Optimized Sensor Placement of Water Supply Network Based on Multi-Objective White Whale Optimization Algorithm
Abstract
:1. Introduction
2. Methodology
2.1. Determine the Leak Sensitive Function for Each Node
2.2. Determination of Constraints
2.2.1. Pressure Dependence of Pipe Network
2.2.2. Shortest Path Matrix
2.2.3. Water Pressure Sensitivity of Pipe Network
2.3. Multi-Objective Optimization
- Step 1: Initialize the population: Randomly generate a set of initial solutions as the initial population.
- Step 2: Evaluate fitness: Evaluate each individual in the population based on multiple objective functions to obtain their fitness values.
- Step 3: Update the best solutions: Select the current pareto optimal solution set based on the fitness values.
- Step 4: Update whale positions: Update the positions and velocities of the whales based on the positions of the current pareto optimal solution set.
- Step 5: Update the population: Update the positions and velocities of individuals in the population based on the new whale positions.
3. Case Study: Qingdao City
3.1. Determination of the Number of Pressure Monitoring Points
3.2. Optimal Layout Scheme
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Adedeji, K.B.; Hamam, Y.; Abe, B.T.; Abu-Mahfouz, A.M. Towards achieving a reliable leakage detection and localization algorithm for application in water piping networks: An overview. IEEE Access 2017, 5, 20272–20285. [Google Scholar] [CrossRef]
- Puust, R.; Kapelan, Z.; Savic, D.A.; Koppel, T. A review of methods for leakage management in pipe networks. Urban Water J. 2010, 7, 25–45. [Google Scholar] [CrossRef]
- Chan, T.K.; Chin, C.S.; Zhong, X. Review of current technologies and proposed intelligent methodologies for water distributed network leakage detection. IEEE Access 2018, 6, 78846–78867. [Google Scholar] [CrossRef]
- Zhou, X.; Tang, Z.; Xu, W.; Meng, F.; Chu, X.; Xin, K.; Fu, G. Deep learning identifies accurate burst locations in water distribution networks. Water Res. 2019, 166, 115058. [Google Scholar] [CrossRef] [PubMed]
- Khorshidi, M.S.; Nikoo, M.R.; Taravatrooy, N.; Sadegh, M.; Al-Wardy, M.; Al-Rawas, G.A. Pressure sensor placement in water distribution networks for leak detection using a hybrid information-entropy approach. Inform. Sci. 2020, 516, 56–71. [Google Scholar] [CrossRef]
- Moltchanov, S.; Levy, I.; Etzion, Y.; Lerner, U.; Broday, D.M.; Fishbain, B. On the feasibility of measuring urban air pollution by wireless distributed sensor networks. Sci. Total Environ. 2015, 502, 537–547. [Google Scholar] [CrossRef]
- Raei, E.; Shafiee, M.E.; Nikoo, M.R.; Berglund, E. Placing an ensemble of pressure sensors for leak detection in water distribution networks under measurement uncertainty. J. Hydroinform. 2019, 21, 223–239. [Google Scholar] [CrossRef]
- Taravatrooy, N.; Nikoo, M.R.; Hobbi, S.; Sadegh, M.; Izady, A. A novel hybrid entropy-clustering approach for optimal placement of pressure sensors for leakage detection in water distribution systems under uncertainty. Urban Water J. 2020, 17, 185–198. [Google Scholar] [CrossRef]
- Khorshidi, M.S.; Nikoo, M.R.; Ebrahimi, E.; Sadegh, M. A robust decision support leader-follower framework for design of contamination warning system in water distribution network. J. Clean. Prod. 2019, 214, 666–673. [Google Scholar] [CrossRef]
- Jung, D.; Kim, J.H. Using mechanical reliability in multiobjective optimal meter placement for pipe burst detection. J. Water Resour. Plan. Manag. 2018, 144, 04018031. [Google Scholar] [CrossRef]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef] [Green Version]
- Naserizade, S.S.; Nikoo, M.R.; Montaseri, H. A risk-based multi-objective model for optimal placement of sensors in water distribution system. J. Hydrol. 2018, 557, 147–159. [Google Scholar] [CrossRef]
- Francés-Chust, J.; Brentan, B.M.; Carpitella, S.; Izquierdo, J.; Montalvo, I. Optimal placement of pressure sensors using fuzzy DEMATEL-based sensor influence. Water 2020, 12, 493. [Google Scholar] [CrossRef] [Green Version]
- Brentan, B.; Carpitella, S.; Barros, D.; Meirelles, G.; Certa, A.; Izquierdo, J. Water quality sensor placement: A multi-objective and multi-criteria approach. Water Resour. Manag. 2021, 35, 225–241. [Google Scholar] [CrossRef]
- Papadopoulou, M.; Raphael, B.; Smith, I.F.C.; Sekhar, C. Hierarchical sensor placement using joint entropy and the effect of modeling error. Entropy 2014, 16, 5078–5101. [Google Scholar] [CrossRef] [Green Version]
- Forconi, E.; Kapelan, Z.; Ferrante, M.; Mahmoud, H.; Capponi, C. Risk-based sensor placement methods for burst/leak detection in water distribution systems. Water Sci. Technol. Water Supply 2017, 17, 1663–1672. [Google Scholar] [CrossRef]
- Berglund, E.Z.; Pesantez, J.E.; Rasekh, A.; Shafiee, M.E.; Sela, L.; Haxton, T. Review of modeling methodologies for managing water distribution security. J. Water Resour. Plan. Manag. 2020, 146, 03120001. [Google Scholar] [CrossRef]
- Qi, Z.; Zheng, F.; Guo, D.; Zhang, T.; Shao, Y.; Yu, T.; Zhang, K.; Maier, H.R. A comprehensive framework to evaluate hydraulic and water quality impacts of pipe breaks on water distribution systems. Water Resour. Res. 2018, 54, 8174–8195. [Google Scholar] [CrossRef]
- Sambito, M.; Freni, G. Strategies for Improving Optimal Positioning of Quality Sensors in Urban Drainage Systems for Non-Conservative Contaminants. Water 2021, 13, 934. [Google Scholar] [CrossRef]
- Julien, P.; Nouho, K.; Jean-Marie, M.; Vincent, R.; Pierre, S. Impact of an intense combined sewer overflow event on the microbiological water quality of the Seine River. Water Res. 2011, 45, 893–903. [Google Scholar] [CrossRef]
- Sho, N.; Maki, A.; Naoya, O.; Jun, H.; Naoki, F. Monitoring of iodine species during water purification at a public water treatment plant in Japan. Water Supply 2019, 19, 580–587. [Google Scholar] [CrossRef]
- Ami, P.; Avi, O. Multiobjective Contaminant Sensor Network Design for Water Distribution Systems. J. Water Resour. Plan. Manag. 2008, 134, 366–377. [Google Scholar] [CrossRef] [Green Version]
- Hu, Z.; Chen, W.; Chen, B.; Tan, D.; Zhang, Y.; Shen, D. Robust hierarchical sensor optimization placement method for leak detection in water distribution system. Water Resour. Manag. 2021, 35, 3995–4008. [Google Scholar] [CrossRef]
- He, G.; Zhang, T.; Zheng, F.; Zhang, Q. An efficient multi-objective optimization method for water quality sensor placement within water distribution systems considering contamination probability variations. Water Res. 2018, 143, 165–175. [Google Scholar] [CrossRef] [PubMed]
Monitoring Point | Monitored | Class | Monitoring Point |
---|---|---|---|
CY1 | 27.87 | 27.76 | 0.3947 |
CY2 | 42.06 | 42.93 | 2.0685 |
CY3 | 27.59 | 27.41 | 0.6524 |
CY4 | 29.42 | 29.09 | 1.1217 |
CY5 | 29.37 | 29.07 | 1.0215 |
CY6 | 37.66 | 37.99 | 0.8763 |
CY7 | 35.06 | 35.05 | 0.0285 |
CY8 | 32.27 | 32.01 | 0.8057 |
CY9 | 22.36 | 22.21 | 0.6708 |
CY10 | 45.69 | 44.76 | 2.0355 |
CY11 | 47.67 | 48.00 | 0.6923 |
F1 | 7.91 | 7.78 | 1.6435 |
F2 | 11.56 | 11.61 | 0.4325 |
F3 | 119.98 | 119.54 | 0.3667 |
Solution Number | Alternative Pressure Measurement Point Number | Fitness1 | Fitness2 |
---|---|---|---|
Solution 1 | 9, 15, 33, 46, 68, 79, 88, 92, 104, 114, 119 | 0.802 | 0.921 |
Solution 2 | 9, 14, 35, 46, 68, 76, 88, 95, 104, 117, 115 | 0.811 | 0.912 |
Solution 3 | 9, 15, 33, 47, 66, 79, 86, 96, 102, 114, 119 | 0.821 | 0.903 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guan, Y.; Lv, M.; Li, S.; Su, Y.; Dong, S. Optimized Sensor Placement of Water Supply Network Based on Multi-Objective White Whale Optimization Algorithm. Water 2023, 15, 2677. https://doi.org/10.3390/w15152677
Guan Y, Lv M, Li S, Su Y, Dong S. Optimized Sensor Placement of Water Supply Network Based on Multi-Objective White Whale Optimization Algorithm. Water. 2023; 15(15):2677. https://doi.org/10.3390/w15152677
Chicago/Turabian StyleGuan, Yihong, Mou Lv, Shuyan Li, Yanbo Su, and Shen Dong. 2023. "Optimized Sensor Placement of Water Supply Network Based on Multi-Objective White Whale Optimization Algorithm" Water 15, no. 15: 2677. https://doi.org/10.3390/w15152677
APA StyleGuan, Y., Lv, M., Li, S., Su, Y., & Dong, S. (2023). Optimized Sensor Placement of Water Supply Network Based on Multi-Objective White Whale Optimization Algorithm. Water, 15(15), 2677. https://doi.org/10.3390/w15152677