Biological Magnification of Microplastics: A Look at the Induced Reproductive Toxicity from Simple Invertebrates to Complex Vertebrates
Abstract
:1. Introduction
2. Types of MPs (Based on Size, Source, and Shape)
3. Fate and Biotoxicity of MPs
3.1. Reproductive Toxicity of MPs in Invertebrates
3.2. Reproductive Toxicity of MPs in Vertebrates
4. Evidence of MPs in Human Tissues
5. Conclusions and Recommendations for Future Directions
- MP pollution is an ecological problem that crosses borders and affects the entire world. The damage caused by MP pollution has an impact everywhere and is not limited to a specific location. As a result, international aid and a coordinated reaction from all governments are required for the management and mitigation of MP pollution.
- On one hand, active participation in international conferences is advised to enhance global communication, coordination, and policy suggestions for the prevention of MP pollution.
- A critical step in lowering MP contamination is source minimization. Strong regulations should be used to regulate the manufacturing and trading of products that could harm the environment with MPs at the source. Due to their detrimental effects, microplastics such as microbeads have been outlawed for industrial use in several nations. For instance, the Microbead-Free Water Act, which was adopted in the United States in 2015, made the use of microbeads illegal.
- Many people are interested in the development of a strategy for the biological elimination of MPs, which can be broken down by some environmental microbes. This is currently an effective way to prevent and control microplastic pollution and a great way to deal with non-biodegradable plastics. At the same time, due to processing costs, breakdown efficacy, and other limitations, biodegradable polymers cannot completely replace conventional plastics.
- In Pakistan, there are no precise rules governing MP contamination. However, the nation still has legislation in its capital that governs and bans the usage of plastics, such as polyethylene bags. These plastic-ban regulations aid in the first phase of the development of additional regulations for combatting plastic contamination.
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- PlasticsEurope. Plastics—The Facts: An Analysis of European Plastics Production Demand and Waste Data; PlasticsEurope: Brussels, Belgium, 2020. [Google Scholar]
- Boucher, J.; Friot, D. Primary Microplastics in the Oceans: A Global Evaluation of Sources; IUCN: Gland, Switzerland, 2017; Volume 10. [Google Scholar]
- Bilal, M.; Ali, H.; Ullah, R.; Hussain, I.; Khan, B.A. Overview of Microplastics Threat in Aquatic Animals Since 1960 to 2020 Int. J. Res. Anal. Rev. 2021, 8, 950–964. [Google Scholar]
- Hidalgo-Ruz, V.; Gutow, L.; Thompson, R.C.; Thiel, M. Microplastics in the marine environment: A review of the methods used for identification and quantification. Environ. Sci. Technol. 2012, 46, 3060–3075. [Google Scholar] [CrossRef] [PubMed]
- Thompson, R.C.; Swan, S.H.; Moore, C.J.; Vom Saal, F.S. Our plastic age. Philos. Trans. R Soc. B Biol. Sci. 2009, 364, 1973–1976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barnes, D.K.; Galgani, F.; Thompson, R.C.; Barlaz, M. Accumulation and fragmentation of plastic debris in global environments. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 1985–1998. [Google Scholar] [CrossRef] [Green Version]
- Hopewell, J.; Dvorak, R.; Kosior, E. Plastics recycling: Challenges and opportunities. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 2115–2126. [Google Scholar] [CrossRef] [Green Version]
- Brooks, A.L.; Wang, S.; Jambeck, J.R. The Chinese import ban and its impact on global plastic waste trade. Sci. Adv. 2018, 4, eaat0131. [Google Scholar] [CrossRef] [Green Version]
- Lusher, A. Microplastics in the marine environment: Distribution, interactions and effects. In Marine Anthropogenic Litter; Springer: Cham, Switzerland, 2015; pp. 245–307. [Google Scholar]
- Santonicola, S.; Volgare, M.; Cocca, M.; Dorigato, G.; Giaccone, V.; Colavita, G. Impact of Fibrous Microplastic Pollution on Commercial Seafood and Consumer Health: A Review. Animals 2023, 13, 1736. [Google Scholar] [CrossRef]
- Santini, S.; De Beni, E.; Martellini, T.; Sarti, C.; Randazzo, D.; Ciraolo, R.; Scopetani, C.; Cincinelli, A. Occurrence of Natural and Synthetic Micro-Fibers in the Mediterranean Sea: A Review. Toxics 2022, 10, 391. [Google Scholar] [CrossRef]
- Klein, S.; Worch, E.; Knepper, T.P. Occurrence and spatial distribution of microplastics in river shore sediments of the Rhine-Main area in Germany. Environ. Sci. Technol. 2015, 49, 6070–6076. [Google Scholar] [CrossRef]
- Baldwin, A.K.; Corsi, S.R.; Mason, S.A. Plastic debris in 29 Great Lakes tributaries: Relations to watershed attributes and hydrology. Environ. Sci. Technol. 2016, 50, 10377–10385. [Google Scholar] [CrossRef]
- Corcoran, P.L.; Norris, T.; Ceccanese, T.; Walzak, M.J.; Helm, P.A.; Marvin, C.H. Hidden plastics of Lake Ontario, Canada and their potential preservation in the sediment record. Environ. Pollut. 2015, 204, 17–25. [Google Scholar] [CrossRef]
- Su, L.; Xue, Y.; Li, L.; Yang, D.; Kolandhasamy, P.; Li, D.; Shi, H. Microplastics in taihu lake, China. Environ. Pollut. 2016, 216, 711–719. [Google Scholar] [CrossRef]
- Murphy, F.; Ewins, C.; Carbonnier, F.; Quinn, B. Wastewater treatment works (WwTW) as a source of microplastics in the aquatic environment. Environ. Sci. Technol. 2016, 50, 5800–5808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bilal, M.; Qadir, A.; Yaqub, A.; Hassan, H.U.; Irfan, M.; Aslam, M. Microplastics in water, sediments, and fish at Alpine River, originating from the Hindu Kush Mountain, Pakistan: Implications for conservation. Environ. Sci. Pollut. Res. 2022, 30, 727–738. [Google Scholar] [CrossRef] [PubMed]
- Kershaw, P.J.; Gesamp, S. Sources, Fate and Effects of Microplastics in the Marine Environment: A Global Assessment; GESAMP: London, UK, 2015; p. 96. Available online: http://www.gesamp.org/publications/reports-and-studies-no-90 (accessed on 23 June 2023).
- Graham, E.R.; Thompson, J.T. Deposit-and suspension-feeding sea cucumbers (Echinodermata) ingest plastic fragments. J. Exp. Mar. Biol. Eco. 2009, 368, 22–29. [Google Scholar] [CrossRef]
- Hartmann, N.B.; Huffer, T.; Thompson, R.C.; Hassellöv, M.; Verschoor, A.; Daugaard, A.E.; Rist, S.; Karlsson, T.; Brennholt, N.; Cole, M.; et al. Are we speaking the same language? Recommendations for a definition and categorization framework for plastic debris. Environ. Sci. Technol. 2019, 53, 1039–1047. [Google Scholar] [CrossRef] [Green Version]
- Derraik, J.G. The pollution of the marine environment by plastic debris: A review. Mar. Pollut. Bull. 2002, 44, 842–852. [Google Scholar] [CrossRef] [PubMed]
- Ryan, P.G.; Moore, C.J.; van Franeker, J.A.; Moloney, C.L. Monitoring the abundance of plastic debris in the marine environment. Philos. Trans. R Soc. Lond. Ser. B Biol. Sci. 2009, 364, 1999–2012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Browne, M.A.; Galloway, T.; Thompson, R. Microplastic—An emerging contaminant of potential concern? Integr. Environ. Assess. Manag. 2007, 3, 297. [Google Scholar] [CrossRef]
- Browne, M.A.; Galloway, T.S.; Thompson, R.C. Spatial patterns of plastic debris along Estuarine shorelines. Environ. Sci. Technol. 2010, 44, 3404–3409. [Google Scholar] [CrossRef]
- Claessens, M.; De Meester, S.; Van Landuyt, L.; De Clerck, K.; Janssen, C.R. Occurrence and distribution of microplastics in marine sediments along the Belgian coast. Mar. Pollut. Bull. 2011, 62, 2199–2204. [Google Scholar] [CrossRef]
- Costa, M.F.; Ivar do Sul, J.A.; Silva-Cavalcanti, J.S.; Araújo, M.C.B.; Spengler, Â.; Tourinho, P.S. On the importance of size of plastic fragments and pellets on the strandline: A snapshot of a Brazilian beach. Environ. Monit. Assess. 2010, 168, 299–304. [Google Scholar] [CrossRef] [PubMed]
- Andrady, A.L. Microplastics in the marine environment. Mar. Pollut. Bull. 2011, 62, 1596–1605. [Google Scholar] [CrossRef] [PubMed]
- Koehler, A.; Alison, A.; Anthony, A.; Courtney, A.; Baker, J.E.; Bouwman, H.; Gall, S.C.; Hidalgo-Ruz, V.; Koehler, A.; Law, K.L.; et al. Source, Fate and Effect of Microplastics in the Marine Environment: A Global Assessment; GESAMP: London, UK, 2015; Available online: http://www.gesamp.org/publications/microplastics-in-the-marine-environment-part-2 (accessed on 23 May 2023).
- Cózar, A.; Echevarría, F.; González-Gordillo, J.I.; Irigoien, X.; Úbeda, B.; Hernández-León, S.; Palma, Á.T.; Navarro, S.; García-de-Lomas, J.; Ruiz, A.; et al. Plastic debris in the open ocean. Proc. Natl. Acad. Sci. USA 2014, 111, 10239–10244. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Chernick, M.; Hinton, D.E.; Shi, H. Microplastics in small waterbodies and tadpoles from Yangtze River Delta, China. Environ. Sci. Technol. 2018, 52, 8885–8893. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Huang, W.; Xu, Y.; Jin, A.; Zhang, D.; Zhang, C. Microplastics in sediment cores as indicators of temporal trends in microplastic pollution in Andong salt marsh, Hangzhou Bay, China. Reg. Stud. Mar. Sci. 2020, 35, 101149. [Google Scholar] [CrossRef]
- Eo, S.; Hong, S.H.; Song, Y.K.; Han, G.M.; Shim, W.J. Spatiotemporal distribution and annual load of microplastics in the Nakdong River, South Korea. Water Res. 2019, 160, 228–237. [Google Scholar] [CrossRef]
- Napper, I.E.; Bakir, A.; Rowland, S.J.; Thompson, R.C. Characterization, quantity and sorptive properties of microplastics extracted from cosmetics. Mar. Pollut. Bull. 2015, 99, 178–185. [Google Scholar] [CrossRef] [Green Version]
- Van Wijnen, J.; Ragas, A.M.; Kroeze, C. Modelling global river export of microplastics to the marine environment: Sources and future trends. Sci. Total. Environ. 2019, 673, 392–401. [Google Scholar] [CrossRef]
- Peng, G.; Bellerby, R.; Zhang, F.; Sun, X.; Li, D. The ocean’s ultimate trashcan: Hadal trenches as major depositories for plastic pollution. Water Res. 2020, 168, 115121. [Google Scholar] [CrossRef]
- Hanslik, L. Microplastics in Limnic Ecosystems-Investigation of Biological Fate and Effects of Microplastic Particles and Associated Contaminants in Zebrafish (Danio rerio). Ph.D. Thesis, Heidelberg University, Heidelberg, Germany, 2020. [Google Scholar]
- Ross, P.S.; Chastain, S.; Vassilenko, E.; Etemadifar, A.; Zimmermann, S.; Quesnel, S.-A.; Eert, J.; Solomon, E.; Patankar, S.; Posacka, A.M.; et al. Pervasive distribution of polyester fibres in the Arctic Ocean is driven by Atlantic inputs. Nat. Commun. 2021, 12, 106. [Google Scholar] [CrossRef] [PubMed]
- Thompson, R.C.; Olsen, Y.; Mitchell, R.P.; Davis, A.; Rowland, S.J.; John, A.W.G.; McGonigle, D.; Russell, A.E. Lost at sea: Where is all the plastic? Science 2004, 304, 838. [Google Scholar] [CrossRef]
- Lorenz, C.; Roscher, L.; Meyer, M.S.; Hildebrandt, L.; Prume, J.; Löder, M.G.; Primpke, S.; Gerdts, G. Spatial distribution of microplastics in sediments and surface waters of the southern North Sea. Environ. Pollut. 2019, 252, 1719–1729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischer, E.K.; Paglialonga, L.; Czech, E.; Tamminga, M. Microplastic pollution in lakes and lake shoreline sediments—A case study on Lake Bolsena and Lake Chiusi (central Italy). Environ. Pollut. 2016, 213, 648–657. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Yuan, W.; Chen, Y.; Wang, J. Microplastics in surface waters of Dongting Lake and Hong Lake, China. Sci. Total. Environ. 2018, 633, 539–545. [Google Scholar] [CrossRef] [PubMed]
- Hoellein, T.J.; Shogren, A.J.; Tank, J.L.; Risteca, P.; Kelly, J.J. Microplastic deposition velocity in streams follows patterns for naturally occurring allochthonous particles. Sci. Rep. 2019, 9, 3740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waldschläger, K.; Schüttrumpf, H. Efects of particle properties on the settling and rise velocities of microplastics in freshwater under laboratory conditions. Environ. Sci. Technol. 2019, 53, 1958–1966. [Google Scholar] [CrossRef]
- Khatmullina, L.; Isachenko, I. Settling velocity of microplastic particles of regular shapes. Mar. Pollut. Bull. 2017, 114, 871–880. [Google Scholar] [CrossRef]
- Yong, C.Q.Y.; Valiyaveettil, S.; Tang, B.L. Toxicity of microplastics and nanoplastics in mammalian systems. Int. J. Environ. Res. Public Health 2020, 17, 1509. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Ouyang, Z.; Liu, P.; Zhao, X.; Wu, R.; Zhang, C.; Lin, C.; Li, Y.; Guo, X. Distribution and characteristics of microplastics in the basin of Chishui River in Renhuai, China. Sci. Total. Environ. 2021, 773, 145591. [Google Scholar] [CrossRef]
- Bai, C.L.; Liu, L.Y.; Hu, Y.B.; Zeng, E.Y.; Guo, Y. Microplastics: A review of analytical methods, occurrence and characteristics in food, and potential toxicities to biota. Sci. Total. Environ. 2022, 806, 150263. [Google Scholar] [CrossRef] [PubMed]
- Lei, L.; Wu, S.; Lu, S.; Liu, M.; Song, Y.; Fu, Z.; Shi, H.; Raley-Susman, K.M.; He, D. Microplastic particles cause intestinal damage and other adverse effects in zebrafish Danio rerio and nematode Caenorhabditis elegans. Sci. Total. Environ. 2018, 619–620, 1–8. [Google Scholar] [CrossRef]
- Jin, Y.; Xia, J.; Pan, Z.; Yang, J.; Wang, W.; Fu, Z. Polystyrene microplastics induce microbiota dysbiosis and inflammation in the gut of adult zebrafish. Environ. Pollut. 2018, 235, 322–329. [Google Scholar] [CrossRef] [PubMed]
- Poma, A.; Vecchiotti, G.; Colafarina, S.; Zarivi, O.; Aloisi, M.; Arrizza, L.; Chichiriccò, G.; Di Carlo, P. In vitro genotoxicity of polystyrene nanoparticles on the human fibroblast Hs27 cell line. Nanomater 2019, 9, 1299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fackelmann, G.; Sommer, S. Microplastics and the gut microbiome: How chronically exposed species may suffer from gut dysbiosis. Mar. Pollut. Bull. 2019, 143, 193–203. [Google Scholar] [CrossRef]
- Qiao, R.; Deng, Y.; Zhang, S.; Wolosker, M.B.; Zhu, Q.; Ren, H.; Zhang, Y. Accumulation of different shapes of microplastics initiates intestinal injury and gut microbiota dysbiosis in the gut of zebrafish. Chemosphere 2019, 236, 124334. [Google Scholar] [CrossRef]
- Li, C.; Busquets, R.; Campos, L.C. Assessment of microplastics in freshwater systems: A review. Sci. Total. Environ. 2020, 707, 135578. [Google Scholar] [CrossRef]
- Hirt, N.; Body-Malapel, M. Immunotoxicity and intestinal effects of nano-and microplastics: A review of the literature. Part. Fibre. Toxicol. 2020, 17, 57. [Google Scholar] [CrossRef]
- Crump, A.; Mullens, C.; Bethell, E.J.; Cunningham, E.M.; Arnott, G. Microplastics disrupt hermit crab shell selection. Biol. Lett. 2020, 16, 20200030. [Google Scholar] [CrossRef]
- Prüst, M.; Meijer, J.; Westerink, R.H. The plastic brain: Neurotoxicity of micro-and nanoplastics. Part. Fibre. Toxicol. 2020, 17, 24. [Google Scholar] [CrossRef]
- Solleiro-Villavicencio, H.; Gomez-De León, C.T.; Del Río-Araiza, V.H.; Morales-Montor, J. The detrimental effect of microplastics on critical periods of development in the neuroendocrine system. Birth Defects Res. 2020, 112, 1326–1340. [Google Scholar] [CrossRef] [PubMed]
- Lear, G.; Kingsbury, J.M.; Franchini, S.; Gambarini, V.; Maday, S.D.M.; Wallbank, J.A.; Weaver, L.; Pantos, O. Plastics and the microbiome: Impacts and solutions. Environ. Microbiome 2021, 16, 2. [Google Scholar] [CrossRef]
- Tagorti, G.; Kaya, B. Genotoxic effect of microplastics and COVID-19: The hidden threat. Chemosphere 2022, 286, 131898. [Google Scholar] [CrossRef] [PubMed]
- Sussarellu, R.; Suquet, M.; Thomas, Y.; Lambert, C.; Fabioux, C.; Pernet, M.E.J.; Le Goïc, N.; Quillien, V.; Mingant, C.; Epelboin, Y.; et al. Oyster reproduction is affected by exposure to polystyrene microplastics. Proc. Natl. Acad. Sci. USA 2016, 113, 2430–2435. [Google Scholar] [CrossRef] [PubMed]
- Sarasamma, S.; Audira, G.; Siregar, P.; Malhotra, N.; Lai, Y.H.; Liang, S.T.; Chen, J.-R.; Chen, K.H.-C.; Hsiao, C.D. Nanoplastics cause neurobehavioral impairments, reproductive and oxidative damages, and biomarker responses in zebrafish: Throwing up alarms of wide spread health risk of exposure. Int. J. Mol. Sci. 2020, 21, 1410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, H.; Ma, T.; Sha, X.; Liu, Z.; Zhou, Y.; Meng, X.; Chen, Y.; Han, X.; Ding, J. Polystyrene microplastics induced male reproductive toxicity in mice. J. Hazard. Mater. 2021, 401, 123430. [Google Scholar] [CrossRef]
- Yin, K.; Wang, Y.; Zhao, H.; Wang, D.; Guo, M.; Mu, M.; Liu, Y.; Nie, X.; Li, B.; Li, J.; et al. A comparative review of microplastics and nanoplastics: Toxicity hazards on digestive, reproductive and nervous system. Sci. Total. Environ. 2021, 774, 145758. [Google Scholar] [CrossRef]
- Eom, H.J.; Lee, N.; Yum, S.; Rhee, J.S. Effects of extremely high concentrations of polystyrene microplastics on asexual reproduction and nematocyst discharge in the jellyfish Sanderia malayensis. Sci. Total. Environ. 2022, 807, 150988. [Google Scholar] [CrossRef]
- Wright, S.L.; Rowe, D.; Thompson, R.C.; Galloway, T.S. Microplastic ingestion decreases energy reserves in marine worms. Curr. Biol. 2013, 23, R1031–R1033. [Google Scholar] [CrossRef] [Green Version]
- Lahive, E.; Walton, A.; Horton, A.A.; Spurgeon, D.J.; Svendsen, C. Microplastic particles reduce reproduction in the terrestrial worm Enchytraeus crypticus in a soil exposure. Environ. Pollut. 2019, 255, 113174. [Google Scholar] [CrossRef]
- Kwak, J.I.; An, Y.J. Microplastic digestion generates fragmented nanoplastics in soils and damages earthworm spermatogenesis and coelomocyte viability. J. Hazard. Mater. 2021, 402, 124034. [Google Scholar] [CrossRef] [PubMed]
- Ziajahromi, S.; Kumar, A.; Neale, P.A.; Leusch, F.D. Impact of microplastic beads and fibers on waterflea (Ceriodaphnia dubia) survival, growth, and reproduction: Implications of single and mixture exposures. Environ. Sci. Technol. 2017, 51, 13397–13406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, K.W.; Shim, W.J.; Kwon, O.Y.; Kang, J.H. Size-dependent effects of micro polystyrene particles in the marine copepod Tigriopus japonicus. Environ. Sci. Technol. 2013, 47, 11278–11283. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Tian, J.-Y.; Xu, R.; Zhang, Z.-Y.; Yang, G.-P.; Wang, X.-D.; Lai, J.-G.; Chen, R. Effects of microplastics exposure on ingestion, fecundity, development, and dimethylsulfide production in Tigriopus japonicus (Harpacticoida, copepod). Environ. Pollut. 2020, 267, 115429. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Jin, Y.; Luo, P.; Shi, X. Polystyrene microplastics induced male reproductive toxicity and transgenerational effects in freshwater prawn. Sci. Total. Environ. 2022, 842, 156820. [Google Scholar] [CrossRef] [PubMed]
- Pacheco, A.; Martins, A.; Guilhermino, L. Toxicological interactions induced by chronic exposure to gold nanoparticles and microplastics mixtures in Daphnia magna. Sci. Total. Environ. 2018, 628, 474–483. [Google Scholar] [CrossRef]
- Besseling, E.; Wang, B.; Lürling, M.; Koelmans, A.A. Nanoplastic affects growth of S. obliquus and reproduction of D. magna. Environ. Sci. Tech. 2014, 48, 12336–12343. [Google Scholar] [CrossRef]
- Horn, D.; Miller, M.; Anderson, S.; Steele, C. Microplastics are ubiquitous on California beaches and enter the coastal food web through consumption by Pacific mole crabs. Mar. Pollut. Bull. 2019, 139, 231–237. [Google Scholar] [CrossRef]
- Wang, J.; Liu, X.; Li, Y.; Powell, T.; Wang, X.; Wang, G.; Zhang, P. Microplastics as contaminants in the soil environment: A mini-review. Sci. Total. Environ. 2019, 691, 848–857. [Google Scholar] [CrossRef]
- Gardon, T.; Reisser, C.; Soyez, C.; Quillien, V.; Le Moullac, G. Microplastics affect energy balance and gametogenesis in the pearl oyster Pinctada margaritifera. Environ. Sci. Technol. 2018, 52, 5277–5286. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Gómez, C.; León, V.M.; Calles, S.; Gomáriz-Olcina, M.; Vethaak, A.D. The adverse effects of virgin microplastics on the fertilization and larval development of sea urchins. Mar. Environ. Res. 2017, 130, 69–76. [Google Scholar] [CrossRef]
- Murano, C.; Agnisola, C.; Caramiello, D.; Castellano, I.; Casotti, R.; Corsi, I.; Palumbo, A. How sea urchins face microplastics: Uptake, tissue distribution and immune system response. Environl. Pollut. 2020, 264, 114685. [Google Scholar] [CrossRef]
- Cormier, B.; Le Bihanic, F.; Cabar, M.; Crebassa, J.-C.; Blanc, M.; Larsson, M.; Dubocq, F.; Yeung, L.; Clérandeau, C.; Keiter, S.H.; et al. Chronic feeding exposure to virgin and spiked microplastics disrupts essential biological functions in teleost fish. J. Hazard. Mater. 2021, 415, 125626. [Google Scholar] [CrossRef] [PubMed]
- Qiang, L.; Lo, L.S.H.; Gao, Y.; Cheng, J. Parental exposure to polystyrene microplastics at environmentally relevant concentrations has negligible transgenerational effects on zebrafish (Danio rerio). Ecotoxicol. Environ. Saf. 2020, 206, 111382. [Google Scholar] [CrossRef] [PubMed]
- Ismail, R.F.; Saleh, N.E.; Sayed, A.E.D.H. Impacts of microplastics on reproductive performance of male tilapia (Oreochromis niloticus) pre-fed on Amphora coffeaeformis. Environ. Sci. Pollut. Res. 2021, 28, 68732–68744. [Google Scholar] [CrossRef] [PubMed]
- Chae, Y.; Kim, D.; Kim, S.W.; An, Y.J. Trophic transfer and individual impact of nano-sized polystyrene in a four-species freshwater food chain. Sci. Rep. 2018, 8, 284. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Yang, G.; Wang, J.; Lu, L.; Li, X.; Zheng, Y.; Zhang, Z.; Ru, S. Microplastics increase the accumulation of phenanthrene in the ovaries of marine medaka (Oryzias melastigma) and its transgenerational toxicity. J. Hazad. Mater. 2022, 424, 127754. [Google Scholar] [CrossRef]
- Li, W.; Pan, Z.; Xu, J.; Liu, Q.; Zou, Q.; Lin, H.; Wu, L.; Huang, H. Microplastics in a pelagic dolphinfish (Coryphaena hippurus) from the Eastern Pacific Ocean and the implications for fish health. Sci. Total. Environ. 2022, 809, 151126. [Google Scholar] [CrossRef]
- Barbieri, E.; Passos, E.D.A.; Filippini, A.; dos Santos, I.S.; Garcia, C.A.B. Assessment of trace metal concentration in feathers of seabird (Larus dominicanus) sampled in the Florianópolis, SC, Brazilian coast. Environ. Monit. Assess. 2010, 169, 631–638. [Google Scholar] [CrossRef]
- Wilcox, C.; Van Sebille, E.; Hardesty, B.D. Threat of plastic pollution to seabirds is global, pervasive, and increasing. Proc. Natl. Acad. Sci. USA 2015, 112, 11899–11904. [Google Scholar] [CrossRef]
- Basto, M.N.; Nicastro, K.R.; Tavares, A.I.; McQuaid, C.D.; Casero, M.; Azevedo, F.; Zardi, G.I. Plastic ingestion in aquatic birds in Portugal. Mar. Pollut. Bull. 2019, 138, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Carlin, J.; Craig, C.; Little, S.; Donnelly, M.; Fox, D.; Zhai, L.; Walters, L. Microplastic accumulation in the gastrointestinal tracts in birds of prey in central Florida, USA. Environ. Pollut. 2020, 264, 114633. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Zhu, L.; Li, D. Microscopic anthropogenic litter in terrestrial birds from Shanghai, China: Not only plastics but also natural fibers. Sci. Total. Environ. 2016, 550, 1110–1115. [Google Scholar] [CrossRef] [PubMed]
- Ballejo, F.; Plaza, P.; Speziale, K.L.; Lambertucci, A.P.; Lambertucci, S.A. Plastic ingestion and dispersion by vultures may produce plastic islands in natural areas. Sci. Total. Environ. 2021, 755, 142421. [Google Scholar] [CrossRef]
- Fossi, M.C.; Panti, C.; Baini, M.; Lavers, J.L. A review of plastic-associated pressures: Cetaceans of the Mediterranean Sea and eastern Australian shearwaters as case studies. Front. Mar. Sci. 2018, 5, 173. [Google Scholar] [CrossRef]
- Roman, L.; Lowenstine, L.; Parsley, L.M.; Wilcox, C.; Hardesty, B.D.; Gilardi, K.; Hindell, M. Is plastic ingestion in birds as toxic as we think? Insights from a plastic feeding experiment. Sci. Total. Environ. 2019, 665, 660–667. [Google Scholar]
- Carey, M.J. Intergenerational transfer of plastic debris by Short-tailed Shearwaters (Ardenna tenuirostris). Emu—Austral Ornithol. 2011, 111, 229–234. [Google Scholar] [CrossRef] [Green Version]
- An, R.; Wang, X.; Yang, L.; Zhang, J.; Wang, N.; Xu, F.; Hou, Y.; Zhang, H.; Zhang, L. Polystyrene microplastics cause granulosa cells apoptosis and fibrosis in ovary through oxidative stress in rats. Toxicology 2021, 449, 152665. [Google Scholar] [CrossRef]
- Xie, X.; Deng, T.; Duan, J.; Xie, J.; Yuan, J.; Chen, M. Exposure to polystyrene microplastics causes reproductive toxicity through oxidative stress and activation of the p38 MAPK signaling pathway. Ecotoxicol. Environ. Saf. 2020, 190, 110133. [Google Scholar] [CrossRef]
- Amereh, F.; Babaei, M.; Eslami, A.; Fazelipour, S.; Rafiee, M. The emerging risk of exposure to nano (micro) plastics on endocrine disturbance and reproductive toxicity: From a hypothetical scenario to a global public health challenge. Environ. Pollut. 2020, 261, 114158. [Google Scholar] [CrossRef]
- Deng, Y.; Chen, H.; Huang, Y.; Wang, Q.; Chen, W.; Chen, D. Polystyrene Microplastics Affect the Reproductive Performance of Male Mice and Lipid Homeostasis in Their Offspring. Environ. Sci. Technol. Lett. 2022, 9, 752–757. [Google Scholar] [CrossRef]
- Hu, J.; Qin, X.; Zhang, J.; Zhu, Y.; Zeng, W.; Lin, Y.; Liu, X. Polystyrene microplastics disturb maternal-fetal immune balance and cause reproductive toxicity in pregnant mice. Reprod. Toxicol. 2021, 106, 42–50. [Google Scholar] [CrossRef]
- Liu, Z.; Zhuan, Q.; Zhang, L.; Meng, L.; Fu, X.; Hou, Y. Polystyrene microplastics induced female reproductive toxicity in mice. J. Hazard. Mater. 2022, 424, 127629. [Google Scholar] [CrossRef]
- Wei, Z.; Wang, Y.; Wang, S.; Xie, J.; Han, Q.; Chen, M. Comparing the effects of polystyrene microplastics exposure on reproduction and fertility in male and female mice. Toxicology 2022, 465, 153059. [Google Scholar] [CrossRef]
- Ilechukwu, I.; Ehigiator, B.E.; Ben, I.O.; Okonkwo, C.J.; Olorunfemi, O.S.; Modo, U.E.; Ilechukwu, C.E.; Ohagwa, N.J. Chronic toxic effects of polystyrene microplastics on reproductive parameters of male rats. Environ. Anal. Health Toxicol. 2022, 37, e2022015. [Google Scholar] [CrossRef]
- Li, S.; Wang, Q.; Yu, H.; Yang, L.; Sun, Y.; Xu, N.; Wang, N.; Lei, Z.; Hou, J.; Jin, Y.; et al. Polystyrene microplastics induce blood–testis barrier disruption regulated by the MAPK-Nrf2 signaling pathway in rats. Environ. Sci. Pollut. Res. 2021, 28, 47921–47931. [Google Scholar] [CrossRef]
- Hou, B.; Wang, F.; Liu, T.; Wang, Z. Reproductive toxicity of polystyrene microplastics: In vivo experimental study on testicular toxicity in mice. J. Hazard. Mater. 2021, 405, 124028. [Google Scholar] [CrossRef]
- Deng, Y.; Yan, Z.; Shen, R.; Huang, Y.; Ren, H.; Zhang, Y. Enhanced reproductive toxicities induced by phthalates contaminated microplastics in male mice (Mus musculus). J. Hazard. Mater. 2021, 406, 124644. [Google Scholar] [CrossRef]
- Jin, H.; Yan, M.; Pan, C.; Liu, Z.; Sha, X.; Jiang, C.; Li, L.; Pan, M.; Li, D.; Han, X.; et al. Chronic exposure to polystyrene microplastics induced male reproductive toxicity and decreased testosterone levels via the LH-mediated LHR/cAMP/PKA/StAR pathway. Part. Fibre. Toxicol. 2022, 19, 13. [Google Scholar] [CrossRef]
- Leslie, H.A.; Van Velzen, M.J.; Brandsma, S.H.; Vethaak, A.D.; Garcia-Vallejo, J.J.; Lamoree, M.H. Discovery and quantification of plastic particle pollution in human blood. Environ. Int. 2022, 163, 107199. [Google Scholar] [CrossRef]
- Ragusa, A.; Svelato, A.; Santacroce, C.; Catalano, P.; Notarstefano, V.; Carnevali, O.; Papa, F.; Rongioletti, M.C.A.; Baiocco, F.; Draghi, S.; et al. Plasticenta: First evidence of microplastics in human placenta. Environ. Int. 2021, 146, 106274. [Google Scholar] [CrossRef]
- Braun, T.; Ehrlich, L.; Henrich, W.; Koeppel, S.; Lomako, I.; Schwabl, P.; Liebmann, B. Detection of microplastic in human placenta and meconium in a clinical setting. Pharmaceutics 2021, 13, 921. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Zhu, J.; Zuo, R.; Xu, Q.; Qian, Y.; Lihui, A.N. Identification of microplastics in human placenta using laser direct infrared spectroscopy. Sci. Total. Environ. 2022, 856, 159060. [Google Scholar] [CrossRef]
- Ragusa, A.; Matta, M.; Cristiano, L.; Matassa, R.; Battaglione, E.; Svelato, A.; Nottola, S.A. Deeply in Plasticenta: Presence of Microplastics in the Intracellular Compartment of Human Placentas. Int. J. Environ. Res. Public Health 2022, 19, 11593. [Google Scholar] [CrossRef] [PubMed]
- Ragusa, A.; Notarstefano, V.; Svelato, A.; Belloni, A.; Gioacchini, G.; Blondeel, C.; Zucchelli, E.; De Luca, C.; D’Avino, S.; Gulotta, A.; et al. Raman Microspectroscopy Detection and Characterisation of Microplastics in Human Breastmilk. Polymers 2022, 14, 2700. [Google Scholar] [CrossRef]
- Bilal, M.; Ul Hassan, H.; Siddique, M.A.M.; Khan, W.; Gabol, K.; Ullah, I.; Sultana, S.; Abdali, U.; Mahboob, S.; Khan, M.S.; et al. Microplastics in the Surface Water and Gastrointestinal Tract of Salmo trutta from the Mahodand Lake, Kalam Swat in Pakistan. Toxics 2023, 11, 3. [Google Scholar] [CrossRef] [PubMed]
- Khan, W.; Hassan, H.U.; Gabol, K.; Khan, S.; Gul, Y.; Ahmed, A.E.; Swelum, A.A.; Khooharo, A.; Ahmad, J.; Shafeeq, P.; et al. Biodiversity, distributions and isolation of microplastics pollution in finfish species in the Panjkora River at Lower and Upper Dir districts of Khyber Pakhtunkhwa province of Pakistan. Braz. J. Biol. 2022, 84, e256817. [Google Scholar] [CrossRef]
- Hassan, H.U.; Mawa, Z.; Ahmad, N.; Zulfiqar, T.; Sohail, M.; Ahmad, H.; Yaqoob, H.; Bilal, M.; Rahman, A.; Ullah, N.; et al. Size at sexual maturity estimation for 36 species captured by bottom and mid-water trawls from the marine habitat of Balochistan and Sindh in the Arabian Sea, Pakistan, using maximum length (Lmax) and logistic (L50) models. Braz. J. Biol. 2022, 84, e262603. [Google Scholar] [CrossRef]
- Ul-Hassan, H.; Mahboob, S.; Masood, Z.; Riaz, M.N.; Rizwan, S.; Al-Misned, F.; Abdel-Aziz, M.; Al-Ghanim, K.A.; Gabol, K.; Chatta, A.; et al. Biodiversity of commercially important finfish species caught by mid-water and bottom trawls from the Balochistan and Sindh coasts of Arabian Sea, Pakistan: Threats and conservation strategies. Braz. J. Biol. 2023, 83, e262603. [Google Scholar] [CrossRef]
- Hassan, H.U.; Razzaq, W.; Masood, Z. Elemental composition of three-spot swimming crab Portunus sanguinolentus (Herbst, 1783) shell from the coasts of Sindh and Balochistan Pakistan. Environ. Sci. Pollut. Res. 2022, 29, 25679–25684. [Google Scholar] [CrossRef]
Group | Species | Toxicity | Reference |
---|---|---|---|
Invertebrates | Sanderia malayensis polyp and ephyrae | Affected asexual reproduction | [65] |
Cnidarian | |||
Nematode | Caenorhabditis elegans | Drop in offspring | [49] |
Annelid | Arenicola marina | Decrease in lipid stocks linked to complications in reproduction | [66] |
Enchytraeus crypticus | Impairment of reproductive efficiency | [67] | |
Eisenia andrei | Affected male reproductive organ | [68] | |
Arthropods and Crustacean | Calanus helgolandicus | Smaller eggs with a lower chance of hatching | [69] |
Ceriodaphnia dubia | Reproductive damage | [69] | |
Tigriopus japonicus | Lower fertility | [70] | |
Tigriopus japonicus | Greater development times and longer gaps between egg sacs | [71] | |
Prawn | Impaired testicular development in prawns | [72] | |
Daphnia magna | Negative effect on development and reproduction, increase in parental death | [73] | |
Daphnia magna | Decreased progeny number, newborn abnormalities | [74] | |
Emerita analoga | Negatively affected reproduction | [75] | |
Daphnia magna | Mostly negatively affected gametogenesis, embryos, and offspring | [76] | |
Mollusks | Crassostrea gigas | Decreases in sperm swimming speed, fecundity, and gamete and oocyte quality | [61] |
Pinctada margaritifera | Energy deficit and decreased male gametogenesis | [77] | |
Echinoderm | Paracentrotus lividus | Significant drops in fertilization success rates | [78] |
Paracentrotus lividus | Evaluated the quantity of PS in various organs and the gonads | [79] |
Group | Species | Toxicity | Reference |
---|---|---|---|
Fishes | Oryzias latipes | Considerable decline in reproductive output | [80] |
Danio rerio | Male testes showed significantly higher levels of apoptosis, and gonads and livers had considerably higher levels of reactive oxygen species (ROS) | [81] | |
Oreochromes niloticus | Mostly affected gonads | [82] | |
Oreochromes niloticus | MP had testicular, histological, and degenerative, testis-ova alterations | [83] | |
Coryphaena hippurus | Affected reproductive function | [84] | |
Birds | Hazardous to birds’ reproductive systems | [92] | |
Coturnix japonica | Intraepithelial cysts in the male epididymis | [93] | |
Ardenna tenuirostris | Transferred microplastics to young | [94] | |
Mammals | Rats | Fibrosis, granulosa cell death due to oxidative stress, reduced ovarian reserve capacity, affected rat ovaries | [95] |
Mouse | Significant decrease in sperm quantity and motility | [96] | |
Semen quality, changes in the hormonal environment | [97] | ||
Decreased sperm number and changed sperm phenotype | [98] | ||
Reduced the rate of first polar body extrusion and the survival of super-ovulated oocytes | [99] | ||
Fewer spermatogenic cells and viable epididymis sperm, and the frequency of sperm deformity was increased | [100] | ||
Increased reduction in ovarian size and follicle count in female mice, levels of testosterone, and luteinizing hormone | [101] | ||
Volume, motility, the number of sperm in the epididymis, and the amount of serum testosterone were all significantly reduced | [102] | ||
Damage to seminiferous tubules caused the death of spermatogenic cells and lowered sperm motility and concentration while increasing sperm abnormalities | [103] | ||
The sperm quality and testosterone levels of mice decreased | [106] | ||
Increased the rate of malformation, shedding, and death of sperm cells at all levels of the testes | [104] | ||
Significant changes in the physiology and spermatogenesis of sperm, changes in the testicular transcriptome, and exacerbation of oxidative stress | [105] | ||
Humans | MPs less than 700 nm were quantified in human blood | [107] | |
Evidence of MPs in six human placentas that were taken from consenting women | [108] | ||
Human placenta and meconium samples were found to contain MPs | [109] | ||
Microplastics in 17 placentas | [110] | ||
Presence of MPs in human placentas | [111] | ||
MPs were quantified in women’s breastmilk | [112] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bilal, M.; Ul Hassan, H.; Taj, M.; Rafiq, N.; Nabi, G.; Ali, A.; Gabol, K.; Shah, M.I.A.; Ghaffar, R.A.; Sohail, M.; et al. Biological Magnification of Microplastics: A Look at the Induced Reproductive Toxicity from Simple Invertebrates to Complex Vertebrates. Water 2023, 15, 2831. https://doi.org/10.3390/w15152831
Bilal M, Ul Hassan H, Taj M, Rafiq N, Nabi G, Ali A, Gabol K, Shah MIA, Ghaffar RA, Sohail M, et al. Biological Magnification of Microplastics: A Look at the Induced Reproductive Toxicity from Simple Invertebrates to Complex Vertebrates. Water. 2023; 15(15):2831. https://doi.org/10.3390/w15152831
Chicago/Turabian StyleBilal, Muhammad, Habib Ul Hassan, Madiha Taj, Naseem Rafiq, Ghulam Nabi, Asif Ali, Karim Gabol, Muhammad Ishaq Ali Shah, Rizwana Abdul Ghaffar, Muhammad Sohail, and et al. 2023. "Biological Magnification of Microplastics: A Look at the Induced Reproductive Toxicity from Simple Invertebrates to Complex Vertebrates" Water 15, no. 15: 2831. https://doi.org/10.3390/w15152831
APA StyleBilal, M., Ul Hassan, H., Taj, M., Rafiq, N., Nabi, G., Ali, A., Gabol, K., Shah, M. I. A., Ghaffar, R. A., Sohail, M., & Arai, T. (2023). Biological Magnification of Microplastics: A Look at the Induced Reproductive Toxicity from Simple Invertebrates to Complex Vertebrates. Water, 15(15), 2831. https://doi.org/10.3390/w15152831