Background Content of Polycyclic Aromatic Hydrocarbons during Monitoring of Natural and Anthropogenically Transformed Landscapes in the Coastal Area Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Pretreatment
2.3. Chemical Analysis
2.4. Data Analysis
3. Results and Discussion
3.1. PAHs Concentration
3.2. PAHs Spatial Distribution
3.3. Source Analysis
3.4. Background Content of PAHs in Soils
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- IARC. List of Classifications. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; International Agency for Research on Cancer: Lyon, France, 2020; Volume 1–123. Available online: https://monographs.iarc.fr/list-of-classifications-volumes/ (accessed on 25 July 2020).
- US Environmental Protection Agency. Integrated Risk Information System (IRIS); Office of Research and Development: Washington, DC, USA, 2020. Available online: https://cfpub.epa.gov/ncea/iris_drafts/AtoZ.cfm (accessed on 13 June 2022).
- Gennadiev, A.; Tsibart, A. Pyrogenic polycyclic aromatic hydrocarbons in soils of reserved and anthropogenically modified areas: Factors and features of accumulation. Eurasian Soil Sci. 2013, 46, 28–36. [Google Scholar] [CrossRef]
- Wilcke, W. Synopsis polycyclic aromatic hydrocarbons (PAHs) in soil—A review. J. Plant Nutr. Soil Sci. 2000, 163, 229–248. [Google Scholar] [CrossRef]
- Abakumov, E.; Tomashunas, V.; Lodygin, E.; Gabov, D.; Sokolov, V.; Krylenkov, V.; Kirtsideli, I.Y. Polycyclic aromatic hydrocarbons in insular and coastal soils of the Russian Arctic. Eurasian Soil Sci. 2015, 48, 1300–1305. [Google Scholar] [CrossRef] [Green Version]
- Siemering, G.S.; Thiboldeaux, R. Background concentration, risk assessment and regulatory threshold development: Polycyclic aromatic hydrocarbons (PAH) in Milwaukee, Wisconsin surface soils. Environ. Pollut. 2021, 268, 115772. [Google Scholar] [CrossRef]
- Qiu, Y.-Y.; Gong, Y.-X.; Ni, H.-G. Contribution of soil erosion to PAHs in surface water in China. Sci. Total Environ. 2019, 686, 497–504. [Google Scholar] [CrossRef]
- Macdonald, D.D.; Carr, R.S.; Calder, F.D.; Long, E.R.; Ingersoll, C.G. Development and evaluation of sediment quality guidelines for Florida coastal waters. Ecotoxicology 1996, 5, 253–278. [Google Scholar] [CrossRef]
- Abdel-Shafy, H.I.; Mansour, M.S. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egypt J. Pet. 2016, 25, 107–123. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Hong, H.; Zhou, J.; Yu, G. Phase association of polycyclic aromatic hydrocarbons in the Minjiang River Estuary, China. Sci. Total Environ. 2004, 323, 71–86. [Google Scholar] [CrossRef]
- Gennadiev, A.; Pikovskii, Y.I. The maps of soil tolerance toward pollution with oil products and polycyclic aromatic hydrocarbons: Methodological aspects. Eurasian Soil Sci. 2007, 40, 70–81. [Google Scholar] [CrossRef]
- Dai, C.; Han, Y.; Duan, Y.; Lai, X.; Fu, R.; Liu, S.; Leong, K.H.; Tu, Y.; Zhou, L. Review on the contamination and remediation of polycyclic aromatic hydrocarbons (PAHs) in coastal soil and sediments. Environ. Res. 2022, 205, 112423. [Google Scholar] [CrossRef]
- Koudryashova, Y.; Chizhova, T.; Tishchenko, P.; Hayakawa, K. Seasonal variability of polycyclic aromatic hydrocarbons (PAHs) in a coastal marine area in the northwestern region of the sea of Japan/East Sea (Possiet Bay). Ocean Sci. J. 2019, 54, 635–655. [Google Scholar] [CrossRef]
- Roy, D.; Jung, W.; Kim, J.; Lee, M.; Park, J. Cancer Risk Levels for Sediment-and Soil-Bound Polycyclic Aromatic Hydrocarbons in Coastal Areas of South Korea. Front. Environ. Sci. 2021, 9, 719243. [Google Scholar] [CrossRef]
- Orecchio, S. Assessment of polycyclic aromatic hydrocarbons (PAHs) in soil of a Natural Reserve (Isola delle Femmine)(Italy) located in front of a plant for the production of cement. J. Hazard Mater. 2010, 173, 358–368. [Google Scholar] [CrossRef]
- Monaco, D.; Chianese, E.; Riccio, A.; Delgado-Sanchez, A.; Lacorte, S. Spatial distribution of heavy hydrocarbons, PAHs and metals in polluted areas. The case of “Galicia”, Spain. Mar. Pollut. Bull. 2017, 121, 230–237. [Google Scholar] [CrossRef]
- Sojinu, O.S.; Wang, J.-Z.; Sonibare, O.; Zeng, E.Y. Polycyclic aromatic hydrocarbons in sediments and soils from oil exploration areas of the Niger Delta, Nigeria. J. Hazard Mater. 2010, 174, 641–647. [Google Scholar] [CrossRef] [PubMed]
- Nam, J.J.; Sweetman, A.J.; Jones, K.C. Polynuclear aromatic hydrocarbons (PAHs) in global background soils. J. Environ. Monit. 2009, 11, 45–48. [Google Scholar] [CrossRef]
- Nam, J.J.; Thomas, G.O.; Jaward, F.M.; Steinnes, E.; Gustafsson, O.; Jones, K.C. PAHs in background soils from Western Europe: Influence of atmospheric deposition and soil organic matter. Chemosphere 2008, 70, 1596–1602. [Google Scholar] [CrossRef]
- Cai, Q.-Y.; Mo, C.-H.; Wu, Q.-T.; Katsoyiannis, A.; Zeng, Q.-Y. The status of soil contamination by semivolatile organic chemicals (SVOCs) in China: A review. Sci. Total Environ. 2008, 389, 209–224. [Google Scholar] [CrossRef]
- Zhang, P.; Chen, Y. Polycyclic aromatic hydrocarbons contamination in surface soil of China: A review. Sci. Total Environ. 2017, 605, 1011–1020. [Google Scholar] [CrossRef]
- Pikovskii, Y.I.; Smirnova, M.; Gennadiev, A.; Zavgorodnyaya, Y.A.; Zhidkin, A.; Kovach, R.; Koshovskii, T. Parameters of the native hydrocarbon status of soils in different bioclimatic zones. Eurasian Soil Sci. 2019, 52, 1333–1346. [Google Scholar] [CrossRef]
- Maliszewska-Kordybach, B.; Smreczak, B. Polycyclic aromatic hydrocarbons (PAH) in agricultural soils in eastern Poland. Toxicol. Environ. Chem. 1998, 66, 53–58. [Google Scholar] [CrossRef]
- Rong, H.; Hong-Fu, W.; Yan-Tun, S.; JIANG, H.; Shao-Lin, P. Polycyclic aromatic hydrocarbons in agricultural soils of the southern subtropics, China. Pedosphere 2007, 17, 673–680. [Google Scholar] [CrossRef]
- Thiombane, M.; Albanese, S.; Di Bonito, M.; Lima, A.; Zuzolo, D.; Rolandi, R.; Qi, S.; De Vivo, B. Source patterns and contamination level of polycyclic aromatic hydrocarbons (PAHs) in urban and rural areas of Southern Italian soils. Environ. Geochem. Health 2019, 41, 507–528. [Google Scholar] [CrossRef]
- Maliszewska-Kordybach, B.; Smreczak, B.; Klimkowicz-Pawlas, A.; Terelak, H. Monitoring of the total content of polycyclic aromatic hydrocarbons (PAHs) in arable soils in Poland. Chemosphere 2008, 73, 1284–1291. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wu, S.; Zhou, S.; Wang, H.; Li, B.; Chen, H.; Yu, Y.; Shi, Y. Polycyclic aromatic hydrocarbons in soils from urban to rural areas in Nanjing: Concentration, source, spatial distribution, and potential human health risk. Sci. Total Environ. 2015, 527, 375–383. [Google Scholar] [CrossRef]
- Maliszewska-Kordybach, B. Polycyclic aromatic hydrocarbons in agricultural soils in Poland: Preliminary proposals for criteria to evaluate the level of soil contamination. Appl. Geochem. 1996, 11, 121–127. [Google Scholar] [CrossRef]
- Maliszewska-Kordybach, B.; Smreczak, B.; Klimkowicz-Pawlas, A. Concentrations, sources, and spatial distribution of individual polycyclic aromatic hydrocarbons (PAHs) in agricultural soils in the Eastern part of the EU: Poland as a case study. Sci. Total Environ. 2009, 407, 3746–3753. [Google Scholar] [CrossRef]
- Aichner, B.; Bussian, B.M.; Lehnik-Habrink, P.; Hein, S. Regionalized concentrations and fingerprints of polycyclic aromatic hydrocarbons (PAHs) in German forest soils. Environ. Pollut. 2015, 203, 31–39. [Google Scholar] [CrossRef]
- Wilcke, W.; Müller, S.; Kanchanakool, N.; Niamskul, C.; Zech, W. Polycyclic aromatic hydrocarbons in hydromorphic soils of the tropical metropolis Bangkok. Geoderma 1999, 91, 297–309. [Google Scholar] [CrossRef]
- Sosa, D.; Hilber, I.; Faure, R.; Bartolomé, N.; Fonseca, O.; Keller, A.; Schwab, P.; Escobar, A.; Bucheli, T.D. Polycyclic aromatic hydrocarbons and polychlorinated biphenyls in soils of Mayabeque, Cuba. Environ. Sci. Pollut. Res 2017, 24, 12860–12870. [Google Scholar] [CrossRef]
- Sushkova, S.; Minkina, T.; Dudnikova, T.; Barbashev, A.; Mazarji, M.; Chernikova, N.; Lobzenko, I.; Deryabkina, I.; Kizilkaya, R. Influence of carbon-containing and mineral sorbents on the toxicity of soil contaminated with benzo[a]pyrene during phytotesting. Environ. Geochem. Health 2021, 4, 179–193. [Google Scholar] [CrossRef]
- Sushkova, S.; Minkina, T.; Tarigholizadeh, S.; Antonenko, E.; Konstantinova, E.; Gülser, C.; Dudnikova, T.; Barbashev, A.; Kizilkaya, R. PAHs accumulation in soil-plant system of Phragmites australis Cav. in soil under long-term chemical contamination. Eurasian Soil Sci. 2020, 9, 242–253. [Google Scholar] [CrossRef]
- Yang, W.; Lang, Y.-H.; Bai, J.; Li, Z.-Y. Quantitative evaluation of carcinogenic and non-carcinogenic potential for PAHs in coastal wetland soils of China. Ecol. Eng. 2015, 74, 117–124. [Google Scholar] [CrossRef]
- Lang, Y.; Wang, N.; Gao, H.; Bai, J. Distribution and risk assessment of polycyclic aromatic hydrocarbons (PAHs) from Liaohe estuarine wetland soils. Environ. Monit. Assess. 2012, 184, 5545–5552. [Google Scholar] [CrossRef]
- Xiao, R.; Bai, J.; Wang, J.; Lu, Q.; Zhao, Q.; Cui, B.; Liu, X. Polycyclic aromatic hydrocarbons (PAHs) in wetland soils under different land uses in a coastal estuary: Toxic levels, sources and relationships with soil organic matter and water-stable aggregates. Chemosphere 2014, 110, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Qi, S.; Zhang, Y.; Xing, X.; Liu, H.; Qu, C.; Liu, J.; Li, F. Levels, sources and potential risks of polycyclic aromatic hydrocarbons (PAHs) in multimedia environment along the Jinjiang River mainstream to Quanzhou Bay, China. Mar. Pollut. Bull. 2013, 76, 298–306. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhu, Y.; Liu, W.; Yu, S.; Tao, S.; Liu, W. Modeling multimedia fate and health risk assessment of polycyclic aromatic hydrocarbons (PAHs) in the coastal regions of the Bohai and Yellow Seas. Sci. Total Environ. 2022, 818, 151789. [Google Scholar] [CrossRef]
- Shi, R.; Li, X.; Yang, Y.; Fan, Y.; Zhao, Z. Contamination and human health risks of polycyclic aromatic hydrocarbons in surface soils from Tianjin coastal new region, China. Environ. Pollut. 2021, 268, 115938. [Google Scholar] [CrossRef]
- Cho, J.-Y.; Son, J.G.; Park, B.-J.; Chung, B.-Y. Distribution and pollution sources of polycyclic aromatic hydrocarbons (PAHs) in reclaimed tidelands and tidelands of the western sea coast of South Korea. Environ. Monit. Assess. 2009, 149, 385–393. [Google Scholar] [CrossRef]
- Ma, C.; Ye, S.; Lin, T.; Ding, X.; Yuan, H.; Guo, Z. Source apportionment of polycyclic aromatic hydrocarbons in soils of wetlands in the Liao River Delta, Northeast China. Mar. Pollut. Bull. 2014, 80, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Li, T.; Ding, X.; Zhao, G.; Ye, S. Distribution, sources and potential toxicological significance of polycyclic aromatic hydrocarbons (PAHs) in surface soils of the Yellow River Delta, China. Mar. Pollut. Bull. 2014, 83, 258–264. [Google Scholar] [CrossRef] [PubMed]
- Transport in Russia; Information-Statistics Bulletin; Rosstat: Moscow, Russia. 2022; 101p. Available online: https://mintrans.gov.ru/documents/7/12182?ysclid=ljhaqelxu5817008264 (accessed on 23 March 2023). (In Russian)
- Chaplygin, V.; Dudnikova, T.; Chernikova, N.; Fedorenko, A.; Mandzhieva, S.; Fedorenko, G.; Sushkova, S.; Nevidomskaya, D.; Minkina, T.; Sathishkumar, P. Phragmites australis cav. as a bioindicator of hydromorphic soils pollution with heavy metals and polyaromatic hydrocarbons. Chemosphere 2022, 308, 136409. [Google Scholar] [CrossRef] [PubMed]
- Pulikova, E.; Ivanov, F.; Gorovtsov, A.; Dudnikova, T.; Zinchenko, V.; Minkina, T.; Mandzhieva, S.; Barahov, A.; Sherbakov, A.; Sushkova, S. Microbiological status of natural and anthropogenic soils of the Taganrog Bay coast at different levels of combined pollution with heavy metals and PAHs. Environ. Geochem. Health 2022. [Google Scholar] [CrossRef] [PubMed]
- Vorob’eva, L.A. (Ed.) Theory and Practice of the Chemical Analysis of Soils; GEOS: Moscow, Russia, 2006. (In Russian) [Google Scholar]
- GOST 12536-2014; Soils. Methods of Laboratory Particle-Size and Microaggregate-Size Distributions. Standartinform: Moscow, Russia, 2015; p. 19. (In Russian)
- Methodical Instructions. Definition of Polluting Substances in Sediments and Suspension; Directive Document 52.10.556-95; Roshydromet: Moscow, Russia, 2002; 21p. (In Russian)
- Sushkova, S.N.; Minkina, T.M.; Mandzhieva, S.S.; Deryabkina, I.G.; Vasil’eva, G.K.; Kızılkaya, R. Dynamics of benzo[α]pyrene accumulation in soils under the influence of aerotechnogenic emissions. Eurasian Soil Sci. 2017, 50, 95–105. [Google Scholar] [CrossRef]
- ISO 13877-2005; Soil Quality-Determination of Polynuclear Aromatic Hydrocarbons—Method Using High-performance Liquid Chromatography. ISO: Geneva, Switzerland, 2005.
- Procedure of Measurements Benz(a)pyrene Content in Soils, Sediments and Sludges by Highly Effective Liquid Chromatography Method. Certificate 27-08; State Register no. FR.1.31.2005.01725. 2008; 27p. Available online: https://files.stroyinf.ru/Data2/1/4293809/4293809324.htm?ysclid=ljg45vs6ub561614960 (accessed on 4 March 2008). (In Russian).
- Zhidkin, A.; Gennadiev, A.; Koshovskii, T. Input and behavior of polycyclic aromatic hydrocarbons in arable, fallow, and forest soils of the taiga zone (Tver oblast). Eurasian Soil Sci. 2017, 50, 296–304. [Google Scholar] [CrossRef]
- GN 2.1.7.2041-06; Maximum Permissible Concentrations (MPC) of Chemical Substances in Soil: Hygienic Standards. Federal Center for Hygiene and Epidemiology of Rospotrebnadzor. Hygienic Norms: Moscow, Russia, 2006; 7p. (In Russian)
- Gabov, D.; Beznosikov, V.; Kondratenok, B.; Yakovleva, E. Formation of polycyclic aromatic hydrocarbons in northern and middle taiga soils. Eurasian Soil Sci. 2008, 41, 1180–1188. [Google Scholar] [CrossRef]
- Vasil’chuk, Y.K.; Belik, A.; Budantseva, N.; Gennadiev, A.; Vasil’chuk, J.Y. Carbon Isotope signatures and polyarenes in the pedogenic material of ice wedges of the Batagay Yedoma (Yakutia). Eurasian Soil Sci. 2020, 53, 187–196. [Google Scholar] [CrossRef]
- Atanassova, I.; Brümmer, G.W. Polycyclic aromatic hydrocarbons of anthropogenic and biopedogenic origin in a colluviated hydromorphic soil of Western Europe. Geoderma 2004, 120, 27–34. [Google Scholar] [CrossRef]
- Shamrikova, E.; Yakovleva, E.; Gabov, D.; Zhangurov, E.; Korolev, M.; Zazovskaya, E. Polyarenes distribution in the soil-plant system of reindeer pastures in the polar urals. Agronomy 2022, 12, 372. [Google Scholar] [CrossRef]
- Yakovleva, E.; Gabov, D.; Vasilevich, R.; Goncharova, N. Participation of plants in the formation of polycyclic aromatic hydrocarbons in peatlands. Eurasian Soil Sci. 2020, 53, 317–329. [Google Scholar] [CrossRef]
- Andrade, M.V.; Santos, F.R.; Oliveira, A.H.; Nascimento, R.F.; Cavalcante, R.M. Influence of sediment parameters on the distribution and fate of PAHs in an estuarine tropical region located in the Brazilian semi-arid (Jaguaribe River, Ceará coast). Mar. Pollut. Bull. 2019, 146, 703–710. [Google Scholar] [CrossRef] [PubMed]
- Pongpiachan, S.; Hattayanone, M.; Tipmanee, D.; Suttinun, O.; Khumsup, C.; Kittikoon, I.; Hirunyatrakul, P. Chemical characterization of polycyclic aromatic hydrocarbons (PAHs) in 2013 Rayong oil spill-affected coastal areas of Thailand. Environ. Pollut. 2018, 233, 992–1002. [Google Scholar] [CrossRef] [PubMed]
- Khaustov, A.; Redina, M. Fractioning of the polycyclic aromatic hydrocarbons in the components of the non-equilibrium geochemical systems (thermodynamic analysis). Appl. Geochem. 2020, 120, 104684. [Google Scholar] [CrossRef]
- Mazarji, M.; Minkina, T.; Sushkova, S.; Mandzhieva, S.; Fedorenko, A.; Bauer, T.; Soldatov, A.; Barakhov, A.; Dudnikova, T. Biochar-assisted Fenton-like oxidation of benzo[a]pyrene-contaminated soil. Environ. Geochem. Health 2022, 44, 195–206. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, X.; Ling, W.; Liu, R.; Liu, J.; Kang, F.; Gao, Y. Contamination and health risk assessment of PAHs in soils and crops in industrial areas of the Yangtze River Delta region, China. Chemosphere 2017, 168, 976–987. [Google Scholar] [CrossRef]
- Ma, L.; Chu, S.; Wang, X.; Cheng, H.; Liu, X.; Xu, X. Polycyclic aromatic hydrocarbons in the surface soils from outskirts of Beijing, China. Chemosphere 2005, 58, 1355–1363. [Google Scholar] [CrossRef]
- Yuan, G.-L.; Wu, L.-J.; Sun, Y.; Li, J.; Li, J.-C.; Wang, G.-H. Polycyclic aromatic hydrocarbons in soils of the central Tibetan Plateau, China: Distribution, sources, transport and contribution in global cycling. Environ. Pollut. 2015, 203, 137–144. [Google Scholar] [CrossRef]
- Bezberdaya, L.; Kosheleva, N.; Chernitsova, O.; Lychagin, M.; Kasimov, N. Pollution level, partition and spatial distribution of benzo[a]pyrene in urban soils, road dust and their PM10 fraction of health-resorts (Alushta, Yalta) and industrial (Sebastopol) cities of Crimea. Water 2022, 14, 561. [Google Scholar] [CrossRef]
- Maliszewska-Kordybach, B. Persistent organic contaminants in the environment: PAHs as a case study. In Bioavailability of Organic Xenobiotics in the Environment: Practical Consequences for the Environment; Springer: Dordrecht, The Netherlands, 1999; pp. 3–34. [Google Scholar] [CrossRef]
Georeferencing | Land Use Type | Number of PAHs | PAH Concentration, µg kg−1 | Source | ||
---|---|---|---|---|---|---|
Mean/Median | Minimum | Maximum | ||||
Land | ||||||
Global | All types of land use | 15 | 328/44 | - | - | [18] |
Africa | 30/33 | - | - | |||
Asia | 65/21 | - | - | |||
Europe | 714/136 | - | - | |||
North America | 347/91 | - | - | |||
South America | 21/5.8 | - | - | |||
Oceania | 60/13 | - | - | |||
Great Britain | Forest background | 15 | Average—580 | - | - | [19] |
Pasture background | Average—700 | - | - | |||
Norway | Forest background | Average—350 | - | - | ||
Pasture background | Average—110 | - | - | |||
China | All types of land use | 16 | - | 31 | 136 | [20] |
China | All types of land use | 16 | Average—700 | - | - | [21] |
Russia, taiga zone | Forest | eleven | <60 | - | - | [22] |
Eastern Europe | Agricultural | 13 | - | 160 | 260 | [23] |
China, south | Agricultural | 16 | 318/265 | 22 | 1557 | [24] |
Suburb | 16 | 98/52 | 22 | 132 | ||
Italy, south | Countryside | 16 | 336/1881 | 2 | 11,353 | [25] |
Poland | All types of land use | 16 | Median—395 | 80 | 7284 | [26] |
China | Suburb | 16 | - | 52 | 888 | [20] |
Agricultural | 16 | - | 28 | 554 | ||
China, east | Countryside | 16 | Average—1060 | 22 | 3350 | [27] |
Poland | Agricultural | 13 | Average—264 | 28 | 2447 | [28] |
Poland | Countryside | 13 | Average—387 | - | - | [29] |
Germany | Forest | 16 | Average—551 | 20 | 9038 | [30] |
Northern Europe | Background | 16 | <100 | - | - | [19] |
Tropical zone | Background | 16 | - | 12 | 380 | [31] |
Temperate zone | Background | 12 | 65 | - | - | [4] |
Cuba | Background | 16 | <120 | - | - | [32] |
Russia, south | Background | 16 | <300 | [33,34] | ||
Near water bodies | ||||||
China, east | Coastal zone | 16 | - | 91 | 2311 | [35] |
China, north mouth of the river. Liaohe | Background | 16 | <100 | - | - | [36] |
Nigeria | Delta River Niger | 28 | Average—80 | 24 | 120 | [17] |
China, r. Pearl | River mouth | 16 | Average—427 | - | - | [37] |
China | River mouths | 16 | <500 | - | - | [35] |
China, r. Jinjiang and Quanzhou Bay | Coastal zone | 16 | - | 19 | 282 | [38] |
China, Bohai and Yellow Sea | Coast | 16 | Average—234 | - | - | [39] |
China, Tianjin | Coast | 16 | Median—385 | 58 | 9160 | [40] |
South korea, west coast | Coast | 16 | Average—394 | 70 | 1175 | [41] |
China, Delta Liao | Background | 16 | Average—550 | 106 | 3148 | [42] |
China, r. Huanghei | Delta | 16 | Average—132 | 27 | 753 | [43] |
Spain, northwest | Coast | 16 | - | thirty | 800 | [16] |
Italy, Palermo | Background, coast, nature reserve | 16 | - | 35 | 545 | [15] |
Soil Properties | Mean | Median | Minimum | Maximum | Standard Deviation | Coefficient of Variation, % | |
---|---|---|---|---|---|---|---|
pH | 7.88 | 7.90 | 7.24 | 8.91 | 0.33 | 4.23 | |
CaCO3 | % | 2.36 | 1.80 | 0.19 | 8.30 | 1.91 | 80.63 |
Particle < 0.001 | 13.84 | 11.70 | 0.10 | 33.10 | 9.78 | 70.66 | |
Particle < 0.01 | 29.42 | 26.00 | 1.30 | 67.76 | 17.22 | 58.55 | |
Organic carbon | 1.32 | 1.10 | 0.12 | 3.94 | 0.83 | 62.62 | |
Ca2+ | cmol (+) | 16.06 | 15.80 | 3.20 | 36.30 | 8.40 | 52.28 |
Mg2+ | 3.02 | 2.10 | 0.20 | 13.20 | 2.61 | 86.44 |
PAHs | Mean | Median | Minimum | Maximum | Standard Deviation | Coefficient of Variation | Average Content of PAHs in Temperate Soils |
---|---|---|---|---|---|---|---|
µg kg−1 | % | µg kg−1 | |||||
Naphthalene | SSS | 13.7 | 1.8 | 103.2 | 19.4 | 101.6 | 4.0 |
Fluorene | 18.4 | 10.3 | 1.3 | 114.7 | 21.3 | 116.0 | 1.9 |
Phenanthrene | 94.9 | 62.0 | 14.8 | 623.3 | 92.1 | 97.1 | 19.0 |
Anthracene | 1.4 | 0.3 | 0.02 | 21.0 | 3.6 | 266.1 | 1.6 |
Acenaphthene | 8.0 | 6.0 | 0.7 | 34.4 | 6.9 | 85.9 | - |
Acenaphthylene | 9.6 | 6.1 | 0.7 | 57.3 | 9.4 | 97.78 | - |
Fluoranthene | 155.0 | 54.0 | 3.9 | 2070.2 | 302.6 | 195.2 | 51.0 |
Pyrene | 85.5 | 39.1 | 4.6 | 1811.0 | 194.4 | 227.4 | 25.0 |
Chryzene | 77.4 | 31.9 | 4.1 | 1448.8 | 155.2 | 200.5 | - |
Benzo[a]anthracene | 80.7 | 21.4 | 0.7 | 1619.4 | 212.8 | 263.6 | 26.0 |
Benzo[b]fluoranthene | 106.9 | 31.5 | 1.1 | 2191.4 | 250.2 | 234.2 | 34.0 |
Benzo[k]fluoranthene | 76.5 | 16.4 | 0.4 | 1289.3 | 179.7 | 235.0 | 20.0 |
Benzo[a]pyrene | 125.1 | 22.7 | 0.5 | 2013.3 | 297.5 | 237.8 | 19 |
Dibenzo[a,h]anthracene | 27.3 | 10.5 | 0.3 | 408.5 | 53.0 | 194.3 | 10 |
Benzo[g,h,i]perylene | 154.6 | 45.5 | 1.8 | 3767.6 | 413.7 | 267.5 | 28 |
∑15PAHs | 1040.1 | 406.4 | 76.6 | 16,017.0 | 2001.8 | 192.5 | 64.5 |
Naphthalene | Fluorene | Phenanthrene | Anthracene | Acenaphthene |
---|---|---|---|---|
0.04 | 0.68 * | 0.81 * | 0.42 * | 0.60 * |
Acenaphthylene | Fluoranthene | Pyrene | Chryzene | Benzo[a]anthracene |
0.66 * | 0.96 * | 0.87 * | 0.88 * | 0.95 * |
Benzo[b]fluoranthene | Benzo[k]fluoranthene | Benzo[a]pyrene | Dibenzo[a,h]anthracene | Benzo[g,h,i]perylene |
0.89 * | 0.84 * | 0.86 * | 0.91 * | 0.88 * |
Parameter | Factor 1 | Factor 2 | Parameter | Factor 1 | Factor 2 |
---|---|---|---|---|---|
pH | −0.12 | 0.16 | Acenaphthene | −0.81 * | −0.25 |
CaCO3 | 0.05 | 0.31 | Acenaphthylene | −0.85 * | −0.22 |
<0.001 | −0.30 | 0.36 | Fluoranthene | −0.92 * | 0.23 |
<0.01 | −0.30 | 0.40 * | Pyrene | −0.69 * | 0.68 * |
organic carbon | −0.25 | 0.56 * | Chryzene | −0.70 * | 0.61 * |
Ca++ | −0.34 | 0.40 * | Benzo[a]anthracene | −0.89 * | 0.18 |
Mg++ | −0.33 | 0.33 | Benzo[b]fluoranthene | −0.78 * | 0.27 |
Naphthalene | 0.01 | −0.06 | Benzo[k]fluoranthene | −0.82 * | −0.06 |
Fluorene | −0.85 * | −0.21 | Benzo[a]pyrene | −0.83 * | 0.01 |
Phenanthrene | −0.91 * | 0.23 | Dibenzo[a,h]anthracene | −0.75 * | 0.39 |
Anthracene | −0.56 * | 0.23 | Benzo[g,h,i]perylene | −0.74 * | 0.31 |
No. | Type of Soil | pH | CaCO3 | Organic Carbon | <0.001 | <0.01 | Ca2+ | Mg2+ |
---|---|---|---|---|---|---|---|---|
% | cmol (+) kg | |||||||
55 | Tidalic Fluvisols | 8.1 ± 0.1 | 2.2 ± 0.1 | 2.5 ± 0.2 | 29.6 ± 0.5 | 49.1 ± 2.0 | 28.7 ± 1.7 | 4.0 ± 0.3 |
64 | Fluvisols Salic | 7.9 ± 0.2 | 0.9 ± 0.1 | 1.0 ± 0.1 | 4.9 ± 0.1 | 26.6 ± 1.7 | 12.0 ± 0.5 | 1.0 ± 0.2 |
90 | Rendzic Leptosols | 8.0 ± 0.2 | 6.1 ± 0.3 | 1.0 ± 0.1 | 26.8 ± 1.0 | 49.6 ± 2.1 | 30.6 ± 0.6 | 2.4 ± 0.1 |
91 | Mollic Leptosols | 8.0 ± 0.1 | 5.6 ± 0.4 | 2.4 ± 0.2 | 5.3 ± 0.1 | 23.8 ± 1.0 | 10.3 ± 0.6 | 5.7 ± 0.3 |
Monitoring Site Number | 55 | 64 | 90 | 91 | |
Soil Type | Tidalic Fluvisols | Fluvisols Salic | Rendzic Leptosols | Mollic Leptosols | |
PAHs Type | |||||
Low molecular weight | Naphthalene | 19.7 ± 2.0 | 3.8 ± 0.1 | 68.2 ± 3.6 | 58.5 ± 2.5 |
Fluorene | 17.0 ± 2.1 | 2.4 ± 0.2 | 6.8 ± 0.2 | 7.6 ± 0.3 | |
Phenanthrene | 165.3 ± 7.2 | 22.8 ± 0.5 | 45.0 ± 4.0 | 62.0 ± 3.1 | |
Anthracene | 2.3 ± 0.1 | 3.7 ± 0.1 | 0.5 ± 0.1 | 0.5 ± 0.1 | |
Acenaphthene | 16.5 ± 0.8 | 4.2 ± 0.1 | 3.0 ± 0.1 | 3.9 ± 0.2 | |
Acenaphthylene | 15.9 ± 0.5 | 4.9 ± 0.3 | 4.0 ± 0.2 | 5.2 ± 0.2 | |
High molecular weight | Fluoranthene | 37.5 ± 2.1 | 3.9 ± 0.2 | 27.0 ± 1.2 | 31.1 ± 1.0 |
Pyrene | 88.4 ± 4.2 | 8.1 ± 0.5 | 30.4 ± 1.5 | 33.8 ± 1.5 | |
Chryzene | 70.8 ± 4.3 | 20.0 ± 1.2 | 22.0 ± 1.0 | 28.0 ± 1.5 | |
Benzo[a]anthracene | 5.0 ± 0.2 | 0.7 ± 0.1 | 7.0 ± 0.2 | 8.4 ± 0.2 | |
Benzo[b]fluoranthene | 10.2 ± 0.3 | 1.1 ± 0.1 | 11.5 ± 0.5 | 13.0 ± 0.6 | |
Benzo[k]fluoranthene | 2.3 ± 0.1 | 0.4 ± 0.1 | 3.4 ± 0.1 | 3.8 ± 0.1 | |
Benzo[a]pyrene | 4.7 ± 0.1 | 0.5 ± 0.1 | 7.0 ± 0.3 | 8.5 ± 0.3 | |
Dibenzo[a,h]anthracene | 6.7 ± 0.2 | 0.3 ± 0.1 | 0.9 ± 0.1 | 1.4 ± 0.1 | |
Benzo[ g,h,i]perylene | 17.6 ± 0.5 | 1.8 ± 0.1 | 13.0 ± 0.4 | 15.0 ± 0.8 | |
Σ PAH | 478.1 | 75.6 | 249.3 | 280.2 | |
Σ low-molecular-weight PAHs/Σ high-molecular-weight PAHs | 0.97 | 1.05 | 1.04 | 0.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dudnikova, T.; Minkina, T.; Sushkova, S.; Barbashev, A.; Antonenko, E.; Konstantinova, E.; Shuvaev, E.; Nevidomskaya, D.; Ivantsov, A.; Bakoeva, G.; et al. Background Content of Polycyclic Aromatic Hydrocarbons during Monitoring of Natural and Anthropogenically Transformed Landscapes in the Coastal Area Soils. Water 2023, 15, 2424. https://doi.org/10.3390/w15132424
Dudnikova T, Minkina T, Sushkova S, Barbashev A, Antonenko E, Konstantinova E, Shuvaev E, Nevidomskaya D, Ivantsov A, Bakoeva G, et al. Background Content of Polycyclic Aromatic Hydrocarbons during Monitoring of Natural and Anthropogenically Transformed Landscapes in the Coastal Area Soils. Water. 2023; 15(13):2424. https://doi.org/10.3390/w15132424
Chicago/Turabian StyleDudnikova, Tamara, Tatiana Minkina, Svetlana Sushkova, Andrey Barbashev, Elena Antonenko, Elizaveta Konstantinova, Evgenyi Shuvaev, Dina Nevidomskaya, Artem Ivantsov, Gulnora Bakoeva, and et al. 2023. "Background Content of Polycyclic Aromatic Hydrocarbons during Monitoring of Natural and Anthropogenically Transformed Landscapes in the Coastal Area Soils" Water 15, no. 13: 2424. https://doi.org/10.3390/w15132424
APA StyleDudnikova, T., Minkina, T., Sushkova, S., Barbashev, A., Antonenko, E., Konstantinova, E., Shuvaev, E., Nevidomskaya, D., Ivantsov, A., Bakoeva, G., & Gorbunova, M. (2023). Background Content of Polycyclic Aromatic Hydrocarbons during Monitoring of Natural and Anthropogenically Transformed Landscapes in the Coastal Area Soils. Water, 15(13), 2424. https://doi.org/10.3390/w15132424