Co-Occurrence of Earthquake and Climatic Events on Groundwater Budget Alteration in a Fractured Carbonate Aquifer (Sibillini Mts.—Central Italy)
Abstract
:1. Introduction
2. Study Area
2.1. Hydrogeological Setting of Sibillini Mts.
2.2. Effects of the 2016–2017 Seismic Sequence on the Sibillini Mts. Groundwater Flow
3. Materials and Methods
3.1. The monitoring Sites and Collected Data
3.2. Elaboration Methods
3.3. Components of Groundwater Stored in the Aquifer: Reference Model
4. Results
4.1. Climate Analysis
4.2. Groundwater Budget Estimation
4.3. Hydrograph Analysis
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stigter, T.Y.; Miller, J.; Chen, J.; Re, V. Groundwater and Climate Change: Threats and Opportunities. Hydrogeol. J. 2023, 31, 7–10. [Google Scholar] [CrossRef]
- Alley, W.M.; Leake, S.A. The Journey from Safe Yield to Sustainability. Ground Water 2004, 42, 12–16. [Google Scholar] [CrossRef]
- Molle, F. Aquifer Safe Yield: Hard Science or Boundary Concept? In Proceedings of the Ground Water 2011 Conference, Orléans, France, 14–16 March 2011. [Google Scholar]
- Liu, G.; Wilson, B.B.; Bohling, G.C.; Whittemore, D.O.; Butler, J.J. Estimation of Specific Yield for Regional Groundwater Models: Pitfalls, Ramifications, and a Promising Path Forward. Water Resour. Res. 2022, 58, e2021WR030761. [Google Scholar] [CrossRef]
- Piscopo, V.; Sbarbati, C.; Lotti, F.; Lana, L.; Petitta, M. Sustainability Indicators of Groundwater Withdrawal in a Heavily Stressed System: The Case of the Acque Albule Basin (Rome, Italy). Sustainability 2022, 14, 15248. [Google Scholar] [CrossRef]
- Voudouris, K.S. Groundwater Balance and Safe Yield of the Coastal Aquifer System in NEastern Korinthia, Greece. Appl. Geogr. 2006, 26, 291–311. [Google Scholar] [CrossRef]
- Meyland, S.J. Examining Safe Yield and Sustainable Yield for Groundwater Supplies and Moving to Managed Yield as Water Resource Limits Become a Reality. In Proceedings of the Water Resources Management VI Conference, Milan, Italy, 23 May 2011; pp. 813–823. [Google Scholar]
- Gleeson, T.; Wada, Y.; Bierkens, M.F.P.; van Beek, L.P.H. Water Balance of Global Aquifers Revealed by Groundwater Footprint. Nature 2012, 488, 197–200. [Google Scholar] [CrossRef]
- Viaroli, S.; Mastrorillo, L.; Lotti, F.; Paolucci, V.; Mazza, R. The Groundwater Budget: A Tool for Preliminary Estimation of the Hydraulic Connection between Neighboring Aquifers. J. Hydrol. 2018, 556, 72–86. [Google Scholar] [CrossRef]
- Manghi, F.; Mortazavi, B.; Crother, C.; Hamdi, M.R. Estimating Regional Groundwater Recharge Using a Hydrological Budget Method. Water Resour. Manag. 2009, 23, 2475–2489. [Google Scholar] [CrossRef]
- Zhou, Y. A Critical Review of Groundwater Budget Myth, Safe Yield and Sustainability. J. Hydrol. 2009, 370, 207–213. [Google Scholar] [CrossRef]
- Huo, A.; Peng, J.; Chen, X.; Deng, L.; Wang, G.; Cheng, Y. Groundwater Storage and Depletion Trends in the Loess Areas of China. Environ. Earth Sci. 2016, 75, 1167. [Google Scholar] [CrossRef]
- Bierkens, M.F.P.; Wada, Y. Non-Renewable Groundwater Use and Groundwater Depletion: A Review. Environ. Res. Lett. 2019, 14, 063002. [Google Scholar] [CrossRef]
- Moiwo, J.P. Implications of Groundwater Depletion for Aquifer Geomatrix Deformation and Water Availability. Hydrology 2016, 4, 46. [Google Scholar] [CrossRef] [Green Version]
- Custodio, E. Aquifer Overexploitation: What Does It Mean? Hydrogeol. J 2002, 10, 254–277. [Google Scholar] [CrossRef]
- Voss, K.A.; Famiglietti, J.S.; Lo, M.; de Linage, C.; Rodell, M.; Swenson, S.C. Groundwater Depletion in the Middle East from GRACE with Implications for Transboundary Water Management in the Tigris-Euphrates-Western Iran Region. Water Resour. Res. 2013, 49, 904–914. [Google Scholar] [CrossRef] [Green Version]
- Chang, F.-J.; Huang, C.-W.; Cheng, S.-T.; Chang, L.-C. Conservation of Groundwater from Over-Exploitation—Scientific Analyses for Groundwater Resources Management. Sci. Total Environ. 2017, 598, 828–838. [Google Scholar] [CrossRef]
- Li, H.; Du, X.; Lu, X.; Fang, M. Analysis of Groundwater Overexploitation Based on Groundwater Regime Information. Groundwater 2022. [Google Scholar] [CrossRef]
- Lancia, M.; Yao, Y.; Andrews, C.B.; Wang, X.; Kuang, X.; Ni, J.; Gorelick, S.M.; Scanlon, B.R.; Wang, Y.; Zheng, C. The China Groundwater Crisis: A Mechanistic Analysis with Implications for Global Sustainability. Sustain. Horiz. 2022, 4, 100042. [Google Scholar] [CrossRef]
- UNESCO. United Nations World Water Development Report 2020: Water and Climate Change; UNESCO: Paris, France, 2020. [Google Scholar]
- Holman, I.P. Climate Change Impacts on Groundwater Recharge-Uncertainty, Shortcomings, and the Way Forward? Hydrogeol. J. 2006, 14, 637–647. [Google Scholar] [CrossRef] [Green Version]
- Fiorillo, F.; Petitta, M.; Preziosi, E.; Rusi, S.; Esposito, L.; Tallini, M. Long-Term Trend and Fluctuations of Karst Spring Discharge in a Mediterranean Area (Central-Southern Italy). Environ. Earth Sci. 2015, 74, 153–172. [Google Scholar] [CrossRef]
- Leone, G.; Pagnozzi, M.; Catani, V.; Ventafridda, G.; Esposito, L.; Fiorillo, F. A Hundred Years of Caposele Spring Discharge Measurements: Trends and Statistics for Understanding Water Resource Availability under Climate Change. Stoch. Environ. Res. Risk Assess. 2021, 35, 345–370. [Google Scholar] [CrossRef]
- Grinevskiy, S.O.; Pozdniakov, S.P.; Dedulina, E.A. Regional-Scale Model Analysis of Climate Changes Impact on the Water Budget of the Critical Zone and Groundwater Recharge in the European Part of Russia. Water 2021, 13, 428. [Google Scholar] [CrossRef]
- Fiorillo, F.; Leone, G.; Pagnozzi, M.; Esposito, L. Long-Term Trends in Karst Spring Discharge and Relation to Climate Factors and Changes. Hydrogeol. J. 2021, 29, 347–377. [Google Scholar] [CrossRef]
- Romano, E.; Del Bon, A.; Petrangeli, A.B.; Preziosi, E. Generating Synthetic Time Series of Springs Discharge in Relation to Standardized Precipitation Indices. Case Study in Central Italy. J. Hydrol. 2013, 507, 86–99. [Google Scholar] [CrossRef]
- Sanz de Ojeda, A.; Alhama, I.; Sanz, E. Aquifer Sensitivity to Earthquakes: The 1755 Lisbon Earthquake. J. Geophys. Res. Solid Earth 2019, 124, 8844–8866. [Google Scholar] [CrossRef]
- Sanz, E.; Menéndez Pidal, I.; Escavy, J.I.; Ojeda, J.S. de Hydrogeological Changes along a Fault Zone Caused by Earthquakes in the Moncayo Massif (Iberian Chain, Spain). Sustainability 2020, 12, 9034. [Google Scholar] [CrossRef]
- Shih, D.C.-F. Groundwater Storage Inferred from Earthquake Activities around East Asia and West Pacific Ocean. J. Hydrol. 2017, 544, 363–372. [Google Scholar] [CrossRef]
- Rojstaczer, S.; Wolf, S.; Michel, R. Permeability Enhancement in the Shallow Crust as a Cause of Earthquake-Induced Hydrological Changes. Nature 1995, 373, 237–239. [Google Scholar] [CrossRef]
- Jónsson, S.; Segall, P.; Pedersen, R.; Björnsson, G. Post-Earthquake Ground Movements Correlated to Pore-Pressure Transients. Nature 2003, 424, 179–183. [Google Scholar] [CrossRef]
- Wang, C.-Y.; Manga, M. Earthquakes Influenced by Water. In Water and Earthquakes; Springer: Berlin/Heidelberg, Germany, 2010; pp. 125–139. [Google Scholar]
- Mohr, C.H.; Manga, M.; Wang, C.-Y.; Korup, O. Regional Changes in Streamflow after a Megathrust Earthquake. Earth Planet Sci. Lett. 2017, 458, 418–428. [Google Scholar] [CrossRef] [Green Version]
- Petitta, M.; Mastrorillo, L.; Preziosi, E.; Banzato, F.; Barberio, M.D.; Billi, A.; Cambi, C.; De Luca, G.; Di Carlo, G.; Di Curzio, D.; et al. Water-Table and Discharge Changes Associated with the 2016–2017 Seismic Sequence in Central Italy: Hydrogeological Data and a Conceptual Model for Fractured Carbonate Aquifers. Hydrogeol. J. 2018, 26, 1009–1026. [Google Scholar] [CrossRef] [Green Version]
- Hosono, T.; Yamada, C.; Manga, M.; Wang, C.-Y.; Tanimizu, M. Stable Isotopes Show That Earthquakes Enhance Permeability and Release Water from Mountains. Nat. Commun. 2020, 11, 2776. [Google Scholar] [CrossRef]
- Amoruso, A.; Crescentini, L.; Petitta, M.; Rusi, S.; Tallini, M. Impact of the 6 April 2009 L’Aquila Earthquake on Groundwater Flow in the Gran Sasso Carbonate Aquifer, Central Italy. Hydrol. Process 2011, 25, 1754–1764. [Google Scholar] [CrossRef]
- Valigi, D.; Fronzi, D.; Cambi, C.; Beddini, G.; Cardellini, C.; Checcucci, R.; Mastrorillo, L.; Mirabella, F.; Tazioli, A. Earthquake-Induced Spring Discharge Modifications: The Pescara Di Arquata Spring Reaction to the August–October 2016 Central Italy Earthquakes. Water 2020, 12, 767. [Google Scholar] [CrossRef] [Green Version]
- Scheihing, K.W. Post-Seismic Mountain Aquifer Leakage Drives Multi-Annual Forearc Basin Recharge in the Atacama Desert. Hydrol. Sci. J. 2023, 68, 49–61. [Google Scholar] [CrossRef]
- Mastrorillo, L.; Saroli, M.; Viaroli, S.; Banzato, F.; Valigi, D.; Petitta, M. Sustained Post-seismic Effects on Groundwater Flow in Fractured Carbonate Aquifers in Central Italy. Hydrol. Process 2020, 34, 1167–1181. [Google Scholar] [CrossRef] [Green Version]
- Cambi, C.; Mirabella, F.; Petitta, M.; Banzato, F.; Beddini, G.; Cardellini, C.; Fronzi, D.; Mastrorillo, L.; Tazioli, A.; Valigi, D. Reaction of the Carbonate Sibillini Mountains Basal Aquifer (Central Italy) to the Extensional 2016–2017 Seismic Sequence. Sci. Rep. 2022, 12, 22428. [Google Scholar] [CrossRef]
- Chiaraluce, L.; Di Stefano, R.; Tinti, E.; Scognamiglio, L.; Michele, M.; Casarotti, E.; Cattaneo, M.; De Gori, P.; Chiarabba, C.; Monachesi, G.; et al. The 2016 Central Italy Seismic Sequence: A First Look at the Mainshocks, Aftershocks, and Source Models. Seismol. Res. Lett. 2017, 88, 757–771. [Google Scholar] [CrossRef]
- Cresta, S.; Monechi, S.; Parisi, G. Mesozoic–Cenozoic Stratigraphy in the Umbria - Marche Area. Mem. Descr. Della Carta Geol. D’Italia 1989, 39, 1–182. [Google Scholar]
- Nanni, T.; Vivalda, P. The Aquifers of the Umbria-Marche Adriatic Region: Relationships between Structural Setting and Groundwater Chemistry. Ital. J. Geosci. 2005, 124, 523–542. [Google Scholar]
- Mastrorillo, L.; Baldoni, T.; Banzato, F.; Boscherini, A.; Cascone, D.; Checcucci, R.; Petitta, M.; Boni, C. Quantitative Hydrogeological Analysis of the Carbonate Domain of the Umbria Region (Central Italy). Ital. J. Eng. Geol. Environ. 2009, 1, 137–156. [Google Scholar]
- Boni, C.; Baldoni, T.; Banzato, F.; Cascone, D.; Petitta, M. Hydrogeological Study for Identification, Characterisation and Management of Groundwater Resources in the Sibillini Mountains National Park (Central Italy). Ital. J. Eng. Geol. Environ. 2010, 2, 21–39. [Google Scholar]
- Mastrorillo, L.; Petitta, M. Hydrogeological Conceptual Model of the Upper Chienti River Basin Aquifers (Umbria-Marche Apennines). Ital. J. Geosci. 2014, 133, 396–408. [Google Scholar] [CrossRef]
- Viaroli, S.; Mirabella, F.; Mastrorillo, L.; Angelini, S.; Valigi, D. Fractured Carbonate Aquifers of Sibillini Mts. (Central Italy). J. Maps 2021, 17, 140–149. [Google Scholar] [CrossRef]
- Boni, C.; Bono, P.; Capelli, G. Schema Idrogeologico Dell’Italia Centrale. Mem. Della Soc. Geol. Ital. 1986, 35, 991–1012. [Google Scholar]
- Calamita, F.; Deiana, G. The Arcuate Shape of the Umbria-Marche-Sabina Apennines (Central Italy). Tectonophysics 1988, 146, 139–147. [Google Scholar] [CrossRef]
- Calamita, F.; Cello, G.; Deiana, G.; Paltrinieri, W. Structural Styles, Chronology Rates of Deformation, and Time-Space Relationships in the Umbria-Marche Thrust System (Central Apennines, Italy). Tectonics 1994, 13, 873–881. [Google Scholar] [CrossRef]
- Curzi, M.; Cipriani, A.; Aldega, L.; Billi, A.; Carminati, E.; Van der Lelij, R.; Vignaroli, G.; Viola, G. Architecture and Permeability Structure of the Sibillini Mts. Thrust and Influence upon Recent, Extension-Related Seismicity in the Central Apennines (Italy) through Fault-Valve Behavior. GSA Bull. 2023. [Google Scholar] [CrossRef]
- Sapienza Università di Roma Integrazione Della Base Conoscitiva per La Gestione Della Risorsa Idrica Sotterranea Del Parco Nazionale Dei Monti Sibillini; Technical Report; Sapienza University of Rome: Rome, Italy, 2011.
- Petrella, E.; Capuano, P.; Carcione, M.; Celico, F. A High-Altitude Temporary Spring in a Compartmentalized Carbonate Aquifer: The Role of Low-Permeability Faults and Karst Conduits. Hydrol. Process 2009, 23, 3354–3364. [Google Scholar] [CrossRef]
- Boni, C.; Cascone, D.; Mastrorillo, L.; Tarragoni, C. Carta Idrogeologica Delle Dorsali Interne Umbro Marchigiane; Consiglio Nazionale delle Ricerche Gruppo Nazionale Difesa Catastrofi Idrogeologiche: Rome, Italy, 2005. [Google Scholar]
- Civita, M. Idrogeologia Applicata e Ambientale; Casa Editrice Ambrosiana: Milan, Italy, 2005. [Google Scholar]
- Brozzetti, F.; Boncio, P.; Cirillo, D.; Ferrarini, F.; Nardis, R.; Testa, A.; Liberi, F.; Lavecchia, G. High-Resolution Field Mapping and Analysis of the August–October 2016 Coseismic Surface Faulting (Central Italy Earthquakes): Slip Distribution, Parameterization, and Comparison with Global Earthquakes. Tectonics 2019, 38, 417–439. [Google Scholar] [CrossRef] [Green Version]
- Di Matteo, L.; Capoccioni, A.; Porreca, M.; Pauselli, C. Groundwater-Surface Water Interaction in the Nera River Basin (Central Italy): New Insights after the 2016 Seismic Sequence. Hydrology 2021, 8, 97. [Google Scholar] [CrossRef]
- Fronzi, D.; Banzato, F.; Caliro, S.; Cambi, C.; Cardellini, C.; Checcucci, R.; Mastrorillo, L.; Mirabella, F.; Petitta, M.; Valigi, D.; et al. Preliminary Results on the Response of Some Springs of the Sibillini Mountains Area to the 2016–2017 Seismic Sequence. Acque Sotter. Ital. J. Groundw. 2020, 9. [Google Scholar] [CrossRef] [Green Version]
- Mammoliti, E.; Fronzi, D.; Cambi, C.; Mirabella, F.; Cardellini, C.; Patacchiola, E.; Tazioli, A.; Caliro, S.; Valigi, D. A Holistic Approach to Study Groundwater-Surface Water Modifications Induced by Strong Earthquakes: The Case of Campiano Catchment (Central Italy). Hydrology 2022, 9, 97. [Google Scholar] [CrossRef]
- Boni, C.; Petitta, M.; Preziosi, E.; Sereni, M. Genesi e Regime Di Portata Delle Acque Continentali Del Lazio; Consiglio Nazionale delle RIcerche, Ufficio Pubblicazioni e Informazioni Scientifiche: Rome, Italy, 1993. [Google Scholar]
- Sapienza Università di Roma Studio Idrogeologico Della Sorgente Di Capodacqua Del Tronto; Technical Report; Sapienza University of Rome: Rome, Italy, 2021.
- Università degli Studi Roma Tre Revisione Dei Modelli Concettuali Dei Corpi Idrici Sotterranei e Valutazione Dei Relativi Bilanci Idrici a Seguito Degli Effetti Indotti Dagli Eventi Sismici Del 2016–2017; Technical Report; Roma Tre University: Rome, Italy, 2021.
- Università degli Studi Roma Tre Attività Di Supporto Alla Ricerca Idrogeologica Nell’ambito Della Realizzazione Del Progetto Di Interconnessione Idrica “Anello Acquedottistico Dei Sibillini”; Technical Report; Roma Tre University: Rome, Italy, 2022.
- Mastrorillo, L.; Nanni, T.; Petitta, M.; Vivalda, P.M.; Banzato, F.; Palpacelli, S. Groundwater Resources of the Upper Basin of Aso River (Sibillini Mts. National Park): Hydrogeological Study and Management Evaluation. G. Geol. Appl. 2012, 15, 83–96. [Google Scholar]
- Sapienza Università di Roma Studio Idrogeologico Della Captazione Di Foce e Del Sistema Sorgivo Del Fiume Aso; Technical Report; Sapienza University of Rome: Rome, Italy, 2022.
- Regione Lazio Agenzia Regionale Di Protezione Civile. Available online: https://protezionecivile.regione.lazio.it/gestione-emergenze/centro-funzionale/servizio-idrografico (accessed on 31 May 2022).
- Regione Marche Protezione Civile Regionale. Available online: http://app.protezionecivile.marche.it/sol/indexjs.sol?lang=it (accessed on 31 May 2022).
- Regione Umbria Servizio Idrografico. Available online: https://www.mdpi.com/authors/references (accessed on 31 May 2022).
- ISPRA Metodologiedi Misura e Specifiche Tecniche per La Raccolta e l’elaborazione Dei Dati Idrometeorologici; ISPRA: Rome, Italy, 2010.
- Fiorillo, F.; Guadagno, F.M. Karst Spring Discharges Analysis in Relation to Drought Periods, Using the SPI. Water Resour. Manag. 2010, 24, 1867–1884. [Google Scholar] [CrossRef]
- World Meteorological Organization. Standardized Precipitation Index User Guide; WMO: Geneva, Switzerland, 2012. [Google Scholar]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The Relationship of Drought Frequency and Duration to Time Scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; pp. 179–184. [Google Scholar]
- Thornthwaite, C.W.; Mather, J.R. Instructions and Tables for Computing Potential Evapotranspiration and the Water Balance; CW Thornthwaite Associates, Laboratory of Climatology: Elmer, NJ, USA, 1957; Volume 10. [Google Scholar]
- Bosch, D.D.; Arnold, J.G.; Allen, P.G.; Lim, K.-J.; Park, Y.S. Temporal Variations in Baseflow for the Little River Experimental Watershed in South Georgia, USA. J. Hydrol. Reg. Stud. 2017, 10, 110–121. [Google Scholar] [CrossRef]
- Boni, C. Utilizzazione Delle Riserve Idriche Permanenti per Regolare Il Regime Delle Sorgenti Di Trabocco. Geol. Romana 1968, 8, 405–416. [Google Scholar]
- Margat, J.; Foster, S.; Droubi, A. Concept and Importance of Non-Renewable Resources. In Non-Renewable Groundwater Resources, A Guidebook on Socially-Sustainable Management for Water-Policy Makers; United Nations Educational, Scientific and Cultural Organization: Paris, France, 2006; Volume 10, pp. 13–24. [Google Scholar]
- Maillet, E. Essais d’Hydraulique Souterraine et Fluviale; Librairie Scientifique A. Hermann: Paris, France, 1905. [Google Scholar]
Site | Period | Elevation (m a.s.l.) | Recharge Area (km2) | |
---|---|---|---|---|
Total | Site | |||
TO | 2003–2020 | 210 | 1292 | 1292 |
CSN | 2007–2020 | 750 | 99 | 99 |
FO | 2006–2020 | 910 | 30–50 | 20 |
SS | 2014–2020 | 1300 | 7 | 2.1 |
CAT | 2010–2020 | 840 | 32 | 21 |
Site | Preseismic Period | Postseismic Period | ||||
---|---|---|---|---|---|---|
EI (106 m3) | GWD (106 m3) | Δ (106 m3) | EI (106 m3) | GWD (106 m3) | Δ (106 m3) | |
TO | 569 | 573 | −4 | 451 | 704 | −253 |
CSN | 87 | 72 | 15 | 70 | 152 | −82 |
CAT | 9.8 | 8.1 | 1.7 | 8.3 | 9.2 | −0.9 |
SS | 1.6 | 1.2 | 0.4 | 1.2 | 1.0 | 0.2 |
FO | 18 | 16 | 2 | 16 | 10 | 6 |
Site | Preseismic Period | Postseismic Period | ||
---|---|---|---|---|
Discharge (m3/s) | Base Flow (m3/s) | Discharge (m3/s) | Base Flow (m3/s) | |
TO | 20.24 | 18.16 | 24.17 | 22.1 |
CSN | 1.25 | 1.16 | 2.13 | 2.05 |
Sites | Recession Year | W0 (106 m3) | ΔW (106 m3) | Wr (106 m3) | |||||
---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | ΔW Tot | ||||
TO | 2016 | 893 | 240 | 227 | 13 | 137 | 150 | 377 | 516 |
2017 | 1220 | 377 | 296 | 81 | 44 | 125 | 421 | 799 | |
CSN | 2016 | 82 | 61 | 29 | 32 | 31 | 63 | 92 | −10 |
2017 | 103 | 24 | 13 | 11 | 9 | 20 | 33 | 70 | |
CAT | 2016 | 6.0 | 4.1 | 3.0 | 1.1 | 3.9 | 5.0 | 8.0 | −2.0 |
2017 | 7.3 | 4.5 | 3.7 | 0.8 | n.d. | 0.8 | 4.5 | 2.7 | |
SS | 2016 | 1.2 | 1.0 | 0.6 | 0.3 | 0.1 | 0.4 | 1.0 | 0.1 |
FO | 2017 | 17.6 | 9.1 | 12.2 | −3.1 | −4.8 | −7.9 | 9.1 | 8.5 |
2018 | 13.4 | 3.7 | 7.5 | −3.8 | −5.7 | −9.5 | 3.7 | 9.6 | |
2019 | 7.5 | 2.0 | 5.8 | −3.8 | −5.9 | −9.7 | 2.0 | 5.5 | |
2020 | 6.4 | 1.8 | 5.8 | −4.0 | n.d. | n.d. | 1.8 | 4.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mastrorillo, L.; Viaroli, S.; Petitta, M. Co-Occurrence of Earthquake and Climatic Events on Groundwater Budget Alteration in a Fractured Carbonate Aquifer (Sibillini Mts.—Central Italy). Water 2023, 15, 2355. https://doi.org/10.3390/w15132355
Mastrorillo L, Viaroli S, Petitta M. Co-Occurrence of Earthquake and Climatic Events on Groundwater Budget Alteration in a Fractured Carbonate Aquifer (Sibillini Mts.—Central Italy). Water. 2023; 15(13):2355. https://doi.org/10.3390/w15132355
Chicago/Turabian StyleMastrorillo, Lucia, Stefano Viaroli, and Marco Petitta. 2023. "Co-Occurrence of Earthquake and Climatic Events on Groundwater Budget Alteration in a Fractured Carbonate Aquifer (Sibillini Mts.—Central Italy)" Water 15, no. 13: 2355. https://doi.org/10.3390/w15132355
APA StyleMastrorillo, L., Viaroli, S., & Petitta, M. (2023). Co-Occurrence of Earthquake and Climatic Events on Groundwater Budget Alteration in a Fractured Carbonate Aquifer (Sibillini Mts.—Central Italy). Water, 15(13), 2355. https://doi.org/10.3390/w15132355