Optimizing Anaerobic Digestion at Ambient Temperatures: Energy Efficiency and Cost Reduction Potential in Panama
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sludge Sampling
2.2. Analytical Methods
2.3. Anaerobic Digestivity Test
2.3.1. Codigestion
2.3.2. Calculation of the Biochemical Potential of Methane
2.3.3. Kinetic Model of Methane Prediction
2.3.4. Biodegradability Kinetics of Sludge
2.4. Energy Estimation
3. Results and Discussion
3.1. Physicochemical Characterization
3.2. Digestivity Assays and Biochemical Methane Potential
3.3. Digestivity Kinetics
3.4. Biodegradability Kinetics of Sludge
3.5. Energy Estimation for CHP System
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rodriguez, D.J.; Serrano, H.A.; Delgado, A.; Saltiel, D.N.Y.G. De Residuo a Recurso: Cambiando Paradigmas Para Intervenciones Más Inteligentes Para la Gestión de Aguas Residuales en América Latina y el Caribe; Banco Mundial: Washington, DC, USA, 2020. [Google Scholar]
- Sialve, B.; Bernet, N.; Bernard, O. Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol. Adv. 2009, 27, 409–416. [Google Scholar] [CrossRef] [Green Version]
- Turlej, T.; Banás, M. Sustainable Management of Sewage Sludge; E3S Web of Conference; EDP Sciences: Polanczyk, Poland, 2018. [Google Scholar]
- Lima, D.; Appleby, G.; Li, L. A Scoping Review of Options for Increasing Biogas Production from Sewage Sludge: Challenges and Opportunities for Enhancing Energy Self-Sufficiency in Wastewater Treatment Plants. Energies 2023, 16, 2369. [Google Scholar] [CrossRef]
- Wu, L.J.; Qin, Y.; Hojo, T.; Li, Y.Y. Upgrading of anaerobic digestion of waste activated sludge by temperature-phased process with recycle. Energy 2015, 87, 381–389. [Google Scholar] [CrossRef]
- Sudiartha, G.A.W.; Imai, T.; Hung, Y.-T. Effects of Stepwise Temperature Shifts in Anaerobic Digestion for Treating Municipal Wastewater Sludge: A Genomic Study. Int. J. Environ. Res. Public Health 2022, 19, 5728. [Google Scholar] [CrossRef]
- Deng, L.W.; Yang, H.N.; Liu, G.J.; Zheng, D.; Chen, Z.A.; Liu, Y.; Pu, X.D.; Song, L.; Wang, Z.Y.; Lei, Y.H. Kinetics of temperature effects and its significance to the heating strategy for anaerobic digestion of swine wastewater. Appl. Energy 2014, 134, 349–355. [Google Scholar] [CrossRef]
- Tavera-Ruiz, C.; Marti-Herrero, J.; Mendieta, O.; Jaimes-Estevez, J.; Gauthier-Maradei, P.; Azimov, U.; Escalante, H.; Castro, L. Current understanding and perspectives on anaerobic digestion in developing countries: Colombia case study. Renew. Sustain. Energy Rev. 2023, 173, 16. [Google Scholar] [CrossRef]
- Ortiz-Sánchez, M.F.; Cuevas-Rodriguez, G. Energy recovery from wastewater in Mexico: A systematic review. Front. Environ. Sci. 2023, 11, 1116053. [Google Scholar] [CrossRef]
- Alcaraz-Ibarra, S.; Mier-Quiroga, M.A.; Esparza-Soto, M.; Lucero-Chavez, M.; Fall, C. Treatment of chocolate-processing industry wastewater in a low-temperature pilot-scale UASB: Reactor performance and in-situ biogas use for bioenergy recovery. Biomass Bioenergy 2020, 142, 10. [Google Scholar] [CrossRef]
- Deago, E.; Ramírez, M.; Vallester, E. Evaluación de biosólidos de aguas residuales para producción de biogás: Alternativa sostenible del manejo de rellenos sanitarios en Panamá. In Proceedings of the VIII Simposio Iberoamericano de Ingeniería de Residuos, Asunción, Paraguay, 17–18 September 2019. [Google Scholar]
- Ramírez, M.; Deago, E.; Tejedor, N. Digestividad Anaeróbica de biosólidos de aguas residuales usando el sistema oxitop para estimar la producción de biogás. Rev. I+D Tecnológico 2019, 16, 51–58. [Google Scholar] [CrossRef]
- Mendoza, L.; González, Y.; Ortiz, E.; Ramírez, M.; Deago, E.; James, A. Use of Biochar to Improve Biomethanization in Anaerobic Co-Digestion. In Proceedings of the 2022 8th International Engineering, Sciences and Technology Conference (IESTEC), Panama City, Panama, 19–21 October 2022; pp. 554–559. [Google Scholar]
- Arjona, E.M. El Saneamiento de la Bahía, en la Recta Final. En Exclusiva. 2013. Available online: https://www.enexclusiva.com/03/2013/ciencia-y-salud/el-saneamiento-de-la-bahia-en-la-recta-final/ (accessed on 16 January 2023).
- Arcia Jaramillo, O. Plantean usar el lodo producido en planta de tratamiento en abono para viveros. La Prensa 2019. [Google Scholar]
- Kiselev, A.; Magaril, E.; Magaril, R.; Panepinto, D.; Ravina, M.; Zanetti, M.C. Towards Circular Economy: Evaluation of Sewage Sludge Biogas Solutions. Resources 2019, 8, 19. [Google Scholar] [CrossRef] [Green Version]
- Programa Saneamiento de Panamá. Planta de Tratamiento de Aguas Residuales de Juan Diaz. Presented at the Name of Programa Sanemiento de Panamá, Ministerio de Ambiente, Panamá. August 2019. Available online: https://www.saneamientodepanama.gob.pa/ (accessed on 23 January 2023).
- Act 45. Que establece un regimen de incentivos para el fomento de sistemas de generación hidroelectrica y de otras fuentes nuevas, renovables y limpias y dicta otras disposiciones. Gaceta Oficial. 2004, 25112. [Google Scholar]
- Secretaría Nacional de Energía de Panamá. Plan Energético Nacional 2015–2050. Gaceta Oficial Digital. 2016. Available online: https://biblioteca.olade.org/opac-tmpl/Documentos/cg00467.pdf (accessed on 16 January 2023).
- ONU. Objetivos de Desarrollo Sostenible. Available online: https://www.un.org/sustainabledevelopment/es/energy/ (accessed on 23 January 2023).
- Act 276. Que regula la gestión integral de residuos sólidos en la Republica de Panamá. Gaceta Oficial. 2021, 29445-E. [Google Scholar]
- Abusoglu, A.; Ozahi, E.; Kutlar, A.I.; Al-jaf, H. Life cycle assessment (LCA) of digested sewage sludge incineration for heat and power production. J. Clean Prod. 2017, 142, 1684–1692. [Google Scholar] [CrossRef]
- Di Costanzo, N.; Cesaro, A.; Di Capua, F.; Esposito, G. Exploiting the Nutrient Potential of Anaerobically Digested Sewage Sludge: A Review. Energies 2021, 14, 8149. [Google Scholar] [CrossRef]
- Sherwood, J. The significance of biomass in circular economy. Bioresour. Technol. 2020, 300, 122755. [Google Scholar] [CrossRef]
- Cao, Y.C.; Pawlowski, A. Sewage sludge-to-energy approaches based on anaerobic digestion and pyrolysis: Brief overview and energy efficiency assessment. Renew. Sustain. Energy Rev. 2012, 16, 1657–1665. [Google Scholar] [CrossRef]
- Luostarinen, S.; Luste, S.; Sillanpaa, M. Increased biogas production at wastewater treatment plants through co-digestion of sewage sludge with grease trap sludge from a meat processing plant. Bioresour. Technol. 2009, 100, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Sailer, G.; Empl, F.; Kuptz, D.; Silberhorn, M.; Ludewig, D.; Lesche, S.; Pelz, S.; Müller, J. Characteristics and Anaerobic Co-Digestion of Press Water from Wood Fuel Preparation and Digested Sewage Sludge. Fermentation 2022, 8, 37. [Google Scholar] [CrossRef]
- Julio Guerrero, I.C.; Peláez Jaramillo, C.A.; Molina Perez, F.J. Evaluación de la co-digestión anaerobia de lodos de aguas residuales municipales con residuos de alimentos. Rev. Ion 2016, 29, 63–70. [Google Scholar] [CrossRef] [Green Version]
- EPA. POTW Sludge Sampling and Analysis Guindance Document; U.S. Environmental Protection Agency, Ed.; BiblioGov: Ohio, OH, USA, 1989. [Google Scholar]
- APHA. Standard Methods for the Examination of Water and Wastewater; American Water Works Association: Washington, DC, USA, 2004; Volume 22. [Google Scholar]
- Dirección General Normas y Tecnología Industrial-COPANIT 47-2000.AGUA. USOS Y DISPOSICIÓN FINAL DE LODOS. Panamá. 2000. Available online: https://faolex.fao.org/docs/pdf/pan78326.pdf (accessed on 16 January 2023).
- HACH. HACH, Method 8000. Oxygen demand, Chemical, High Range Water Analysis Handbook. Available online: https://www.hach.com/asset-get.download.jsa?id=7639983816 (accessed on 7 November 2022).
- AOAC. Official Methods of Analysis. 980.02 Method; Association Official Agricultural Chemists International: Rockville, Maryland, 2005. [Google Scholar]
- AOAC. Official Methods of Analysis. 993.13 Method; Association Official Agricultural Chemists International: Rockville, Maryland, 2005. [Google Scholar]
- Owen, W.F.; Stuckey, D.C.; Healy, J.B.; Young, L.Y.; McCarty, P.L. Bioassay for Monitoring Biochemical Methane Potential and Anaerobic Toxicity. Water Res. 1979, 13, 485–492. [Google Scholar] [CrossRef]
- Souto, T.F.; Aquino, S.F.; Silva, S.Q.; Chernicharo, C.A.L. Influence of incubation conditions on the specific methanogenic activity test. Biodegradation 2010, 21, 411–424. [Google Scholar] [CrossRef]
- Pereira, C.P.P.; Castanares, G.; van Lier, J.B. An OxiTop (R) protocol for screening plant material for its biochemical methane potential (BMP). Water Sci. Technol. 2012, 66, 1416–1423. [Google Scholar] [CrossRef] [Green Version]
- Koch, K.; Hafner, S.D.; Weinrich, S.; Astals, S. Identification of Critical Problems in Biochemical Methane Potential (BMP) Tests From Methane Production Curves. Front. Environ. Sci. 2019, 7, 178. [Google Scholar] [CrossRef]
- Ракић, Н.; Šušteršič, V.; Gordic, D.; Josijevic, M.; Jurišević, N.; Nikolic, J. Inoculum to substrate ratio—Calculating methods. Energy Econ. Ecol. 2020. [Google Scholar]
- Holliger, C.; Alves, M.; Andrade, D.; Angelidaki, I.; Astals, S.; Baier, U.; Bougrier, C.; Buffiere, P.; Carballa, M.; de Wilde, V.; et al. Towards a standardization of biomethane potential tests. Water Sci. Technol. 2016, 74, 2515–2522. [Google Scholar] [CrossRef] [Green Version]
- Ortiz Jordá, V. Puesta a Punto de una Metodología para la Determinació de la Actividad Metanogénica Específica (AME) de un Fango Anaerobio Mediante el Sistema Oxitop.Influencia de las Principales Variables Experimentales. Master’s Thesis, Valencia Polytechnic University, Valencia, Spain, 2011. [Google Scholar]
- Gimenez, J.B.; Marti, N.; Ferrer, J.; Seco, A. Methane recovery efficiency in a submerged anaerobic membrane bioreactor (SAnMBR) treating sulphate-rich urban wastewater: Evaluation of methane losses with the effluent. Bioresour. Technol. 2012, 118, 67–72. [Google Scholar] [CrossRef]
- Parra Orobio, B.A. Producción de Metano a Partir de la Digestión Anaerobia de Bioresiduos de Origen Municipal (Tesis de Maestría). Ph.D. Thesis, University of Valle, Cali, Colombia, 2014. [Google Scholar]
- Ferrentino, R.; Merzari, F.; Fiori, L.; Andreottola, G. Biochemical Methane Potential Tests to Evaluate Anaerobic Digestion Enhancement by Thermal Hydrolysis Pretreatment. Bioenergy Res. 2019, 12, 722–732. [Google Scholar] [CrossRef]
- Lay, J.J.; Li, Y.Y.; Noike, T. Influences of pH and moisture content on the methane production in high-solids sludge digestion. Water Res. 1997, 31, 1518–1524. [Google Scholar] [CrossRef]
- Jagadish, H.; Malourdee, A.; Muralidhara, P.; Desai, S.; Mahadiva Raju, G. Kinetics of Anaerobic Digestion of Water Hyacinth using poultry litter as inoculum. Int. J. Environ. Sci. Dev. 2012, 3, 94–98. [Google Scholar]
- Kafle, G.K.; Chen, L.D. Comparison on batch anaerobic digestion of five different livestock manures and prediction of biochemical methane potential (BMP) using different statistical models. Waste Manag. 2016, 48, 492–502. [Google Scholar] [CrossRef] [Green Version]
- U.S. Environmental Protection Agency. CHP Technologies. Available online: https://www.epa.gov/chp/chp-technologies (accessed on 20 March 2023).
- Szaja, A.; Montusiewicz, A.; Lebiocka, M. The Energetic Aspect of Organic Wastes Addition on Sewage Sludge Anaerobic Digestion: A Laboratory Investigation. Energies 2021, 14, 6113. [Google Scholar] [CrossRef]
- Szaja, A.; Montusiewicz, A. Enhancing the co-digestion efficiency of sewage sludge and cheese whey using brewery spent grain as an additional substrate. Bioresour. Technol. 2019, 291, 121863. [Google Scholar] [CrossRef] [PubMed]
- Vitez, T.; Novak, D.; Lochman, J.; Vitezova, M. Methanogens Diversity during Anaerobic Sewage Sludge Stabilization and the Effect of Temperature. Processes 2020, 8, 822. [Google Scholar] [CrossRef]
- Mitraka, G.-C.; Kontogiannopoulos, K.N.; Batsioula, M.; Banias, G.F.; Zouboulis, A.I.; Kougias, P.G. A Comprehensive Review on Pretreatment Methods for Enhanced Biogas Production from Sewage Sludge. Energies 2022, 15, 6536. [Google Scholar] [CrossRef]
- Adghim, M.; Abdallah, M.; Saad, S.; Shanableh, A.; Sartaj, M. Assessment of the biochemical methane potential of mono- and co-digested dairy farm wastes. Waste Manag. Res. 2020, 38, 88–99. [Google Scholar] [CrossRef] [PubMed]
- Choong, Y.Y.; Chou, K.W.; Norli, I. Strategies for improving biogas production of palm oil mill effluent (POME) anaerobic digestion: A critical review. Renew. Sustain. Energy Rev. 2017, 82, 2993–3006. [Google Scholar] [CrossRef]
- CRRH. LXVI Perspectivas del Clima de América Central; Hidráulicos, C.R.d.R., Ed.; Sistema de Integración Centroamericana: San Salvador, El Salvador, 2022. [Google Scholar]
- Lanko, I.; Hejnic, J.; Říhová-Ambrožová, J.; Ferrer, I.; Jenicek, P. Digested Sludge Quality in Mesophilic, Thermophilic and Temperature-Phased Anaerobic Digestion Systems. Water 2021, 13, 2839. [Google Scholar] [CrossRef]
- Dhull, P.; Lohchab, R.K.; Kumar, S.; Kumari, M.; Shaloo; Bhankhar, A.K. Anaerobic Digestion: Advance Techniques for Enhanced Biomethane/Biogas Production as a Source of Renewable Energy. BioEnergy Res. 2023, 1–22. [Google Scholar] [CrossRef]
- Andersson, J.; Helander-Claesson, J.; Olsson, J. Study on reduced process temperature for energy optimisation in mesophilic digestion: A lab to full-scale study. Appl. Energy 2020, 271, 115108. [Google Scholar] [CrossRef]
- Grosser, A. Determination of methane potential of mixtures composed of sewage sludge, organic fraction of municipal waste and grease trap sludge using biochemical methane potential assays. A comparison of BMP tests and semi-continuous trial results. Energy 2018, 143, 488–499. [Google Scholar] [CrossRef]
- Martinez, E.J.; Sotres, A.; Arenas, C.B.; Blanco, D.; Martinez, O.; Gomez, X. Improving Anaerobic Digestion of Sewage Sludge by Hydrogen Addition: Analysis of Microbial Populations and Process Performance. Energies 2019, 12, 1228. [Google Scholar] [CrossRef] [Green Version]
- Sakaveli, F.; Petala, M.; Tsiridis, V.; Darakas, E. Enhanced Mesophilic Anaerobic Digestion of Primary Sewage Sludge. Water 2021, 13, 348. [Google Scholar] [CrossRef]
- Martinez, E.J.; Rosas, J.G.; Moran, A.; Gomez, X. Effect of Ultrasound Pretreatment on Sludge Digestion and Dewatering Characteristics: Application of Particle Size Analysis. Water 2015, 7, 6483–6495. [Google Scholar] [CrossRef] [Green Version]
- Julio Guerrero, I.C. Evaluación del Potencial de Biometanización de la Codigestion de Lodos Provenientes del Tratamiento de Aguas Residuales Municipales Mezclados con Residuos de Alimentos. Master’s Thesis, Universidad de Antioquía Medellín, Medellín, Colombia, 2016. [Google Scholar]
- Chow, W.L.; Chong, S.; Lim, J.W.; Chan, Y.J.; Chong, M.F.; Tiong, T.J.; Chin, J.K.; Pan, G.T. Anaerobic Co-Digestion of Wastewater Sludge: A Review of Potential Co-Substrates and Operating Factors for Improved Methane Yield. Processes 2020, 8, 39. [Google Scholar] [CrossRef] [Green Version]
- Koch, K.; Hefner, S.D.; Weinrich, S.; Astals, S.; Holliger, C. Power and Limitations of Biochemical Methane Potential (BMP) Tests. Front. Energy Res. 2020, 8, 63. [Google Scholar] [CrossRef]
- Ding, H.H.H.; Chang, S.; Liu, Y. Biological hydrolysis pretreatment on secondary sludge: Enhancement of anaerobic digestion and mechanism study. Bioresour. Technol. 2017, 244, 989–995. [Google Scholar] [CrossRef]
- Chae, K.J.; Jang, A.; Yim, S.K.; Kim, I.S. The effects of digestion temperature and temperature shock on the biogas yields from the mesophilic anaerobic digestion of swine manure. Bioresour. Technol. 2008, 99, 1–6. [Google Scholar] [CrossRef]
- Deepanraj, B.; Sivasubramanian, V.; Jayaraj, S. Kinetic study on the effect of temperature on biogas production using a lab scale batch reactor. Ecotoxicol. Environ. Saf. 2015, 121, 100–104. [Google Scholar] [CrossRef]
- Paramaguru, G.; Kannan, M.; Senthilkumar, N.; Lawrence, P. Effect of temperature on biogas production from food waste through anaerobic digestion. Desalination Water Treat. 2017, 85, 68–72. [Google Scholar] [CrossRef]
- Zhang, W.Q.; Wei, Q.Y.; Wu, S.B.; Qi, D.D.; Li, W.; Zuo, Z.; Dong, R.J. Batch anaerobic co-digestion of pig manure with dewatered sewage sludge under mesophilic conditions. Appl. Energy 2014, 128, 175–183. [Google Scholar] [CrossRef]
- Vavilin, V.A.; Fernandez, B.; Palatsi, J.; Flotats, X. Hydrolisis kinetics in anaerobic degradation of particulate organic material: An overview. Waste Manag. 2007, 28, 939–951. [Google Scholar] [CrossRef] [PubMed]
- Moestedt, J.; Rönnberg, J.; Nordell, E. The effect of different mesophilic temperatures during anaerobic digestion of sludge on the overall performance of a WWTP in Sweden. Water Sci. Technol. 2017, 76, 3213–3219. [Google Scholar] [CrossRef] [PubMed]
- Kougias, P.G.; Angelidaki, I. Biogas and its opportunities—A review. Front. Environ. Sci. Eng. 2018, 12, 14. [Google Scholar] [CrossRef]
Parameters | TSS | DSS | I/S = 2/1 |
---|---|---|---|
pH | 7.00 ± 0.20 | 7.87 ± 0.31 | 7.41 |
COD (mg/L) | 2406 ± 808.84 | 2669.50 ± 330.07 | 1903 ± 110.15 |
Conductivity (μs/cm) | 519.4 ± 240.17 | 1498.2 ± 239.40 | - |
Volatile Solids (%) | 80.66 ± 0.14 | 76.72 ± 0.18 | 78.73 ± 0.42 |
Total Solids (% vs.) | 0.66 ± 0.02 | 0.41 ± 0.02 | 0.45 ± 0.006 |
Alkalinity (mg/L) | 716 ± 76.37 | 4116.66 ± 270.06 | 2663 ± 219.39 |
Volatile Fatty Acids (mg/L) | 1160 | 1850 | 1447 |
C (%) | 2.00 | 1.70 | 38.28 |
N (%) | 0.38 | 0.47 | 6.25 |
H (%) | - | - | 5.20 |
O (%) | - | - | 16.30 |
C/N | 5.26 | 3.61 | 6.12 |
Type of Sludge | BMP (mL CH4/g VS) | Temperature (°C) | Reference |
---|---|---|---|
LP + LS | 65 | 20 | [51] |
129 | 40 | ||
LP + LS | 243 | 32 | [58] |
271 | 34.5 | ||
274 | 37.5 | ||
LS | 143 | 37.5 | [59] |
LP | 220 | 37 | [60] |
LP | 188 | 37 | [61] |
LP + LS | 146 | 37 | |
LS | 229–233 | 35 | [62] |
LS | 190 | 35 | [28,63] |
TSS | 130.39 | 25 | This Study |
DSS | 163.09 | 25 | This Study |
TSS + DSS | 289.72 | 25 | This Study |
DSS | 246.91 | 28 | This Study |
DSS | 482.50 | 35 | This Study |
Type | Temperature (°C) | R2 | ||
---|---|---|---|---|
TSS | 25 | 4.70 | 1.53 | 0.9985 |
DSS | 25 | 4.52 | 0.46 | 0.9827 |
DSS + TSS | 25 | 27.70 | 0.13 | 0.9956 |
DSS | 28 | 70.85 | 0 | 0.9951 |
DSS | 35 | 74.74 | 0 | 0.9986 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deago, E.; Ramírez, M.; Espino, K.; Nieto, D.; Barragán, M.; García, M.; Guevara-Cedeño, J. Optimizing Anaerobic Digestion at Ambient Temperatures: Energy Efficiency and Cost Reduction Potential in Panama. Water 2023, 15, 2653. https://doi.org/10.3390/w15142653
Deago E, Ramírez M, Espino K, Nieto D, Barragán M, García M, Guevara-Cedeño J. Optimizing Anaerobic Digestion at Ambient Temperatures: Energy Efficiency and Cost Reduction Potential in Panama. Water. 2023; 15(14):2653. https://doi.org/10.3390/w15142653
Chicago/Turabian StyleDeago, Euclides, Marian Ramírez, Kleveer Espino, Daniel Nieto, Maudi Barragán, Max García, and Jessica Guevara-Cedeño. 2023. "Optimizing Anaerobic Digestion at Ambient Temperatures: Energy Efficiency and Cost Reduction Potential in Panama" Water 15, no. 14: 2653. https://doi.org/10.3390/w15142653