Influence of Radical Scavenger on Radiation Synthesis of Graphene Oxide/TiO2 Nanotubes/Ag Nanoparticles Nanocomposites and Their Dye Photodegradation Efficiency
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Radiation of GO-TNTs-AgNPs
2.3. Materials Characterization
2.4. Rhodamine B Dye Photodecomposition
3. Results
3.1. Effect of the Irradiation Dose and a Radical Scavenger on GTA Synthesis
3.2. Effect of the Irradiation Dose and a Radical Scavenger on Photodecomposition Ability of GAT
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, M.; Vajpayee, M.; Ledwani, L. Eco-friendly surface modification of natural fibres to improve dye uptake using natural dyes and application of natural dyes in fabric finishing: A review. Mater. Today Proc. 2021, 43, 2868–2871. [Google Scholar] [CrossRef]
- Rastogi, S.; Kesavachandran, C.; Mahdi, F.; Pandey, A. Occupational cancers in leather tanning industries: A short review. Indian J. Occup. Environ. Med. 2007, 11, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shang, Y.; Zhang, D.; Liu, Y.; Guo, C. Preliminary comparison of different reduction methods of graphene oxide. Bull. Mater. Sci. 2015, 38, 7–12. [Google Scholar] [CrossRef] [Green Version]
- Lei, X.; You, M.; Pan, F.; Liu, M.; Yang, P.; Xia, D.; Li, Q.; Wang, Y.; Fu, J. CuFe2O4@ GO nanocomposite as an effective and recoverable catalyst of peroxymonosulfate activation for degradation of aqueous dye pollutants. Chin. Chem. Lett. 2019, 30, 2216–2220. [Google Scholar] [CrossRef]
- Zhao, D.; Sheng, G.; Chen, C.; Wang, X. Enhanced photocatalytic degradation of methylene blue under visible irradiation on graphene@ TiO2 dyade structure. Appl. Catal. B Environ. 2012, 111, 303–308. [Google Scholar] [CrossRef]
- Kumari, S.; Sharma, P.; Yadav, S.; Kumar, J.; Vij, A.; Rawat, P.; Kumar, S.; Sinha, C.; Bhattacharya, J.; Srivastava, C.M. A novel synthesis of the graphene oxide-silver (GO-Ag) nanocomposite for unique physiochemical applications. ACS Omega 2020, 5, 5041–5047. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, S.V.; Duong, T.T.D.; Nguyen, P.T.; Le, N.T.S. Reduction of graphene oxide by TiO2 nanotubes photocatalyst. VNUHCM J. Sci. Technol. Dev. 2015, 18, 228–236. [Google Scholar] [CrossRef]
- Nischk, M.; Mazierski, P.; Wei, Z.; Siuzdak, K.; Kouame, N.A.; Kowalska, E.; Remita, H.; Zaleska-Medynska, A. Enhanced photocatalytic, electrochemical and photoelectrochemical properties of TiO2 nanotubes arrays modified with Cu, AgCu and Bi nanoparticles obtained via radiolytic reduction. Appl. Surf. Sci. 2016, 387, 89–102. [Google Scholar] [CrossRef] [Green Version]
- Zhao, F.; Dong, B.; Gao, R.; Su, G.; Liu, W.; Shi, L.; Xia, C.; Cao, L. A three-dimensional graphene-TiO2 nanotube nanocomposite with exceptional photocatalytic activity for dye degradation. Appl. Surf. Sci. 2015, 351, 303–308. [Google Scholar] [CrossRef]
- Sandoval, A.; Hernandez-Ventura, C.; Klimova, T.E. Titanate nanotubes for removal of methylene blue dye by combined adsorption and photocatalysis. Fuel 2017, 198, 22–30. [Google Scholar] [CrossRef]
- Chen, M.; Sun, T.; Zhao, W.; Yang, X.; Chang, W.; Qian, X.; Yang, Q.; Chen, Z. In Situ Growth of Metallic 1T-MoS2 on TiO2 Nanotubes with Improved Photocatalytic Performance. ACS Omega 2021, 6, 12787–12793. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Orozco, R.D.; Rosu, H.; Lee, S.-W.; Rodríguez-González, V. Understanding the adsorptive and photoactivity properties of Ag-graphene oxide nanocomposites. J. Hazard. Mater. 2013, 263, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Guan, B.; Zhao, Y.; Zou, Y.; Geng, G.; Chen, P.; Wang, F.; Liu, M. Sub-10 nm Ag nanoparticles/graphene oxide: Controllable synthesis, size-dependent and extremely ultrahigh catalytic activity. Small 2019, 15, 1901701. [Google Scholar] [CrossRef] [PubMed]
- Raliya, R.; Avery, C.; Chakrabarti, S.; Biswas, P. Photocatalytic degradation of methyl orange dye by pristine titanium dioxide, zinc oxide, and graphene oxide nanostructures and their composites under visible light irradiation. Appl. Nanosci. 2017, 7, 253–259. [Google Scholar] [CrossRef] [Green Version]
- Gao, W.; Wang, M.; Ran, C.; Yao, X.; Yang, H.; Liu, J.; He, D.; Bai, J. One-pot synthesis of Ag/r-GO/TiO2 nanocomposites with high solar absorption and enhanced anti-recombination in photocatalytic applications. Nanoscale 2014, 6, 5498–5508. [Google Scholar] [CrossRef] [Green Version]
- Vasilaki, E.; Georgaki, I.; Vernardou, D.; Vamvakaki, M.; Katsarakis, N. Ag-loaded TiO2/reduced graphene oxide nanocomposites for enhanced visible-light photocatalytic activity. Appl. Surf. Sci. 2015, 353, 865–872. [Google Scholar] [CrossRef]
- Le Caër, S. Water radiolysis: Influence of oxide surfaces on H2 production under ionizing radiation. Water 2011, 3, 235–253. [Google Scholar] [CrossRef] [Green Version]
- Al-Assaf, S.; Coqueret, X.; Zaman, H.M.D.K.; Sen, M.; Ulański, P. The Radiation Chemistry of Polysaccharides; International Atomic Energy Agency Vienna: Wien, Austria, 2016. [Google Scholar]
- Vo, K.D.N.; Kowandy, C.; Dupont, L.; Coqueret, X.; Hien, N.Q. Radiation synthesis of chitosan stabilized gold nanoparticles comparison between e−beam and γ irradiation. Radiat. Phys. Chem. 2014, 94, 84–87. [Google Scholar] [CrossRef]
- Zhang, B.; Li, L.; Wang, Z.; Xie, S.; Zhang, Y.; Shen, Y.; Yu, M.; Deng, B.; Huang, Q.; Fan, C. Radiation induced reduction: An effective and clean route to synthesize functionalized graphene. J. Mater. Chem. 2012, 22, 7775–7781. [Google Scholar] [CrossRef]
- Divya, K.; Chandran, A.; Reethu, V.; Mathew, S. Enhanced photocatalytic performance of RGO/Ag nanocomposites produced via a facile microwave irradiation for the degradation of Rhodamine B in aqueous solution. Appl. Surf. Sci. 2018, 444, 811–818. [Google Scholar] [CrossRef]
- Wang, T.; Tang, T.; Gao, Y.; Chen, Q.; Zhang, Z.; Bian, H. Hydrothermal preparation of Ag-TiO2-reduced graphene oxide ternary microspheres structure composite for enhancing photocatalytic activity. Phys. E Low-Dimens. Syst. Nanostructures 2019, 112, 128–136. [Google Scholar] [CrossRef]
- Nguyen, K.D.V.; Vo, K.D.N. Magnetite nanoparticles-TiO2 nanoparticles-graphene oxide nanocomposite: Synthesis, characterization and photocatalytic degradation for Rhodamine-B dye. AIMS Mater. Sci. 2020, 7, 288–301. [Google Scholar] [CrossRef]
- Zavala, M.Á.L.; Morales, S.A.L.; Ávila-Santos, M. Synthesis of stable TiO2 nanotubes: Effect of hydrothermal treatment, acid washing and annealing temperature. Heliyon 2017, 3, e00456. [Google Scholar] [CrossRef]
- KELLY, J.M. Triangular silver nanoparticles: Their preparation, functionalisation and properties. Acta Phys. Pol. A 2012, 122, 337–345. [Google Scholar] [CrossRef]
- Marcano, D.C.; Kosynkin, D.V.; Berlin, J.M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L.B.; Lu, W.; Tour, J.M. Improved synthesis of graphene oxide. ACS Nano 2010, 4, 4806–4814. [Google Scholar] [CrossRef]
- Wang, G.; Chang, J.; Tang, W.; Xie, W.; Ang, Y.S. 2D materials and heterostructures for photocatalytic water-splitting: A theoretical perspective. J. Phys. D Appl. Phys. 2022, 55, 293002. [Google Scholar] [CrossRef]
- Lops, C.; Ancona, A.; Di Cesare, K.; Dumontel, B.; Garino, N.; Canavese, G.; Hérnandez, S.; Cauda, V. Sonophotocatalytic degradation mechanisms of Rhodamine B dye via radicals generation by micro-and nano-particles of ZnO. Appl. Catal. B Environ. 2019, 243, 629–640. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Wang, X.; Chang, C.-T. Preparation and characterization of graphene oxide. J. Nanomater. 2014, 2014, 276143. [Google Scholar] [CrossRef]
- El-Batal, A.; Sidkey, N.M.; Ismail, A.; Arafa, R.A.; Fathy, R.M. Impact of silver and selenium nanoparticles synthesized by gamma irradiation and their physiological response on early blight disease of potato. J. Chem. Pharm. Res. 2016, 8, 934–951. [Google Scholar]
- Meng, R.; Hou, H.; Liu, X.; Duan, J.; Liu, S. Binder-free combination of graphene nanosheets with TiO2 nanotube arrays for lithium ion battery anode. J. Porous Mater. 2016, 23, 569–575. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Y.; Ma, H.-L.; Zhang, Q.; Xu, W.; Peng, J.; Li, J.; Yu, Z.-Z.; Zhai, M. Ionic-liquid-assisted facile synthesis of silver nanoparticle-reduced graphene oxide hybrids by gamma irradiation. Carbon 2013, 55, 245–252. [Google Scholar] [CrossRef]
- Manalu, S.P.; Natarajan, T.S.; De Guzman, M.; Wang, Y.-F.; Chang, T.-C.; Yen, F.-C.; You, S.-J. Synthesis of ternary g-C3N4/Bi2MoO6/TiO2 nanotube composite photocatalysts for the decolorization of dyes under visible light and direct sunlight irradiation. Green Process. Synth. 2018, 7, 493–505. [Google Scholar] [CrossRef]
- Chaiyakun, S.; Witit-Anun, N.; Nuntawong, N.; Chindaudom, P.; Oaew, S.; Kedkeaw, C.; Limsuwan, P. Preparation and characterization of graphene oxide nanosheets. Procedia Eng. 2012, 32, 759–764. [Google Scholar]
- Gupta, B.; Kumar, N.; Panda, K.; Melvin, A.A.; Joshi, S.; Dash, S.; Tyagi, A.K. Effective noncovalent functionalization of poly (ethylene glycol) to reduced graphene oxide nanosheets through γ-radiolysis for enhanced lubrication. J. Phys. Chem. C 2016, 120, 2139–2148. [Google Scholar] [CrossRef]
- Diak, M.; Klein, M.; Klimczuk, T.; Lisowski, W.; Remita, H.; Zaleska-Medynska, A.; Grabowska, E. Photoactivity of decahedral TiO2 loaded with bimetallic nanoparticles: Degradation pathway of phenol-1-13C and hydroxyl radical formation. Appl. Catal. B Environ. 2017, 200, 56–71. [Google Scholar] [CrossRef]
- Wu, J.-B.; Lin, M.-L.; Cong, X.; Liu, H.-N.; Tan, P.-H. Raman spectroscopy of graphene-based materials and its applications in related devices. Chem. Soc. Rev. 2018, 47, 1822–1873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phan, T.D.; Vo, C.M.; Tran, T.M.T.; Luu, T.L.A.; Nguyen, X.S. Structural and bandgap properties of titanium dioxide nanotube/graphene oxide composites prepared by a facile hydrothermal method. Mater. Res. Express 2019, 6, 105054. [Google Scholar] [CrossRef]
- Van Viet, P.; Phan, B.T.; Mott, D.; Maenosono, S.; Sang, T.T.; Thi, C.M. Silver nanoparticle loaded TiO2 nanotubes with high photocatalytic and antibacterial activity synthesized by photoreduction method. J. Photochem. Photobiol. A Chem. 2018, 352, 106–112. [Google Scholar] [CrossRef]
- Bellardita, M.; Di Paola, A.; Megna, B.; Palmisano, L. Absolute crystallinity and photocatalytic activity of brookite TiO2 samples. Appl. Catal. B Environ. 2017, 201, 150–158. [Google Scholar] [CrossRef]
- Yue, Y.; Zhou, B.; Shi, J.; Chen, C.; Li, N.; Xu, Z.; Liu, L.; Kuang, L.; Ma, M.; Fu, H. γ-Irradiation assisted synthesis of graphene oxide sheets supported Ag nanoparticles with single crystalline structure and parabolic distribution from interlamellar limitation. Appl. Surf. Sci. 2017, 403, 282–293. [Google Scholar] [CrossRef]
- Adly, M.; El-Dafrawy, S.M.; El-Hakam, S. Application of nanostructured graphene oxide/titanium dioxide composites for photocatalytic degradation of rhodamine B and acid green 25 dyes. J. Mater. Res. Technol. 2019, 8, 5610–5622. [Google Scholar] [CrossRef]
- Zhang, Q.; Ye, S.; Chen, X.; Song, X.; Li, L.; Huang, X. Photocatalytic degradation of ethylene using titanium dioxide nanotube arrays with Ag and reduced graphene oxide irradiated by γ-ray radiolysis. Appl. Catal. B Environ. 2017, 203, 673–683. [Google Scholar] [CrossRef]
Experimental FTIR (cm−1) | Literature | Vibration Mode |
---|---|---|
3640–3310 | 3640–3200 | H bonded O–H stretch |
3309–2805 | 3300–2500 | C–H stretch in aromatic O–H stretch carboxylic acid |
1698 | 1760–1690 | C=O stretch |
1591 | 1600–1585 | Ti–OH, C=C |
1480 | 1500–1400 | C–C stretch in ring |
1272, 1035 | 1320–1000 | C–O stretch in carboxylic acid |
916 | 950–916 | O–H bend in carboxylic acid |
553 | 600–400 | Ti–O–Ti |
Samples Name | AgNPs (%) | TNTs (%) |
---|---|---|
GTA-0-W | 7.73 | 21.25 |
GTA-5-W | 8.49 | 14.75 |
GTA-15-W | 7.50 | 8.00 |
GTA-0-P | 5.28 | 3.75 |
GTA-5-P | 11.74 | 9.50 |
GTA-15-P | 7.08 | 22.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, A.P.T.; Nguyen, T.T.T.; Vo, K.D.N. Influence of Radical Scavenger on Radiation Synthesis of Graphene Oxide/TiO2 Nanotubes/Ag Nanoparticles Nanocomposites and Their Dye Photodegradation Efficiency. Water 2023, 15, 2799. https://doi.org/10.3390/w15152799
Nguyen APT, Nguyen TTT, Vo KDN. Influence of Radical Scavenger on Radiation Synthesis of Graphene Oxide/TiO2 Nanotubes/Ag Nanoparticles Nanocomposites and Their Dye Photodegradation Efficiency. Water. 2023; 15(15):2799. https://doi.org/10.3390/w15152799
Chicago/Turabian StyleNguyen, Anh Phuong Thi, Thuy Thanh Thi Nguyen, and Khoa Dang Nguyen Vo. 2023. "Influence of Radical Scavenger on Radiation Synthesis of Graphene Oxide/TiO2 Nanotubes/Ag Nanoparticles Nanocomposites and Their Dye Photodegradation Efficiency" Water 15, no. 15: 2799. https://doi.org/10.3390/w15152799
APA StyleNguyen, A. P. T., Nguyen, T. T. T., & Vo, K. D. N. (2023). Influence of Radical Scavenger on Radiation Synthesis of Graphene Oxide/TiO2 Nanotubes/Ag Nanoparticles Nanocomposites and Their Dye Photodegradation Efficiency. Water, 15(15), 2799. https://doi.org/10.3390/w15152799