Marine Heatwave Characteristics in the Makassar Strait and Its Surrounding Waters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sea Surface Temperature
2.3. Physical Forcings of MHWs
2.4. MHW Identification
3. Results
3.1. 40-Year Characteristics of MHWs
3.2. Variability of Prominent MHWs
3.3. Physical Factors of MHWs
3.3.1. Local Wind Forcing
3.3.2. Remote Forcings
3.3.3. Net Surface Heat Flux
4. Discussion
4.1. Trends of MHWs
4.2. Possible Driving Forces of Prominent MHWs
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Houghton, J.T.; Ding, Y.D.J.G.; Griggs, D.J.; Noguer, M.; van der Linden, P.J.; Dai, X.; Johnson, C.A. (Eds.) Climate Change 2001: The Scientific Basis: Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA; Singapore, 2001. [Google Scholar]
- Rogelj, J.; Meinshausen, M.; Knutti, R. Global warming under old and new scenarios using IPCC climate sensitivity range estimates. Nat. Clim. Chang. 2012, 2, 248–253. [Google Scholar] [CrossRef]
- Hobday, A.J.; Alexander, L.V.; Perkins, S.E.; Smale, D.A.; Straub, S.C.; Oliver, E.C.; Benthuysen, J.A.; Burrows, M.T.; Donat, M.G.; Feng, M.; et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 2016, 141, 227–238. [Google Scholar] [CrossRef] [Green Version]
- What Is a Heatwave? Available online: https://www.metoffice.gov.uk/weather/learn-about/weather/types-of-weather/temperature/heatwave (accessed on 30 April 2023).
- Holbrook, N.J.; Scannell, H.A.; Gupta, A.S.; Benthuysen, J.A.; Feng, M.; Oliver, E.C. A global assessment of marine heatwaves and their drivers. Nat. Comm. 2019, 10, 2624. [Google Scholar] [CrossRef] [Green Version]
- Perkins, S.E.; Alexander, L.V.; Nairn, J.R. Increasing frequency, intensity and duration of observed global heatwaves and warm spells. Geophys. Res. Lett. 2012, 39, 10. [Google Scholar] [CrossRef]
- Oliver, E.C.J.; Donat, M.G.; Burrows, M.T.; Moore, P.J.; Smale, D.A.; Alexander, L.V. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 2018, 9, 1324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frölicher, T.L.; Fischer, E.M.; Gruber, N. Marine heatwaves under global warming. Nature 2018, 560, 360–364. [Google Scholar] [CrossRef]
- Fewings, M.R.; Brown, K.S. Regional Structure in the Marine Heat Wave of Summer 2015 off the Western United States. Front. Mar. Sci. 2019, 6, 564. [Google Scholar] [CrossRef] [Green Version]
- Thomsen, M.S.; Mondardini, L.; Alestra, T.; Gerrity, S.; Tait, L.; South, P. Local extinction of bull kelp (Durvillaea spp.) due to a marine heatwave. Front. Mar. Sci. 2019, 6, 84. [Google Scholar] [CrossRef] [Green Version]
- Behrens, E.; Fernandez, D.; Sutton, P. Meridional Oceanic Heat Transport Influences Marine Heatwaves in the Tasman Sea on Interannual to Decadal Timescales. Front. Mar. Sci. 2019, 6, 228. [Google Scholar] [CrossRef] [Green Version]
- Feng, X.; Shinoda, T. Air-Sea Heat Flux Variability in the Southeast Indian Ocean and Its Relation with Ningaloo Niño. Front. Mar. Sci. 2019, 6, 266. [Google Scholar] [CrossRef]
- Pujol, C.; Perez-Santos, I.; Barth, A.; Alvera-Azcarate, A. Marine Heatwaves Offshore Central and South Chile: Understanding Forcing Mechanisms during the Years 2016–2017. Front. Mar. Sci. 2022, 9, 800325. [Google Scholar] [CrossRef]
- Wernberg, T.; Bennett, S.; Babcock, R.C.; De Bettignies, T.; Cure, K.; Depczynski, M. Climate-driven regime shift of a temperate marine ecosystem. Science 2016, 353, 169–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliver, E.C.J.; Benthuysen, J.A.; Bindoff, N.L.; Hobday, A.J.; Holbrook, N.J.; Mundy, C.N. The unprecedented 2015/16 tasman sea marine heatwave. Nat. Commun. 2017, 8, 16101. [Google Scholar] [CrossRef] [Green Version]
- Smale, D.A.; Wernberg, T.; Oliver, E.C.J.; Thomsen, M.; Harvey, B.P.; Straub, S.C. Marine Heatwaves Threaten Global Biodiversity and the Provision of Ecosystem Services. Nat. Clim. Chang. 2019, 9, 306–312. [Google Scholar] [CrossRef] [Green Version]
- Garrabou, J.; Coma, R.; Bensoussan, N.; Bally, M.; Chevaldonné, P.; Cigliano, M. Mass mortality in Northwestern Mediterranean rocky benthic communities: Effects of the 2003 heat wave. Glob. Chang. Biol. 2009, 15, 1090–1103. [Google Scholar] [CrossRef]
- Marba, N.; Duarte, C.M. Mediterranean warming triggers seagrass (Posidonia oceanica) shoot mortality. Glob. Chang. Biol. 2010, 16, 2366–2375. [Google Scholar] [CrossRef]
- Glynn, P.W.; Maté, J.L.; Baker, A.C.; Calderón, M.O. Coral bleaching and mortality in Panama and Ecuador during the 1997–1998 El Niño–Southern Oscillation event: Spatial/temporal patterns and comparisons with the 1982–1983 event. Bull. Mar. Sci. 2001, 69, 79–109. [Google Scholar] [CrossRef]
- Genevier, L.G.; Jamil, T.; Raitsos, D.E.; Krokos, G.; Hoteit, I. Marine heatwaves reveal coral reef zones susceptible to bleaching in the Red Sea. Glob. Chang. Biol. 2019, 25, 2338–2351. [Google Scholar] [CrossRef] [Green Version]
- Salinger, J.; Hobday, A.J.; Matear, R.J.; O’Kane, T.J.; Risbey, J.S.; Dunstan, P. Decadal-scale forecasting of climate drivers for marine applications. Adv. Mar. Biol. 2016, 74, 1–68. [Google Scholar] [CrossRef]
- Doney, S.C. Plankton in a Warmer World. Nature 2006, 444, 695–696. [Google Scholar] [CrossRef] [Green Version]
- Merino, M. Upwelling on the Yucatan Shelf: Hydrographic evidence. J. Mar. Syst. 1997, 13, 101–121. [Google Scholar] [CrossRef]
- Mills, K.E.; Pershing, A.J.; Brown, C.J.; Chen, Y.; Chiang, F.S.; Holland, D.S.; Wahle, R.A. Fisheries management in a changing climate: Lessons from the 2012 ocean heat wave in the Northwest Atlantic. Oceanography 2013, 26, 191–195. [Google Scholar] [CrossRef] [Green Version]
- Cheung, W.W.L.; Frölicher, T.L. Marine Heatwaves Exacerbate Climate Change Impacts for Fisheries in the Northeast Pacific. Sci. Rep. 2020, 10, 6678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dupont, A. Indonesian Defence Strategy and Security: Time for a Rethink. Contemp. Southeast Asia 1996, 18, 276. [Google Scholar]
- Chou, L.M. Southeast Asian Reefs-Status update: Cambodia, Indonesia, Malaysia, Philippines, Singapore, Thailand and Viet Nam. In Status of Coral Reefs of the World; Australian Institute of Marine Science: Townsville, Australia, 2000; pp. 117–129. [Google Scholar]
- Saha, P. Indonesia’s potential as a maritime power. Marit. Aff. J. Natl. Marit. Found. India 2016, 12, 28–41. [Google Scholar] [CrossRef]
- Susanto, R.D.; Moore, T.S.; Marra, J. Ocean color variability in the Indonesian Seas during the SeaWiFS era. Geochem. Geophys. Geosyst. 2006, 7, Q05021. [Google Scholar] [CrossRef]
- Dewi, Y.W.; Wirasatriya, A.; Sugianto, D.N.; Helmi, M.; Marwoto, J.; Maslukah, L. Effect of ENSO and IOD on the variability of sea surface temperature (SST) in Java Sea. IOP Conf. Ser. Earth Environ. Sci. 2020, 530, 012007. [Google Scholar] [CrossRef]
- Kurniadi, A.; Weller, E.; Min, S.K.; Seong, M.G. Independent ENSO and IOD impacts on rainfall extremes over Indonesia. Int. J. Climatol. 2021, 41, 3640–3656. [Google Scholar] [CrossRef]
- Ningsih, N.S.; Sakina, S.L.; Susanto, R.D.; Hanifah, F. Simulated zonal current characteristics in the southeastern tropical Indian Ocean (SETIO). Ocean Sci. 2021, 17, 1115–1140. [Google Scholar] [CrossRef]
- Edinger, E.N.; Jompa, J.; Limmon, G.V.; Widjatmoko, W.; Risk, M.J. Reef degradation and coral biodiversity in Indonesia: Effects of land-based pollution, destructive fishing practices and changes over time. Mar. Pollut. Bull. 1998, 36, 617–630. [Google Scholar] [CrossRef]
- Widyatmoko, D. Biodiversity in Indonesia. In Global Biodiversity; Apple Academic Press: Palm Bay, FL, USA, 2018; pp. 149–164. [Google Scholar]
- Iskandar, M.R.; Ismail, M.F.A.; Arifin, T.; Chandra, H. Marine Heatwaves of Sea Surface Temperature Off South Java. Heliyon 2021, 7, e08618. [Google Scholar] [CrossRef]
- Ismail, M.F.A. Characteristics of Marine Heatwaves off West Sumatra Derived from High-Resolution Satellite Data. J. Hunan Univ. Nat. Sci. 2021, 48, 130–136. [Google Scholar]
- Beliyana, E.; Ningsih, N.S.; Tarya, A. Characteristics of Marine Heatwaves (2008–2021) in the Savu Sea, East Nusa Tenggara. J. Phys. Conf. Ser. 2022, 2377, 012043. [Google Scholar] [CrossRef]
- Gunawan, S.R.; Ningsih, N.S.; Beliyana, E.; Tarya, A. Marine Heatwaves Characteristics in Spermonde Islands, West Coast of South Sulawesi, Indonesia. J. Phys. Conf. Ser. 2022, 2377, 012040. [Google Scholar] [CrossRef]
- Habibullah, A.D.; Tarya, A.; Ningsih, N.S.; Putri, M.R. Marine Heatwaves in the Indonesian Fisheries Management Areas. J. Mar. Sci. Eng. 2023, 11, 161. [Google Scholar] [CrossRef]
- Gordon, A.L.; Susanto, R.D.; Ffield, A. Throughflow within Makassar Strait. Geophys. Res. Lett. 1999, 26, 3325–3328. [Google Scholar] [CrossRef] [Green Version]
- Koeshendrajana, S.; Rusastra, I.W.; Martosubroto, P. The Potential of Marine Resources and Fishery of the Fisheries Management Area (FMA) 713 of the Republic of Indonesia; AMAFRAD Press: Jakarta, Indonesia, 2019. [Google Scholar]
- Nienhuis, P.H.; Coosen, J.; Kiswara, W. Community structure and biomass distribution of seagrasses and macrofauna in the Flores Sea, Indonesia. Neth. J. Sea Res. 1989, 23, 197–214. [Google Scholar] [CrossRef]
- Tahir, A.; Samawi, M.F.; Sari, K.; Hidayat, R.; Nimzet, R.; Wicaksono, E.A.; Werorilangi, S. Studies on microplastic contamination in seagrass beds at Spermonde Archipelago of Makassar Strait, Indonesia. J. Phys. Conf. Ser. 2019, 1341, 022008. [Google Scholar] [CrossRef] [Green Version]
- Index of Data Sea Surface Temperature Optimum Interpolation V2.1. Available online: https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/v2.1/access/avhrr/ (accessed on 16 June 2022).
- Reynolds, R.W.; Smith, T.M.; Liu, C.; Chelton, D.B.; Casey, K.S.; Schlax, M.G. Daily High-Resolution-Blended Analyses for Sea Surface Temperature. J. Clim. 2007, 20, 5473–5496. [Google Scholar] [CrossRef]
- ERA5 Hourly Data on Single Levels from 1940 to Present. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=form (accessed on 20 June 2022).
- Cold and Warm Episodes by Season. Available online: https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php (accessed on 21 June 2022).
- Pant, V.; Girishkumar, M.S.; Udaya Bhaskar, T.V.S.; Ravichandran, M.; Papa, F.; Thangaprakash, V.P. Observed interannual variability of near-surface salinity in the Bay of Bengal. J. Geophys. Res. Oceans 2015, 120, 3315–3329. [Google Scholar] [CrossRef]
- The State of the Ocean Climate. Available online: https://stateoftheocean.osmc.noaa.gov/sur/ (accessed on 16 August 2022).
- Monthly Pacific Decadal Oscillation (PDO) Index. Available online: https://ds.data.jma.go.jp/tcc/tcc/products/elnino/decadal/pdo_month.html (accessed on 18 September 2022).
- Climate Data Store. Available online: https://cds.climate.copernicus.eu/cdsapp#!/home (accessed on 20 September 2022).
- Zhao, Z.; Marin, M. A Matlab toolbox to detect and analyze marine heatwaves. J. Open Source Softw. 2019, 4, 1124. [Google Scholar] [CrossRef]
- Yao, J.; Xiao, L.; Gou, M.; Li, C.; Lian, E.; Yang, S. Pacific decadal oscillation impact on East China precipitation and its imprint in new geological documents. Sci. China Earth Sci. 2018, 61, 473–482. [Google Scholar] [CrossRef]
- Pacific Decadal Oscillation Index (PDO). Available online: https://www.daculaweather.com/4_pdo_index.php (accessed on 17 September 2022).
- Hobday, A.J.; Oliver, E.C.; Gupta, A.S.; Benthuysen, J.A.; Burrows, M.T.; Donat, M.G.; Holbrook, N.J.; Moore, P.J.; Thomsen, M.S.; Wernberg, T.; et al. Categorizing and naming marine heatwaves. Oceanography 2018, 31, 162–173. [Google Scholar] [CrossRef] [Green Version]
- Iskandar, I.; Mardiansyah, W.; Lestari, D.O.; Masumoto, Y. What did determine the warming trend in the Indonesian sea? Prog. Earth Planet. Sci 2020, 7, 20. [Google Scholar] [CrossRef]
- Kida, S.; Richards, K.J. Seasonal sea surface temperature variability in the Indonesian Seas. J. Geophys. Res. 2009, 114, C06016. [Google Scholar] [CrossRef]
- Halkides, D.; Lee, T.; Kida, S. Mechanisms controlling the seasonal mixed-layer temperature and salinity of the Indonesian seas. Ocean Dyn. 2011, 61, 481–495. [Google Scholar] [CrossRef] [Green Version]
- Gupta, A.S.; Thomsen, M.; Benthuysen, J.A.; Hobday, A.J.; Oliver, E.; Alexander, L.V. Drivers and impacts of the most extreme marine heatwave events. Sci. Rep. 2020, 10, 19359. [Google Scholar] [CrossRef]
- Talley, L.D.; Pickard, G.L.; Emery, W.J.; Swift, J.H. Mass, salt, and heat budgets and wind forcing. In Descriptive Physical Oceanography; Talley, L.D., Ed.; Academic Press: Cambridge, MA, USA, 2011; pp. 111–145. [Google Scholar] [CrossRef]
- Mantua, N.J.; Hare, S.R.; Zhang, Y.; Wallace, J.M.; Francis, R.C. A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Am. Meteorol. Soc. 1997, 78, 1069–1080. [Google Scholar] [CrossRef]
- Heidemann, H.; Ribbe, J. Marine heat waves and the influence of El Niño off Southeast Queensland, Australia. Front. Mar. Sci. 2019, 6, 56. [Google Scholar] [CrossRef]
- Zhang, Y.; Du, Y.; Feng, M.; Hu, S. Long-lasting marine heatwaves instigated by ocean planetary waves in the tropical Indian Ocean during 2015–2016 and 2019–2020. Geophys. Res. Lett 2021, 48, e2021GL095350. [Google Scholar] [CrossRef]
- Zaba, K.D.; Rudnick, D.L. The 2014–2015 warming anomaly in the Southern California Current System observed by underwater gliders. Geophys. Res. Lett. 2016, 43, 1241–1248. [Google Scholar] [CrossRef]
- Tomita, H.; Kubota, M. Variability of surface heat flux over the Indian Ocean. Atmosphere-Ocean 2004, 42, 183–199. [Google Scholar] [CrossRef]
Decade | Period | Frequency (Events) | Total Days | Average Duration (Days) | Average Maximum Intensity (°C) | Average Mean Intensity (°C) |
---|---|---|---|---|---|---|
I | 1982–1991 | 4 | 34 | 8.5 | 0.78 | 0.68 |
II | 1992–2001 | 13 | 169 | 8.9 | 0.83 | 0.70 |
III | 2002–2011 | 24 | 293 | 11.7 | 0.86 | 0.69 |
IV | 2012–2021 | 38 | 626 | 15.4 | 0.81 | 0.68 |
79 | 1122 | 11.1 | 0.82 | 0.69 | ||
Sum | Average |
No. | MHW Characteristics | Prominent Year I (Value) | Prominent Year II (Value) |
---|---|---|---|
1 | Frequency | 2010 (10 events) | 2005 and 2016 (8 events) |
2 | Mean Duration | 2016 (30.9 days) | 2019 (30.0 days) |
3 | Total Days | 2016 (247 days) | 2010 (143 days) |
4 | Mean Max. Intensity | 2006 (1.10 °C) | 2016 (1.04 °C) |
5 | Mean Intensity | 1983 (0.83 °C) | 2016 (0.81 °C) |
No. | Year | SWR (W/m2) | LWR (W/m2) | SHF (W/m2) | LHF (W/m2) | NSHF (W/m2) |
---|---|---|---|---|---|---|
1 | 1983 | 208.03 | −46.92 | −18.04 | −100.40 | 42.67 |
2 | 1998 | 204.75 | −45.17 | −18.18 | −103.90 | 37.50 |
3 | 2005 | 208.34 | −48.11 | −18.14 | −108.71 | 33.38 |
4 | 2006 | 211.83 | −50.26 | −19.36 | −109.96 | 32.24 |
5 | 2010 | 194.09 | −43.38 | −16.40 | −104.86 | 29.46 |
6 | 2016 | 203.80 | −44.87 | −15.84 | −102.71 | 40.38 |
7 | 2019 | 216.80 | −50.03 | −19.24 | −104.95 | 42.59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ningsih, N.S.; Gunawan, S.R.; Beliyana, E.; Tarya, A. Marine Heatwave Characteristics in the Makassar Strait and Its Surrounding Waters. Water 2023, 15, 2645. https://doi.org/10.3390/w15142645
Ningsih NS, Gunawan SR, Beliyana E, Tarya A. Marine Heatwave Characteristics in the Makassar Strait and Its Surrounding Waters. Water. 2023; 15(14):2645. https://doi.org/10.3390/w15142645
Chicago/Turabian StyleNingsih, Nining Sari, Sekar Ramdanira Gunawan, Erlin Beliyana, and Ayi Tarya. 2023. "Marine Heatwave Characteristics in the Makassar Strait and Its Surrounding Waters" Water 15, no. 14: 2645. https://doi.org/10.3390/w15142645