Hydrochemistry, Elements Distribution and Their Potential Recoveries in Gold Metallurgical Treatment Tailings Dams
Abstract
:1. Introduction
2. Study Area
3. Methodology
4. Results and Discussions
4.1. Groundwater Composition and Hydrochemical Relationships
4.2. Mineral-Water Interaction and Enrichment Factors
S2O32− + 2OH− + 2O2 ↔ 2SO42− + H2O
2Au + 4CN− = 2 Au(CN)2 + 2 e− for (pH < 9.1)
4.3. Metal Concentrations in Tailing Waters and the Key to Reuse
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lowry, G.V.; Shaw, S.; Kim, C.S.; Rytuba, J.J.; Brown, G.E. Macroscopic and microscopic observations of particle-facilitated mercury transport from New Idria and Sulphur Bank mercury mine tailings. Environ. Sci. Technol. 2004, 38, 5101–5111. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Lei, M.; Weng, L.; Li, Y.; Chen, Y.; Islam, M.S.; Zhao, J.; Chen, T. Fractions and colloidal distribution of arsenic associated with iron oxide minerals in lead-zinc mine-contaminated soils: Comparison of tailings and smelter pollution. Chemosphere 2019, 227, 614–623. [Google Scholar] [CrossRef] [PubMed]
- Moreno, F.; Valente, T.M.F.; Gomes, P.; Fonseca, R.; Costa, M.R.; Costa, A. Partitioning of Potentially Toxic Elements among Two Colloidal Fractions and Relevance for Their Mobility in Different Water Types. In Proceedings of the 16th International Symposium on Water-Rock Interaction (WRI-16) and 13th International Symposium on Applied Isotope Geochemistry (1st IAGC International Conference), Tomsk, Russia, 21–26 July 2019. [Google Scholar] [CrossRef] [Green Version]
- Jackson, L.M.; Parbhakar-Fox, A. Mineralogical and geochemical characterization of the Old Tailings Dam. Australia: Evaluating the effectiveness of a water cover for long-term AMD control. Appl. Geochem. 2016, 68, 64–78. [Google Scholar] [CrossRef]
- Martínez, J.; Hidalgo, M.C.; Rey, J.; Garrido, J.; Kohfahl, C.; Benavente, J.; Rojas, D. A multidisciplinary characterization of a tailings pond in the Linares-La Carolina mining district. Spain. J. Geochem. Explor. 2016, 162, 62–71. [Google Scholar] [CrossRef]
- Araujo, F.S.; Taborda-Llano, I.; Nunes, E.B.; Santos, R.M. Recycling and reuse of mine tailings: A review of advancements and their implications. Geosciences 2022, 12, 319. [Google Scholar] [CrossRef]
- Cacciuttolo, C.; Cano, D. Environmental Impact Assessment of Mine Tailings Spill Considering Metallurgical Processes of Gold and Copper Mining: Case Studies in the Andean Countries of Chile and Peru. Water 2022, 14, 3057. [Google Scholar] [CrossRef]
- Lemos, M.; Valente, T.; Reis, P.M.; Fonseca, R.; Pantaleão, J.P.; Guabiroba, F.; Filho, J.G.; Magalhães, M.; Afonseca, B.; Silva, A.R.; et al. Geochemistry and mineralogy of auriferous tailings deposits and their potential for reuse in Nova Lima Region. Brazil. Sci. Rep. 2023, 13, 4339. [Google Scholar] [CrossRef]
- Acheampong, M.A.; Adiyiah, J.; Ansa, E.D.O. Physico-chemical characteristics of a gold mining tailings dam wastewater. J. Environ. Sci. Eng. 2013, A2, 469–475. [Google Scholar]
- Economopoulos, A.P. Assessment of Sources of Air, Water and Soil Pollution: A Guide to Rapid Source Inventory Techniques and Their Use in Formulating Environmental Control Strategies; World Health Organization: Geneva, Switzerland, 1993; 230p. [Google Scholar]
- Puls, R.W.; Powell, R.M. Transport of inorganic colloids through natural aquifer material: Implications for contaminant transport. Environ. Sci. Technol. 1992, 26, 614–621. [Google Scholar]
- Modi, S.; Yadav, V.K.; Gacem, A.; Ali, I.H.; Dave, D.; Khan, S.H.; Yadav, K.K.; Rather, S.; Ahn, Y.; Son, C.T.; et al. Recent and emerging trends in remediation of methylene blue dye from wastewater by using zinc oxide nanoparticles. Water 2022, 14, 1749. [Google Scholar] [CrossRef]
- Maharajh, D.; Grewar, T.; Neale., J.; van Rooyen., M. Mine Water: A Resource for the Circular Economy in South African Mining Communities. In Proceedings of the Mine Water Solutions, Vancouver, Canada, 12–16 June 2018; pp. 349–362. [Google Scholar]
- Stevanović, Z.; Obradović, L.; Marković, R.; Jonović, R.; Avramović, L.; Bugarin, M.; Stevanović, J. Mine waste water management in the Bor municipality in order to protect the Bor River water. In Water Water-Treatment Technologies and Recent Analytical Developments; Einschlag, F.S.G., Ed.; InTech: Rijeka, Croatia, 2013; pp. 41–62. [Google Scholar]
- Wastewater Characterization Study. TRC Environmental Corporation. Available online: https://www.ibwc.gov/Files/Characterization_Study_March_2015.pdf (accessed on 6 June 2023).
- Leroy, M.N.L.; Richard, M.J.; Mouhamed, A.N.; Sifeu, T.K.; Yvan, A.S.R.; Said, R. Physicochemical characterization of mining waste from the Betare-Oya gold area (East Cameroon) and an adsorption test by Sabga smectite (North-West Cameroon). Scientifica 2020, 2020, 6293819. [Google Scholar] [CrossRef]
- Etteieb, S.; Magdouli, S.; Zolfaghari, M.; Brar, S. Monitoring and analysis of selenium as an emerging contaminant in mining industry: A critical review. Sci. Total Environ. 2020, 698, 134339. [Google Scholar] [CrossRef] [PubMed]
- Dippong, T.; Mihali, C.; Hoaghia, M.A.; Cical, E.; Cosma, A. Chemical modeling of groundwater quality in the aquifer of Seini town–Someș Plain, Northwestern Romania. Ecotoxicol. Environ. Saf. 2019, 168, 88–101. [Google Scholar] [CrossRef]
- Rostami, A.A.; Isazadeh, M.; Shahabi, M.; Nozari, H. Evaluation of geostatistical techniques and their hybrid in modelling of groundwater quality index in the Marand Plain in Iran. Environ. Sci. Pollut. Res. 2019, 26, 34993–35009. [Google Scholar] [CrossRef] [PubMed]
- Rashid, A.; Ayub, M.; Ullah, Z.; Ali, A.; Sardar, T.; Iqbal, J.; Gao, X.; Bundschuh, J.; Li, C.; Khattak, S.A.; et al. Groundwater Quality, Health Risk Assessment, and Source Distribution of Heavy Metals Contamination around Chromite Mines: Application of GIS, Sustainable Groundwater Management, Geostatistics, PCAMLR, and PMF Receptor Model. Int. J. Environ. Res. Public Health 2023, 20, 2113. [Google Scholar] [CrossRef]
- Yadav, K.K.; Gupta, N.; Kumar, V.; Choudhary, P.; Khan, S.A. GIS-based evaluation of groundwater geochemistry and statistical determination of the fate of contaminants in shallow aquifers from different functional areas of Agra city, India: Levels and spatial distributions. RSC Adv. 2018, 8, 15876–15889. [Google Scholar] [CrossRef] [PubMed]
- Nas, B. Geostatistical Approach to Assessment of Spatial Distribution of Groundwater Quality. Pol. J. Environ. Stud. 2019, 18, 1073–1082. [Google Scholar]
- Sonia; Ghosh, T.; Gacem, A.; Alsufyani, T.; Alam, M.M.; Yadav, K.K.; Amanullah, M.; Cabral-Pinto, M.M.S. Geospatial Evaluation of Cropping Pattern and Cropping Intensity Using Multi Temporal Harmonized Product of Sentinel-2 Dataset on Google Earth Engine. Appl. Sci. 2022, 12, 12583. [Google Scholar] [CrossRef]
- Naranjo-Fernández, N.; Guardiola-Albert, C.; Montero-González, E. Applying 3D Geostatistical Simulation to Improve the Groundwater Management Modelling of Sedimentary Aquifers: The Case of Doñana (Southwest Spain). Water 2019, 11, 39. [Google Scholar] [CrossRef] [Green Version]
- França, S.C.; Andrade, L.S.; Loayza, P.E.; Trampus, B.C. Water in Mining—Challenges for Reuse. In Proceedings of the 13th International Mine Water Association Congress—Mine Water & Circular Economy, Lappeenranta, Finland, 25–30 June 2017. [Google Scholar]
- Semenkov, I.; Sharapova, A.; Lednev., S.; Yudina., N.; Karpachevskiy., A.; Klink., G.; Koroleva., T. Geochemical Partitioning of Heavy Metals and Metalloids in the Ecosystems of Abandoned Mine Sites: A Case Study within the Moscow Brown Coal Basin. Water 2022, 14, 113. [Google Scholar] [CrossRef]
- Domingues, A.F.; Boson, P.H.G.; Alípaz, S. Water Resource Management and the Mining Industry; Instituto Brasileiro de Mineração: Brasília, Brazil, 2013; 336p. [Google Scholar]
- Yadav, K.K.; Gupta, N.; Kumar, V.; Sharma, S.; Arya, S. Water quality assessment of Pahuj River using water quality index at Unnao Balaji, MP, India. Int. J. Sci. Basic Appl. Res. 2015, 19, 241–250. [Google Scholar]
- Dang, H.T.; Tran, H.D.; Tran, N.T.; Tran, A.H.; Sasakawa, M. Potential Reuse of Coal Mine Wastewater: A Case Study in Quang Ninh. Vietnam. In Proceedings of the 37th WEDC International Conference, Hanoi, Vietnam, 15–19 September 2014. [Google Scholar]
- Huertas, E.; Salgot, M.; Hollender, J.; Weber, S.; Dott, W.; Khan, S.; Schafer, A.; Messalem, R.; Bis, B.; Aharoni, A.; et al. Key objectives for water reuse concepts. Desalination 2008, 218, 120–131. [Google Scholar] [CrossRef]
- Meng, S.; Wen, S.; Han., G.; Wang., X.; Feng., Q. Wastewater treatment in mineral processing of non-ferrous metal resources: A review. Water 2022, 14, 726. [Google Scholar] [CrossRef]
- Maurya, P.K.; Ali, S.A.; Zaidi, S.K.; Wasi, S.; Tabrez, S.; Malav, L.C.; Ditthakit, P.; Com, C.T.; Cabral-Pinto, M.M.S.; Yadav, K.K. Assessment of groundwater geochemistry for drinking and irrigation suitability in Jaunpur district of Uttar Pradesh using GIS-based statistical inference. Environ. Sci. Pollut. Res. 2023, 30, 29407–29431. [Google Scholar] [CrossRef]
- Zhang, C.; Wen, L.; Wang., Y.; Liu., C.; Zhou., Y.; Lei., G. Can constructed wetlands be wildlife refuges? A review of their potential biodiversity conservation value. Sustainability 2020, 12, 1442. [Google Scholar] [CrossRef] [Green Version]
- Rajpar, M.N.; Ahmad, S.; Zakaria., M.; Ahmad., A.; Guo., X.; Nabi., G.; Wanghe., K. Artificial wetlands as alternative habitat for a wide range of waterbird species. Ecol. Indic. 2022, 138, 108855. [Google Scholar] [CrossRef]
- Mohapatra, D.P.; Kirpalani, D.M. Process effluents and mine tailings: Sources. effects and management and role of nanotechnology. Nanotechnol. Environ. Eng. 2017, 2, 1. [Google Scholar] [CrossRef] [Green Version]
- Araya, N.; Ramírez, Y.; Kraslawski, A.; Cisternas, L.A. Feasibility of re-processing mine tailings to obtain critical raw materials using real options analysis. J. Environ. Manag. 2021, 284, 112060. [Google Scholar] [CrossRef]
- Atlagić, S.G.; Tankosić, L.; Prźulj, S.; Mirošljević, D. Recent Patents in Reuse of Metal Mining Tailings and Emerging Potential in Nanotechnology Applications. Recent Pat. Nanotechnol. 2021, 15, 256–269. [Google Scholar] [CrossRef] [PubMed]
- Moreira, V.R.; Lebron, Y.A.R.; Gontijo., D.; Amaral., M.C.S. Membrane distillation and dispersive solvent extraction in a closed-loop process for water. sulfuric acid and copper recycling from gold mining wastewater. Chem. Eng. J. 2022, 435, 133874. [Google Scholar] [CrossRef]
- Sharma, G.K.; Jena, R.K.; Ray, P.; Yadav, K.K.; Moharana, P.C.; Cabral-Pinto, M.M.; Bordoloi, G. Evaluating the geochemistry of groundwater contamination with iron and manganese and probabilistic human health risk assessment in endemic areas of the world’s largest River Island, India. Environ. Toxicol. Pharmacol. 2021, 87, 103690. [Google Scholar] [CrossRef] [PubMed]
- DuChanois, R.M.; Cooper, N.J.; Lee, B.; Patel, S.K.; Mazurowski, L.; Graedel, T.E.; Elimelech, M. Prospects of metal recovery from wastewater and brine. Nat. Water 2023, 1, 37–46. [Google Scholar] [CrossRef]
- Nakhjiri, A.T.; Sanaeepur, H.; Amooghin, A.E.; Shirazi, M.M.A. Recovery of precious metals from industrial wastewater towards resource recovery and environmental sustainability: A critical review. Desalination 2022, 527, 115510. [Google Scholar] [CrossRef]
- Ahmed, M.; Mavukkandy, M.O.; Giwa, A.; Elektorowicz, M.; Katsou, E.; Khelifi, O.; Naddeo, V.; Hasan, S.W. Recent developments in hazardous pollutants removal from wastewater and water reuse within a circular economy. NPJ Clean Water 2022, 5, 12. [Google Scholar] [CrossRef]
- Soares, V.A.A.P. Recuperação de Metais Estratégicos au (iii), ag (i), pt (iv) e pd (ii) de Barragens de Rejeito e Lixo Eletrônico Com o Uso de Nanotecnologia e Urucum Visando Tecnologias Sustentavéis: Uma Proposta Translacional. Ph.D. Thesis, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil, 2022. [Google Scholar]
- Kumar, M.; Nandi, M.; Pakshirajan, K. Recent advances in heavy metal recovery from wastewater by biogenic sulfide precipitation. J. Environ. Manag. 2021, 278, 111555. [Google Scholar] [CrossRef]
- Wang, F.; Lu, X.; Li, X.Y. Selective removals of heavy metals (Pb2+, Cu2+, and Cd2+) from wastewater by gelation with alginate for effective metal recovery. J. Hazard. Mater. 2016, 308, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Reis, B.G. Toward High Temperature and Low pH Gold Mining Effluent Reclamation by Different Membrane Separation Processes. Ph.D. Thesis, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil, 2018. [Google Scholar]
- Urkiaga, A.; Fuentes, L.D.; Bis, B.; Chiru, E.; Balasz, B.; Hernández, F. Development of analysis tools for social, economic and ecological effects of water reuse. Desalination 2008, 218, 81–91. [Google Scholar] [CrossRef]
- Lemos, M.; Valente, T.; Reis, P.M.; Fonseca, R.; Delbem, I.; Ventura, J.; Magalhães, M. Mineralogical and geochemical characterization of gold mining tailings and their potential to generate acid mine drainage (Minas Gerais. Brazil). Minerals 2020, 11, 39. [Google Scholar] [CrossRef]
- Goldfarb, R.J.; Groves, D.I.; Gardoll, S. Orogenic gold and geologic time: A global synthesis. Ore Geol. Rev. 2001, 18, 1–75. [Google Scholar] [CrossRef]
- Lobato, L.M.; Ribeiro-Rodrigues, L.C.; Vieira, F.W.R. Brazil’s premier gold province. Part II: Geology and genesis of gold deposits in the Archean Rio das Velhas greenstone belt, Quadrilátero Ferrífero. Miner. Depos. 2001, 36, 249–277. [Google Scholar] [CrossRef]
- AGA. AngloGold Ashanti AngloGold Ashanti Recommendations. 2021; (Unpublished). [Google Scholar]
- Eaton, A.D.; Clesceri, L.S.; Rice, E.W.; Greenberg, A.E.; Franson, M.A.H. Standard Method for Examination of Water and Wastewater, 21st ed.; American Public Health Association: Washington, DC, USA, 2005. [Google Scholar]
- Pereira, M.S. Avaliação dos Produtos de Oxidação e Ocorrência do Efeito Preg-Robbing da Oxidação sob Pressão em Autoclave de Bancada e Industrial Para o Minério Sulfetado da Mina I de Córrego do Sítio, Minas Gerais. Master’s Thesis, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil, 2020. [Google Scholar]
- Magalhães, M.F. Utilização de Simulação de Elementos Discretos (DEM) Para Avaliação de Parâmetros da Teoria da Amostragem. Ph.D. Thesis, Universidade de São Paulo, São Paulo, Brazil, 2022. [Google Scholar]
- Lemos, M.G.; Valente, T.M.F.; Reis, A.P.M.; Fonsceca, R.; Dumont, J.M.; Ferreira, G.M.M.; Delbem, I.D. Geoenvironmental study of gold mining tailings in a circular economy context: Santa Barbara, Minas Gerais, Brazil. Mine Water Environ. 2021, 40, 257–269. [Google Scholar] [CrossRef]
- Moura, W. Especiação de Cianeto para Redução do Consumo no Circuito de Lixiviação de Calcinado da Usina do Queiróz. Master Thesis, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil, 2005. [Google Scholar]
- Instituto Brasileiro de Geografia e Estatística—IBGE. Available online: https://www.ibge.gov.br/023 (accessed on 28 June 2023).
- Gomes, F.P.S.S. Impactos dos Processos de Drenagem Ácida na Qualidade Ambiental e Acumulação Potencial de Metais Estratégicos em Barragens Localizadas na Faixa Piritosa Ibérica. Ph.D. Thesis, Universidade do Minho, Braga, Portugal, 2021. [Google Scholar]
- Acosta, J.A.; Cano, A.F.; Arocena, J.M.; Debela, F.; Martínez-Martínez, S. Distribution of metals in soil particle size fractions and its implication to risk assessment of playgrounds in Murcia City (Spain). Geoderma 2009, 149, 101–109. [Google Scholar] [CrossRef]
- Wilson, R.; Toro, N.; Naranjo, O.; Emery, X.; Navarra, A. Integration of geostatistical modeling into discrete event simulation for development of tailings dam retreatment applications. Miner. Eng. 2021, 164, 106814. [Google Scholar] [CrossRef]
- Dinpashoh, Y.; Jahanbakhsh-Asl, S.; Rasouli, A.A.; Foroughi, M.; Singh, V.P. Impact of climate change on potential evapotranspiration (case study: West and NW of Iran). Theor. Appl. Climatol. 2019, 136, 185–201. [Google Scholar] [CrossRef]
- Biazar, S.M.; Dinpashoh, Y.; Singh, V.P. Sensitivity analysis of the reference crop evapotranspiration in a humid region. Environ. Sci. Pollut. Res. 2019, 26, 32517–32544. [Google Scholar] [CrossRef] [PubMed]
- Gomes, P.; Valente, T.; Cordeiro, M.; Moreno, F. Hydrochemistry of Pit Lakes in the Portuguese Sector of the Iberian Pyrite Belt. In Proceedings of the 16th International Symposium on Water-Rock Interaction (WRI-16) and 13th International Symposium on Applied Isotope Geochemistry (1st IAGC International Conference), Tomsk, Russia, 21–26 July 2019; E3S Web of Conferences, EDP Sciences. Volume 98, p. 09007. [Google Scholar] [CrossRef] [Green Version]
- Conselho Nacional do Meio Ambiente (Brasil). Resolução, n° 357, de 17 de Março de 2005. In Proceedings of the Dispõe Sobre a Classificação dos Corpos de Água e Diretrizes Ambientais Para o Seu Enquadramento, Bem Como Estabelece as Condições e Padrões de Lançamento de Efluentes, e dá Outras Providências, Diário Oficial da União, Brasília, Brazil, 17 March 2005. [Google Scholar]
- Junqueira, P.A.; Lobato, L.M.; Ladeira, E.A.; Simões, E.J.M. Structural control and hydrothermal alteration at the BIF-hosted Raposos lode-gold deposit, Quadrilátero Ferrífero, Brazil. Ore Geol. Rev. 2007, 32, 629–650. [Google Scholar] [CrossRef]
- Valente, T.M.F. Modelos de Caracterização de Impacte Ambiental para Escombreiras Reactivas: Equilíbrio e Evolução de Resíduos de Actividade Extractiva. Ph.D. Thesis, Universidade do Minho, Braga, Portugal, 2004. [Google Scholar]
- Deschamps, E.; Ciminelli, V.S.; Lange, F.T.; Matschullat, J.; Raue, B.; Schmidt, H. Soil and sediment geochemistry of the iron quadrangle, Brazil the case of arsenic. J. Soils Sediments 2002, 2, 216–222. [Google Scholar] [CrossRef]
- Krauskopf, K.B. Separation of manganese from iron in sedimentary processes. Geochim. Cosmochim. Acta 1957, 12, 61–84. [Google Scholar] [CrossRef]
- Rahighi, R.; Hosseini-Hosseinabad, S.M.; Zeraati, A.S.; Suwaileh, W.; Norouzi, A.; Panahi, M.; Gholipour, S.; Karaman, C.; Akhavan, O.; Khollari, M.A.R.; et al. Two-dimensional materials in enhancement of membrane-based lithium recovery from metallic-ions-rich wastewaters: A review. Desalination 2022, 543, 116096. [Google Scholar] [CrossRef]
- Millan, R.D.S.; Galery, R.; Costa, L.M.; Windmoeller, C.C.; Soares, V.A.A.P.; Diniz, A.G.N.; Amador, V.S. Processo para tratamento de efluentes e recuperação de metais nobres com uso de sementes de Bixa orellana. Linnaeus. Patent BR1020210263202, 23 December 2021. [Google Scholar]
Structure | pH | EC | CN Wad | Au | Cd | Hg | Mn | Zn | Pb | Cu | Fe | Ni | SO24− | As | Sb | Co | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
µS/cm | mg/L | mg/L | |||||||||||||||
Cocoruto (CO) | Mean | 6.90 | 2585 | 0.025 | 0.0250 | 0.0005 | 0.001 | 1.72 | 0.0125 | 0.012 | 0.015 | 0.9 | 0.03 | 1270.8 | 0.006 | 0.001 | 0.0005 |
Max | 8.67 | 4036 | 0.078 | 0.0250 | 0.0005 | 0.001 | 24.61 | 0.1000 | 0.061 | 0.224 | 6.1 | 0.42 | 5444.5 | 0.026 | 0.001 | 0.0005 | |
Min | 6.08 | 1390 | 0.025 | 0.0250 | 0.0005 | 0.001 | 0.03 | 0.0100 | 0.005 | 0.004 | 0.1 | 0.01 | 33.3 | 0.005 | 0.001 | 0.0005 | |
SD | 0.5867 | 877 | 0.0024 | 0.0000 | 0.0000 | 0.000 | 3.54 | 0.0133 | 0.016 | 0.034 | 1.2 | 0.06 | 892.3 | 0.004 | 0.000 | 0.0000 | |
Calcinado (CA) | Mean | 9.07 | 4402 | 28.9 | 0.0280 | 0.0005 | 0.001 | 0.10 | 0.1018 | 0.005 | 1285 | 0.2 | 0.39 | 1989.1 | 0.005 | 0.001 | 0.0005 |
Max | 10.44 | 6947 | 88.0 | 0.0800 | 0.0005 | 0.001 | 0.62 | 1.1000 | 0.028 | 46523 | 2.2 | 9.12 | 2820.4 | 0.005 | 0.001 | 0.0005 | |
Min | 2.92 | 2367 | 6.0 | 0.0250 | 0.0005 | 0.001 | 0.01 | 0.0100 | 0.005 | 0.0 | 0.1 | 0.01 | 1337.1 | 0.005 | 0.001 | 0.0005 | |
SD | 1.187 | 1065 | 14.50 | 0.0129 | 0.0000 | 0.000 | 0.14 | 0.2328 | 0.003 | 5698.7 | 0.4 | 1.32 | 355.7 | 0.000 | 0.000 | 0.0000 | |
CDS2 | Mean | 7.32 | 3808 | 11.240 | 0.0408 | 0.0100 | 0.001 | 0.02 | 0.0104 | 0.107 | 19.3 | 0.1 | 1.94 | 2234.7 | 1.6 | 4.0 | 0.0100 |
Max | 8.03 | 4460 | 7.920 | 0.3000 | 0.0100 | 0.001 | 0.02 | 0.0159 | 0.191 | 20.7 | 0.4 | 2.62 | 3500.0 | 25.6 | 23.8 | 0.0100 | |
Min | 6.66 | 3455 | 13.700 | 0.0250 | 0.0100 | 0.001 | 0.02 | 0.0050 | 0.040 | 14.1 | 0.0 | 0.01 | 1608.0 | 0.0 | 0.5 | 0.0100 | |
SD | 0.3592 | 229 | 1.000 | 0.0519 | 0.0000 | 0.000 | 0.00 | 0.0040 | 0.053 | 1.6 | 0.1 | 1.10 | 687.5 | 6.2 | 5.1 | 0.0000 |
pH | EC | Au | Cd | Mn | Zn | Pb | Fe | Cu | Ni | SO42− | As | Sb | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
µS/cm | mg/L | |||||||||||||
pH | 1.00 | |||||||||||||
EC | µS/cm | 0.568 | 1.00 | |||||||||||
Au | mg/L | 0.008 | 0.077 | 1.00 | ||||||||||
Cd | −0.114 | 0.198 | 0.319 | 1.00 | ||||||||||
Mn | −0.160 | −0.125 | −0.041 | −0.140 | 1.00 | |||||||||
Zn | 0.315 | 0.214 | −0.035 | −0.130 | −0.034 | 1.00 | ||||||||
Pb | −0.122 | 0.193 | 0.292 | 0.903 | −0.030 | −0.140 | 1.00 | |||||||
Fe | −0.114 | −0.232 | −0.046 | −0.191 | 0.385 | −0.026 | −0.086 | 1.00 | ||||||
Cu | 0.275 | 0.099 | −0.020 | −0.068 | −0.042 | −0.021 | −0.075 | −0.061 | 1.00 | |||||
Ni | 0.137 | 0.160 | 0.172 | 0.417 | −0.086 | −0.063 | 0.377 | −0.134 | 0.747 | 1.00 | ||||
SO42− | 0.376 | 0.401 | 0.066 | 0.131 | 0.336 | 0.042 | 0.088 | −0.175 | 0.143 | 0.227 | 1.00 | |||
As | −0.032 | 0.013 | −0.007 | 0.263 | −0.026 | −0.022 | 0.047 | −0.039 | −0.013 | 0.133 | 0.055 | 1.00 | ||
Sb | −0.066 | 0.093 | 0.334 | 0.761 | −0.091 | −0.080 | 0.389 | −0.125 | −0.044 | 0.271 | 0.154 | 0.256 | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lemos, M.G.; Valente, T.M.; Reis, A.P.M.; Braga, A.S.; Fonseca, R.M.F.; Guabiroba, F.; Filho, J.G.d.M.; Magalhães, M.F.; Silva, A.R.; Bhering, A.P.; et al. Hydrochemistry, Elements Distribution and Their Potential Recoveries in Gold Metallurgical Treatment Tailings Dams. Water 2023, 15, 2714. https://doi.org/10.3390/w15152714
Lemos MG, Valente TM, Reis APM, Braga AS, Fonseca RMF, Guabiroba F, Filho JGdM, Magalhães MF, Silva AR, Bhering AP, et al. Hydrochemistry, Elements Distribution and Their Potential Recoveries in Gold Metallurgical Treatment Tailings Dams. Water. 2023; 15(15):2714. https://doi.org/10.3390/w15152714
Chicago/Turabian StyleLemos, Mariana Gazire, Teresa Maria Valente, Amélia Paula Marinho Reis, Amália Sequeira Braga, Rita Maria Ferreira Fonseca, Fernanda Guabiroba, José Gregorio da Mata Filho, Marcus Felix Magalhães, Antonio Roberto Silva, Apolo Pedrosa Bhering, and et al. 2023. "Hydrochemistry, Elements Distribution and Their Potential Recoveries in Gold Metallurgical Treatment Tailings Dams" Water 15, no. 15: 2714. https://doi.org/10.3390/w15152714
APA StyleLemos, M. G., Valente, T. M., Reis, A. P. M., Braga, A. S., Fonseca, R. M. F., Guabiroba, F., Filho, J. G. d. M., Magalhães, M. F., Silva, A. R., Bhering, A. P., & Rebelo Diório, G. (2023). Hydrochemistry, Elements Distribution and Their Potential Recoveries in Gold Metallurgical Treatment Tailings Dams. Water, 15(15), 2714. https://doi.org/10.3390/w15152714