3.8 | 11.1 | 31.2 | 96.7 | 112.7 | 126.9 | ||
7 | Resistivity | 132.8 | 119.4 | 508.5 | 2804.8 | 5817.9 | 361.6 | 119.9 | 36.7 |
Thickness | 1 | 3.9 | 2.9 | 5.6 | 18.3 | 11.8 | 11.9 | ||
Depth | 1 | 4.9 | 7.8 | 13.4 | 31.7 | 43.4 | 55.3 |
Upper Aquifer | Lower Aquifer | |||||||
---|---|---|---|---|---|---|---|---|
Location | Mean RF Ω-m | Mean Porosity | Mean K (m/s)10−2 | Mean T (m2/s) | Mean RF Ω-m | Mean Porosity | Mean K (m/s)10−2 | Mean T (m2/s) |
L1(V1–V7) | 347.4 | 0.2182 | 17.0 | 2.18 | 125.4 | 0.4777 | 400 | 50.00 |
L2(V8–V12) | 386.7 | 0.2009 | 12.7 | 1.56 | 121.0 | 0.4910 | 457 | 55.30 |
L3(V13–V18) | 378.5 | 0.2042 | 13.5 | 1.76 | 119.6 | 0.4955 | 478 | 62.14 |
L4(V19–V25) | 389.7 | 0.1997 | 12.4 | 1.68 | 120.8 | 0.4917 | 460 | 62.10 |
L5(V26–V30) | 356.2 | 0.2140 | 15.9 | 1.90 | 128.0 | 0.4703 | 371 | 51.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oyeyemi, K.D.; Aizebeokhai, A.P.; Olaojo, A.A.; Okon, E.E.; Kalu, D.V.; Metwaly, M. Hydrogeophysical Investigation in Parts of the Eastern Dahomey Basin, Southwestern Nigeria: Implications for Sustainable Groundwater Resources Development and Management. Water 2023, 15, 2862. https://doi.org/10.3390/w15162862
Oyeyemi KD, Aizebeokhai AP, Olaojo AA, Okon EE, Kalu DV, Metwaly M. Hydrogeophysical Investigation in Parts of the Eastern Dahomey Basin, Southwestern Nigeria: Implications for Sustainable Groundwater Resources Development and Management. Water. 2023; 15(16):2862. https://doi.org/10.3390/w15162862
Chicago/Turabian StyleOyeyemi, Kehinde D., Ahzegbobor P. Aizebeokhai, Abayomi A. Olaojo, Emmanuel E. Okon, Divine V. Kalu, and Mohamed Metwaly. 2023. "Hydrogeophysical Investigation in Parts of the Eastern Dahomey Basin, Southwestern Nigeria: Implications for Sustainable Groundwater Resources Development and Management" Water 15, no. 16: 2862. https://doi.org/10.3390/w15162862
APA StyleOyeyemi, K. D., Aizebeokhai, A. P., Olaojo, A. A., Okon, E. E., Kalu, D. V., & Metwaly, M. (2023). Hydrogeophysical Investigation in Parts of the Eastern Dahomey Basin, Southwestern Nigeria: Implications for Sustainable Groundwater Resources Development and Management. Water, 15(16), 2862. https://doi.org/10.3390/w15162862