Analysis of the Seawater Intrusion Process Based on Multiple Monitoring Methods: Study in the Southern Coastal Plain of Laizhou Bay, China
Abstract
:1. Introduction
2. Study Area
3. Method
3.1. Water Chemical Sampling Analysis Method
3.2. Environmental Isotope Method
3.3. Fixed-Point Well Monitoring Method
3.4. Geophysical Monitoring Method
4. Results and Discussion
4.1. Water Chemical Sampling Monitoring Results and Discussion
4.2. Environmental Isotope Method Results and Discussion
4.3. Fixed-Point Wells Monitoring Results and Discussion
4.4. Geophysical Monitoring Results and Discussion
4.5. Theoretical Implications
4.6. Practical Implications
5. Conclusions
6. Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- He, J.; Mai, T.H.T. The Circular Economy: A Study on the Use of Airbnb for Sustainable Coastal Development in the Vietnam Mekong Delta. Sustainability 2021, 13, 7493. [Google Scholar] [CrossRef]
- Werner, A.D.; Bakker, M.; Post, V.E.A.; Vandenbohede, A.; Lu, C.; Ataie-Ashtiani, B.; Simmons, C.T.; Barry, D.A. Seawater Intrusion Processes, Investigation, and Management: Recent Advances and Future Challenges. Adv. Water Resour. 2013, 51, 3–26. [Google Scholar] [CrossRef]
- Barlow, P.M.; Reichard, E.G. L’intrusion d’eau Salée Dans Les Régions Côtières d’Amérique Du Nord. Hydrogeol. J. 2010, 18, 247–260. [Google Scholar] [CrossRef]
- Gogoberidze, G. Tools for Comprehensive Estimate of Coastal Region Marine Economy Potential and Its Use for Coastal Planning. J. Coast. Conserv. 2012, 16, 251–260. [Google Scholar] [CrossRef]
- Garing, C.; Luquot, L.; Pezard, P.A.; Gouze, P. Geochemical Investigations of Saltwater Intrusion into the Coastal Carbonate Aquifer of Mallorca, Spain. Appl. Geochem. 2013, 39, 1–10. [Google Scholar] [CrossRef]
- Maosheng, G.; Yongming, L. Zone, Change of Groundwater Resource and Prevention and Control of Seawater Intrusion in Coastal. Coast. Sci. Sustain. Dev. 2016, 31, 1197–1203. (In Chinese) [Google Scholar] [CrossRef]
- Sun, M.; Wang, T.; Xu, X.; Zhang, L.; Li, J.; Shi, Y. Ecological Risk Assessment of Soil Cadmium in China’s Coastal Economic Development Zone: A Meta-Analysis. Ecosyst. Health Sustain. 2020, 6, 1733921. [Google Scholar] [CrossRef]
- Samani, S. Assessment of Groundwater Sustainability and Management Plan Formulations through the Integration of Hydrogeological, Environmental, Social, Economic and Policy Indices. Groundw. Sustain. Dev. 2021, 15, 100681. [Google Scholar] [CrossRef]
- Hu, X.; Gao, L.; Ma, C.; Hu, X. Land Use Zoning of Weifang North Plain Based on Ecological Function and Geo-Environmental Suitability. Bull. Eng. Geol. Environ. 2020, 79, 2697–2719. [Google Scholar] [CrossRef]
- Sekar, S.; Perumal, M.; Roy, P.D.; Ganapathy, M.; Senapathi, V.; Yong Chung, S.; Elzain, H.E.; Duraisamy, M.; Kamaraj, J. A Review on Global Status of Fresh and Saline Groundwater Discharge into the Ocean. Environ. Monit. Assess. 2022, 194, 915. [Google Scholar] [CrossRef]
- Xue, L.; Siyuan, Y. Progress in Seawater Intrusion. Mar. Geol. Quat. Geol. 2016, 36, 211–217. (In Chinese) [Google Scholar]
- Sharan, A.; Lal, A.; Datta, B. A Review of Groundwater Sustainability Crisis in the Pacific Island Countries: Challenges and Solutions. J. Hydrol. 2021, 603, 127165. [Google Scholar] [CrossRef]
- Tully, K.L.; Weissman, D.; Wyner, W.J.; Miller, J.; Jordan, T. Soils in Transition: Saltwater Intrusion Alters Soil Chemistry in Agricultural Fields. Biogeochemistry 2019, 142, 339–356. [Google Scholar] [CrossRef]
- Han, D.; Currell, M.J. Review of Drivers and Threats to Coastal Groundwater Quality in China. Sci. Total Environ. 2022, 806, 150913. [Google Scholar] [CrossRef]
- Noto, A.E.; Shurin, J.B. Early Stages of Sea-Level Rise Lead to Decreased Salt Marsh Plant Diversity through Stronger Competition in Mediterranean-Climate Marshes. PLoS ONE 2017, 12, e0169056. [Google Scholar] [CrossRef]
- Gao, L.; Ma, C.; Wang, Q.; Zhou, A. Sustainable Use Zoning of Land Resources Considering Ecological and Geological Problems in Pearl River Delta Economic Zone, China. Sci. Rep. 2019, 9, 16052. [Google Scholar] [CrossRef]
- Carvalho, A.B.; Inácio de Moraes, G. The Brazilian Coastal and Marine Economies: Quantifying and Measuring Marine Economic Flow by Input-Output Matrix Analysis. Ocean Coast. Manag. 2021, 213, 105885. [Google Scholar] [CrossRef]
- Gao, L.; Hu, X.; Ma, C.; Kuang, H.; Qi, H.; He, Z. Geoenvironmental Risk Evaluation of High-Efficiency Eco-Economic Zone in Weifang City, China. Nat. Hazards Rev. 2020, 21, 05020005. [Google Scholar] [CrossRef]
- El-Kaliouby, H. Mapping Sea Water Intrusion in Coastal Area Using Time-Domain Electromagnetic Method with Different Loop Dimensions. J. Appl. Geophys. 2020, 175, 103963. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Xue, Y.; Zou, C.; Luo, M.; Li, G.; Li, L.; Cui, L.; Li, H. Advances in the Study of Submarine Groundwater Discharge (SGD) in China. Sci. China Earth Sci. 2022, 65, 1948–1960. [Google Scholar] [CrossRef]
- Yunzhang, H.; Hong, L.; Ying, L.; Peixin, S.; Jilong, Y.; Ziyuan, H.; Hongwei, L. Hydrogeochemical Recognization of Seawater Intrusion Process at the Typical Profile in Laizhou Bay. Geol. Surv. Res. 2015, 38, 41–50. (In Chinese) [Google Scholar]
- Xiong, G.; Chen, G.; Wu, J.; Fu, T.; Yang, Y.; Xu, X.; Zhu, X.; Yu, H.; Liu, S.; Gao, M.; et al. Seawater Intrusion-Retreat Processes and Groundwater Evolution in Intruded Coastal Aquifers with Land Reclamation: A Case Study of Eastern Jiangsu, China. Lithosphere 2021, 2021, 1308487. [Google Scholar] [CrossRef]
- Gurunadha Rao, V.V.S.; Rao, G.T.; Surinaidu, L.; Rajesh, R.; Mahesh, J. Geophysical and Geochemical Approach for Seawater Intrusion Assessment in the Godavari Delta Basin, A.P., India. Water. Air. Soil Pollut. 2011, 217, 503–514. [Google Scholar] [CrossRef] [PubMed]
- Bo, L.; Shuya, H.; Quansheng, Z. Chemical Characteristics of Groundwater in Coastal Seawater Intrusion Area of Laizhou Bay. Glob. Geol. 2020, 39, 971–977. [Google Scholar]
- Niculescu, B.M.; Andrei, G. Application of Electrical Resistivity Tomography for Imaging Seawater Intrusion in a Coastal Aquifer. Acta Geophys. 2021, 69, 613–630. [Google Scholar] [CrossRef]
- Satish Kumar, V.; Dhakate, R.; Amarender, B.; Sankaran, S. Application of ERT and GPR for Demarcating the Saline Water Intrusion in Coastal Aquifers of Southern India. Environ. Earth Sci. 2016, 75, 393. [Google Scholar] [CrossRef]
- Sherif, M.; El Mahmoudi, A.; Garamoon, H.; Kacimov, A.; Akram, S.; Ebraheem, A.; Shetty, A. Geoelectrical and Hydrogeochemical Studies for Delineating Seawater Intrusion in the Outlet of Wadi Ham, UAE. Environ. Geol. 2006, 49, 536–551. [Google Scholar] [CrossRef]
- Xiaoni, Z.; Zhenxing, W.; Qingzhuang, M.; Bing, Z. Study the Shallow Groundwater Chemical Characteristics in the Typical Area of Zhanghe Catchment Basin. Geol. Surv. Res. 2020, 43, 265–270. (In Chinese) [Google Scholar]
- Giménez-Forcada, E. Use of the Hydrochemical Facies Diagram (HFE-D) for the Evaluation of Salinization by Seawater Intrusion in the Coastal Oropesa Plain: Comparative Analysis with the Coastal Vinaroz Plain, Spain. HydroResearch 2019, 2, 76–84. [Google Scholar] [CrossRef]
- El Osta, M.; Masoud, M.; Alqarawy, A.; Elsayed, S.; Gad, M. Groundwater Suitability for Drinking and Irrigation Using Water Quality Indices and Multivariate Modeling in Makkah Al-Mukarramah Province, Saudi Arabia. Water 2022, 14, 483. [Google Scholar] [CrossRef]
- Masoud, M.; El Osta, M.; Alqarawy, A.; Elsayed, S.; Gad, M. Evaluation of Groundwater Quality for Agricultural under Different Conditions Using Water Quality Indices, Partial Least Squares Regression Models, and GIS Approaches. Appl. Water Sci. 2022, 12, 244. [Google Scholar] [CrossRef]
- Liu, Q.; Li, F.; Li, J.; Luo, B.; Huang, C. Geochemical and Isotopic Evidence of Shallow Groundwater Salinization in a Reclaimed Coastal Zone: The Yellow River Delta, China. Environ. Earth Sci. 2016, 75, 1107. [Google Scholar] [CrossRef]
- Maurya, P.; Kumari, R.; Mukherjee, S. Hydrochemistry in Integration with Stable Isotopes (Δ18O and ΔD) to Assess Seawater Intrusion in Coastal Aquifers of Kachchh District, Gujarat, India. J. Geochem. Explor. 2019, 196, 42–56. [Google Scholar] [CrossRef]
- Qi, H.; Ma, C.; He, Z.; Hu, X.; Gao, L. Lithium and Its Isotopes as Tracers of Groundwater Salinization: A Study in the Southern Coastal Plain of Laizhou Bay, China. Sci. Total Environ. 2019, 650, 878–890. [Google Scholar] [CrossRef]
- Dong, D.; Hongwei, L.; Zhitao, L.; Yunqing, M.; Xueqin, Z. Construction of Sea(Salt)Water Intrusion Monitoring Techniques and Methods System in South Bank of Laizhou Bay. Environ. Geol. 2015, 31, 49–53. [Google Scholar]
- Lim, J.W.; Lee, E.; Moon, H.S.; Lee, K.K. Integrated Investigation of Seawater Intrusion around Oil Storage Caverns in a Coastal Fractured Aquifer Using Hydrogeochemical and Isotopic Data. J. Hydrol. 2013, 486, 202–210. [Google Scholar] [CrossRef]
- Abdulameer, A.; Thabit, J.M.; AL-Menshed, F.H.; Merkel, B. Investigation of Seawater Intrusion in the Dibdibba Aquifer Using 2D Resistivity Imaging in the Area between Al-Zubair and Umm Qasr, Southern Iraq. Environ. Earth Sci. 2018, 77, 619. [Google Scholar] [CrossRef]
- Folch, A.; del Val, L.; Luquot, L.; Martínez-Pérez, L.; Bellmunt, F.; Le Lay, H.; Rodellas, V.; Ferrer, N.; Palacios, A.; Fernández, S.; et al. Combining Fiber Optic DTS, Cross-Hole ERT and Time-Lapse Induction Logging to Characterize and Monitor a Coastal Aquifer. J. Hydrol. 2020, 588, 125050. [Google Scholar] [CrossRef]
- Xili, S.; Peng, S.; Yangfang, S.; Xiangfeng, G. Significance of Seawater Intrusion Interface Divisionin Jijia Area in Yantai City of Shandong Province. Shandong L. Resour. 2014, 30, 58–60. (In Chinese) [Google Scholar]
- Weiping, W.; Chengping, W.; Yongjun, Z.; Shengjun, L.; Xunbiao, M. Application of Airborne Electromagnetic Method in Hydrogeological Survey. Geol. Surv. China 2022, 9, 113–121. (In Chinese) [Google Scholar] [CrossRef]
- Ayolabi, E.A.; Folorunso, A.F.; Odukoya, A.M.; Adeniran, A.E. Mapping Saline Water Intrusion into the Coastal Aquifer with Geophysical and Geochemical Techniques: The University of Lagos Campus Case (Nigeria). SpringerPlus 2013, 2, 433. [Google Scholar] [CrossRef]
- Alfaifi, H.; Kahal, A.; Albassam, A.; Ibrahim, E.; Abdelrahman, K.; Zaidi, F.; Alhumidan, S. Integrated Geophysical and Hydrochemical Investigations for Seawater Intrusion: A Case Study in Southwestern Saudi Arabia. Arab. J. Geosci. 2019, 12, 372. [Google Scholar] [CrossRef]
- Nicolodi, J.L.; Asmus, M.; Turra, A.; Polette, M. Evaluation of Coastal Ecological-Economic Zoning (ZEEC) in Brazil: Methodological Proposal. Desenvolv. Meio Ambient. 2018, 44, 378–404. [Google Scholar] [CrossRef]
- Xueming, Y.; Yongjun, S.; Dong, D.; Jan, F.; Xing, L. The Application of The Audio Ferquency Magnetotelluric Method to The Dynamic Monitoring of Seawater. Geophys. Geochem. Explor. 2013, 37, 301–305. (In Chinese) [Google Scholar]
- Chen, S.m.; Liu, H.W.; Liu, F.T.; Miao, J.J.; Guo, X.; Zhang, Z.; Jiang, W.J. Using Time Series Analysis to Assess Tidal Effect on Coastal Groundwater Level in Southern Laizhou Bay, China. J. Groundw. Sci. Eng. 2022, 10, 292–301. [Google Scholar] [CrossRef]
- Guanquan, C. Study on The Impact Mechanism and Early Waring Evaluation of Seawater Instrusion in Laizhou Bay Area; East China Normal University: Shanghai, China, 2013. (In Chinese) [Google Scholar]
- He, Z.; Ma, C.; Zhou, A.; Qi, H.; Liu, C.; Cai, H.; Zhu, H. Using Hydrochemical and Stable Isotopic (Δ2H, Δ18O, Δ11B, and Δ37Cl) Data to Understand Groundwater Evolution in an Unconsolidated Aquifer System in the Southern Coastal Area of Laizhou Bay, China. Appl. Geochem. 2018, 90, 129–141. [Google Scholar] [CrossRef]
- China Geological Survey. Handbook of Hydrogeology; Geology Press: Bath, UK, 2012. (In Chinese) [Google Scholar]
- Yunde, L.; Yiqun, G.; Tingting, Y.; Cunfu, L.; Aiguo, Z. Online Simultaneous Determination of ΔD and Δ18O in Micro-Liter Water Samples by Thermal Conversion/Elemental Analysis-Isotope Ratio Mass Spectrometry. Rock Miner. Anal. 2010, 29, 643–647. (In Chinese) [Google Scholar] [CrossRef]
- Şen, Z. Practical and Applied Hydrogeology; Elsevier: Amsterdam, The Netherlands, 2015; ISBN 9780128000755. [Google Scholar]
- Siemon, B.; Steuer, A.; Deus, N.; Elbracht, J. Comparison of Manually and Automatically Derived Fresh-Saline Groundwater Boundaries from Helicopter-Borne Em Data at the Jade Bay, Northern Germany. E3S Web Conf. 2018, 54, 00032. [Google Scholar] [CrossRef]
- Dan, L. Comparison of Indicators for the Assessment of Saltwater Intrusion in Coastal Aquifers—Taking Aquifers in Pearl River Estuary as an Example. Mar. Environ. Sci. 2020, 39, 16–23. (In Chinese) [Google Scholar] [CrossRef]
- Sun, Q.; Gao, M.; Wen, Z.; Hou, G.; Dang, X.; Liu, S.; Zhao, G. Hydrochemical Evolution Processes of Multiple-Water Quality Interfaces (Fresh/Saline Water, Saline Water/Brine) on Muddy Coast under Pumping Conditions. Sci. Total Environ. 2023, 857, 159297. [Google Scholar] [CrossRef]
- Han, D.; Cao, G.; McCallum, J.; Song, X. Residence Times of Groundwater and Nitrate Transport in Coastal Aquifer Systems: Daweijia Area, Northeastern China. Sci. Total Environ. 2015, 538, 539–554. [Google Scholar] [CrossRef]
- Thorn, P. Groundwater Salinity in Greve, Denmark: Determining the Source from Historical Data. Hydrogeol. J. 2011, 19, 445–461. [Google Scholar] [CrossRef]
- Jinjie, M. Dynamic Monitoring and Evolution Study of Saline Intrusion at South Coast of Laizhou Bay; China University of Geosciences: Beijing, China, 2014. [Google Scholar]
- MA, J.; Wei, L.; Xiong, J.; Wu, C.; Zhou, Z.; Zhu, S. Study on the Response of Groundwater Exploitation and Tidal Effects in Coastal Zones to Seawater Intrusion. In Proceedings of the 8th International Conference on Water Resource and Environment, Xi’an, China, 1–4 November 2022. (In Chinese). [Google Scholar]
- Sen, L. The Evolution of Ground-Saline Water and Process Mechanism of Saline Water Intrusion in Southern Laizhou Bay; China University of Geosciences: Wuhan, China, 2018. [Google Scholar]
- Nonner, J.C.; Nonner, J. Introduction to Hydrogeology; CRC Press: Boca Raton, FL, USA, 2002; ISBN 9780367805845. [Google Scholar]
- Sakai, T.; Omori, K.; Oo, A.N.; Zaw, Y.N. Monitoring Saline Intrusion in the Ayeyarwady Delta, Myanmar, Using Data from the Sentinel-2 Satellite Mission. Paddy Water Environ. 2021, 19, 283–294. [Google Scholar] [CrossRef]
- Subrahmanyam, B.; Trott, C.B.; Murty, V.S.N. Detection of Intraseasonal Oscillations in SMAP Salinity in the Bay of Bengal. Geophys. Res. Lett. 2018, 45, 7057–7065. [Google Scholar] [CrossRef]
- Bouderbala, A.; Remini, B. Geophysical Approach for Assessment of Seawater Intrusion in the Coastal Aquifer of Wadi Nador (Tipaza, Algeria). Acta Geophys. 2014, 62, 1352–1372. [Google Scholar] [CrossRef]
- Hisby, K. Features and Evaluation of Sea/Saltwater Intrusion in Southern Laizhou Bay. J. Groundw. Sci. Eng. 2016, 4, 141–148. [Google Scholar] [CrossRef]
- Yuhai, H. Research and Application of High-Density Resistance Method in Seawater Invasion Investigation of Laizhou Bay. Mar. Environ. Sci. 2016, 35, 301–305. (In Chinese) [Google Scholar] [CrossRef]
- Guanabara, E.; Ltda, K.; Guanabara, E.; Ltda, K. Application of Geophyscial Mehtods to Detecting Sea Water or Saline Water Intrusion:A Case Study of Alluvial-Proluvial Fan of Laizhou Bay. Mar. Geol. Front. 2016, 32, 58–64. (In Chinese) [Google Scholar]
- Abdalla, O.A.E.; Ali, M.; Al-Higgi, K.; Al-Zidi, H.; El-Hussain, I.; Al-Hinai, S. Rate of Seawater Intrusion Estimated by Geophysical Methods in an Arid Area: Al Khabourah, Oman. Hydrogeol. J. 2010, 18, 1437–1445. [Google Scholar] [CrossRef]
- Heydarizad, M.; Pumijumnong, N.; Mansourian, D.; Anbaran, E.D.; Minaei, M. The Deterioration of Groundwater Quality by Seawater Intrusion in the Chao Phraya River Basin, Thailand. Environ. Monit. Assess. 2023, 195, 424. [Google Scholar] [CrossRef]
- Fu, T.; Zhang, Y.; Xu, X.; Su, Q.; Chen, G.; Guo, X. Assessment of Submarine Groundwater Discharge in the Intertidal Zone of Laizhou Bay, China, Using Electrical Resistivity Tomography. Estuar. Coast. Shelf Sci. 2020, 245, 106972. [Google Scholar] [CrossRef]
- Xu, Z.; Tong, J.; Hu, B.X.; Yan, Z. Mapping and Monitoring Seasonal and Tidal Effects on the Salt-Freshwater Interface Using Electrical Resistivity Tomography Techniques. Estuar. Coast. Shelf Sci. 2022, 276, 108051. [Google Scholar] [CrossRef]
- Qi, H.; Ma, C.; He, Z.; Hu, X. Review of Hydrogeochemical and Environmental Isotope Approaches in Groundwater Salinization Study. Saf. Environ. Eng. 2018, 25, 97–105. (In Chinese) [Google Scholar]
- Guo, X.; Ma, C.; Hu, X.; Hu, X.; Yan, W. Application of Groundwater Functional Zoning to Coastal Groundwater Management: A Case Study in the Plain Area of Weifang City, China. Environ. Earth Sci. 2019, 78, 525. [Google Scholar] [CrossRef]
- Zeng, X.; Wu, J.; Wang, D.; Zhu, X. Assessing the Pollution Risk of a Groundwater Source Field at Western Laizhou Bay under Seawater Intrusion. Environ. Res. 2016, 148, 586–594. [Google Scholar] [CrossRef]
- Fan, Y.; Lu, W.; Miao, T.; Li, J.; Lin, J. Optimum Design of a Seawater Intrusion Monitoring Scheme Based on the Image Quality Assessment Method. Water Resour. Manag. 2020, 34, 2485–2502. [Google Scholar] [CrossRef]
- Zghibi, A.; Mirchi, A.; Zouhri, L.; Taupin, J.D.; Chekirbane, A.; Tarhouni, J. Implications of Groundwater Development and Seawater Intrusion for Sustainability of a Mediterranean Coastal Aquifer in Tunisia. Environ. Monit. Assess. 2019, 191, 696. [Google Scholar] [CrossRef] [PubMed]
- Mengya, S.; Bin, S.; Rui, H.; Suping, L.; Chenxi, F.; Zhuo, C. Preliminary Study on Monitoring the Salinity of Seawater with Fiber Bragg Grating. Geol. J. China Univ. 2019, 25, 125–130. (In Chinese) [Google Scholar] [CrossRef]
- Samani, S.; Kardan Moghaddam, H. Optimizing Groundwater Level Monitoring Networks with Hydrogeological Complexity and Grid-Based Mapping Methods. Environ. Earth Sci. 2022, 81, 453. [Google Scholar] [CrossRef]
Methodology | Water Chemical Sampling Analysis | Isotope Hydrogeochemical | Monitoring Well | Geophysical Monitoring | |||
---|---|---|---|---|---|---|---|
Classification | Single indicator (Cl−, TDS) | Multiple indicator (Cl−, Br−, TDS, etc.) | Stable isotope (2H, 18O, 24S, 87Sr, 11B, 37Cl, 87Br) | Radioactive isotope (3H, 14C) | Groundwater level | Earth resistance method | Audio-frequency magneto telluric method |
Advantages | Most direct and easy-to-use | Comprehensiveness, reducing errors | Identifying the different sources of groundwater salinization | Indirect evidence and reference for the transition zone | Determining the interface between saltwater and freshwater in space and time | ||
Disadvantages | Hydrogeological conditions and human influence have a large margin of error | Multiple indicators and complex operations | Low sensitivity, multiple isotope identification methods are needed | High requirements for location and depth costly in applications | Equipment parameters need to be set according to the geological conditions to obtain accurate data |
Samples | Water Type (m) | TDS (g/L) | Well Depth (m) | Chemical Type | K (mg/L) | Na (mg/L) | Ca (mg/L) | Mg (mg/L) | SO4 (mg/L) | HCO3 (mg/L) | Cl (mg/L) | δ18O VSMOW (‰) | δ2H VSMOW (‰) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0707-09 | Brackish groundwater | 1.736 | 5 | Na·Ca-HCO3·Cl | 14.5 | 452 | 166.8 | 52.2 | 174.1 | 839 | 457.3 | −10 | −66.3 |
225 | Brackish groundwater | 1.413 | 12 | Ca·Na·Mg-Cl | 7.2 | 157.7 | 263.9 | 65.8 | 135.9 | 491.2 | 537.1 | −6.3 | −46.5 |
0707-01 | Brackish groundwater | 2.04 | 12 | Na-HCO3·Cl·SO4 | 7.5 | 687.7 | 63.7 | 43.7 | 357.1 | 823.8 | 467.9 | −8.6 | −57.4 |
L45 | Brackish groundwater | 1.409 | 18 | Ca·Na-SO4 HCO3 | 2 | 141.8 | 293 | 43.6 | 506.4 | 497.3 | 173.7 | −9.1 | −61.5 |
16 | Brackish groundwater | 2.313 | 18 | Na·Mg·Ca-Cl | 8.1 | 446.9 | 207.6 | 133.8 | 293.1 | 713.9 | 866.8 | −11.8 | −58 |
L35 | Brackish groundwater | 2.641 | 18 | Na-Cl HCO3 | 21.9 | 895.5 | 22.3 | 41 | 251.9 | 726.1 | 1045.8 | −10.2 | −63.3 |
L34 | Brackish groundwater | 2.192 | 20 | Na·Mg·Ca-Cl | 1 | 533.3 | 156.4 | 117.8 | 521.9 | 500.4 | 611.5 | −9 | −51.9 |
221 | Brackish groundwater | 2.222 | 22 | Na-Cl·HCO3·SO4 | 27.9 | 733.6 | 26.7 | 23.4 | 511.5 | 747.5 | 524.7 | −8.8 | −53.9 |
L31 | Brackish groundwater | 1.437 | 23 | Na·Ca·Mg-Cl | 1 | 239 | 174 | 93.5 | 139.4 | 286.8 | 647 | −8.4 | −56.7 |
0724-08 | Brackish groundwater | 1.457 | 25 | Na-Cl·H CO3 | 16.4 | 440.6 | 60.9 | 60.2 | 165.2 | 579.7 | 423.6 | −8.5 | −58.9 |
L39 | Brackish groundwater | 1.033 | 30 | Na- HCO3·Cl·SO4 | 35.9 | 308.8 | 22.1 | 27.5 | 187.5 | 552.2 | 175.5 | −9.4 | −56.1 |
L30 | Brackish groundwater | 1.112 | 30 | Na·Mg·Ca-Cl | 14.1 | 250.4 | 99.1 | 63.6 | 85.3 | 430.2 | 384.6 | −14.9 | −59.6 |
0705-02 | Brackish groundwater | 2.555 | 30 | Na-Cl·HCO3 | 12.6 | 741.6 | 81.9 | 84.5 | 180.3 | 781.1 | 1063.5 | −9.4 | −59.6 |
L33 | Brackish groundwater | 2.595 | 70 | Na·Mg-Cl | 6.3 | 718.4 | 69.7 | 111.6 | 333 | 497.3 | 1107.8 | −15.5 | −63.9 |
0707-08 | Brackish groundwater | 1.238 | 75 | Na·Mg·Ca-HCO3 | 2.3 | 268.4 | 103.8 | 72 | 164.9 | 579.7 | 336.8 | −13.3 | −60.9 |
0707-07 | Brackish groundwater | 1.235 | 80 | Mg·Ca·Na-HCO3 | 3 | 152 | 138.1 | 129.1 | 134.8 | 732.2 | 312 | −9.6 | −60.8 |
L36-2 | Brackish groundwater | 1.195 | 200 | Na·Ca-Cl·HCO3 | 3.1 | 285.9 | 87 | 47.6 | 167.5 | 274.6 | 466.2 | −15.5 | −71.3 |
0706-02 | Brine | 85.767 | 80 | Na-Cl | 457.7 | 26,120 | 923.8 | 3018 | 6836 | 399.7 | 48,212 | −11.6 | −47.5 |
0705-01 | Brine | 103.87 | 90 | Na-Cl | 694.8 | 30,690 | 988.6 | 4361 | 7446 | 799.4 | 59,290.1 | −1.5 | −52.4 |
0724-14 | Brine | 119.853 | 100 | Na-Cl | 830.5 | 36,770 | 1122 | 5048 | 8162 | 421 | 67,709.5 | −5.6 | −53.9 |
113 | Fresh groundwater | 0.496 | 8 | Ca·Na- Cl·HCO3 | 5.6 | 81 | 73 | 15.2 | 121.7 | 155.6 | 122.3 | −7.7 | −49.7 |
0721-05 | Fresh groundwater | 0.187 | 10 | Ca·Mg·Na-Cl | 1.3 | 30.9 | 35.7 | 19.4 | 22.3 | 64.1 | 46.1 | −9.5 | −67.4 |
0724-05 | Fresh groundwater | 0.547 | 10 | Na·Ca-Cl·HCO3 | 0.8 | 92 | 77.1 | 21.7 | 146.1 | 192.2 | 113.4 | −8.7 | −57.4 |
0721-11 | Fresh groundwater | 0.714 | 15 | Na·Mg·Ca-HCO3 | 0.5 | 133.4 | 58.3 | 68.9 | 100.4 | 353.9 | 175.5 | −5.1 | −60.3 |
0724-02 | Fresh groundwater | 0.688 | 18 | Ca-HCO3·Cl | 0.3 | 48.6 | 205.9 | 25.1 | 111.7 | 341.7 | 124.1 | −7.9 | −60.1 |
0721-06 | Fresh groundwater | 0.641 | 20 | Ca·Mg-HCl | 1 | 58.8 | 179 | 54.4 | 117.2 | 277.6 | 92.2 | −11.3 | −58.5 |
0721-10 | Fresh groundwater | 0.66 | 20 | Na·Mg·Ca-HCO3 | 1 | 164.3 | 51 | 45.2 | 55.4 | 466.8 | 109.9 | −10.2 | −73.6 |
228 | Fresh groundwater | 0.386 | 24 | Ca·Mg-HCl | 1.2 | 26 | 94.1 | 17.8 | 45.2 | 247.1 | 78 | −5.1 | −46 |
0724-06 | Fresh groundwater | 0.633 | 24 | Ca·Na-HCO3·Cl | 2.6 | 77.3 | 169.4 | 27.9 | 120.8 | 250.2 | 109.9 | −7.6 | −57.6 |
132 | Fresh groundwater | 0.7 | 26 | Ca·Mg·Na-Cl | 0.6 | 66.5 | 143.5 | 67.6 | 123.6 | 241 | 177.2 | −9.6 | −60.2 |
0721-04 | Fresh groundwater | 0.627 | 30 | Ca·Mg- HCO3·Cl | 1.1 | 49.5 | 178.3 | 59.9 | 108.7 | 277.6 | 90.4 | −4.2 | −60.1 |
0721-07 | Fresh groundwater | 0.466 | 35 | Mg·Ca·Na-HCO3 | 2.6 | 57.2 | 84.8 | 52 | 27 | 265.4 | 109.9 | −9.8 | −63.5 |
0708-06 | Fresh groundwater | 0.652 | 37 | Ca·Mg·Na-HCO3 | 1.5 | 73.1 | 124.2 | 41.9 | 47.9 | 353.9 | 186.1 | −14.6 | −66.2 |
L29 | Fresh groundwater | 0.918 | 40 | Na·Mg·Ca-HCO3 | 0.8 | 195.4 | 72.8 | 78.4 | 84.2 | 515.6 | 228.7 | −4.4 | −60 |
0721-08 | Fresh groundwater | 0.603 | 45 | Mg·Ca·Na-HCO3 | 0.7 | 61.1 | 106.1 | 79.8 | 67.1 | 393.6 | 92.2 | −12 | −61.5 |
0708-02 | Fresh groundwater | 0.863 | 45 | Ca·Mg-Cl·HCO3 | 1.5 | 60.5 | 193.2 | 68.2 | 29.8 | 451.5 | 283.6 | −9.9 | −62.7 |
L25 | Fresh groundwater | 0.801 | 55 | Mg·Na·Ca-HCO3 | 0.8 | 134.4 | 92.6 | 71.8 | 59.7 | 494.3 | 195 | −5.5 | −60 |
0721-02 | Fresh groundwater | 0.347 | 60 | Ca·Mg- HCO3 | 0.7 | 24.1 | 107.9 | 23.4 | 20.6 | 259.3 | 40.8 | −12.6 | −64.3 |
0707-05 | Fresh groundwater | 0.553 | 60 | Ca·Mg-HCO3·Cl | 1.3 | 48.4 | 94.8 | 44.1 | 19.5 | 445.4 | 122.3 | −4.3 | −58.9 |
0707-03 | Fresh groundwater | 0.852 | 65 | Na·Mg·Ca-HCO3 | 4.6 | 161.5 | 88.1 | 65.6 | 79.1 | 533.9 | 186.1 | −4 | −59.4 |
L27 | Fresh groundwater | 0.871 | 65 | Mg·Ca·Na-HCO3 | 0.9 | 127.5 | 113.4 | 78.7 | 134.7 | 424.1 | 203.8 | −10.2 | −60.2 |
0721-01 | Fresh groundwater | 0.307 | 70 | Ca·Mg-HCO3 | 0.9 | 21.7 | 88.8 | 20 | 12.5 | 256.3 | 35.4 | −10.5 | −62.9 |
0708-08 | Fresh groundwater | 0.369 | 75 | Ca·Mg- HCO3 | 0.9 | 31.9 | 86.7 | 24.4 | 7.7 | 381.4 | 26.6 | −12.7 | −66 |
0708-05 | Fresh groundwater | 0.392 | 100 | Ca·Mg·Na- HCO3 | 1 | 39.8 | 86.8 | 26 | 13.3 | 353.9 | 47.9 | −10.2 | −64.4 |
L32 | Fresh groundwater | 0.637 | 100 | Na·Mg·Ca-HCO3 | 1.1 | 124.9 | 62.4 | 47.1 | 47.4 | 466.8 | 120.5 | −11.1 | −61.1 |
0707-10 | Fresh groundwater | 0.543 | 230 | Na- HCO3·Cl | 0.9 | 173.2 | 15.8 | 15.1 | 79.6 | 357 | 79.8 | −14.9 | −75.4 |
0707-06 | Fresh groundwater | 0.394 | 300 | Na·Mg·Ca-HCO3 | 0.8 | 86.5 | 31.3 | 26.2 | 53.9 | 350.9 | 19.5 | −14.2 | −69.1 |
0725-02 | Seawater | 30.426 | — | Na-Cl | 253.4 | 9089 | 644.9 | 1273 | 2449 | 109.8 | 16,661.5 | −1 | −11 |
69 | Saline groundwater | 4.323 | 13 | Na-Cl | 8.7 | 1160 | 241.4 | 145.2 | 153.8 | 726.1 | 2251.1 | −6.6 | −59.2 |
0724-10 | Saline groundwater | 3.004 | 15 | Na-Cl·HCO3 | 22.1 | 1022 | 43.9 | 55.5 | 452.4 | 625.5 | 1095.4 | −8 | −59.4 |
L43 | Saline groundwater | 3.532 | 16 | Na-Cl | 22.1 | 1182 | 47.3 | 65.6 | 411.7 | 628.5 | 1488.9 | −10.7 | −59 |
L37 | Saline groundwater | 4.418 | 19 | Na·Mg-Cl | 19.1 | 995.8 | 257.7 | 255.8 | 545.8 | 469.9 | 2109.3 | −8.9 | −57.5 |
0706-04 | Saline groundwater | 47.895 | 40 | Na-Cl | 232.6 | 14,890 | 574.2 | 1869 | 3660 | 518.7 | 26,410.2 | −13.7 | −52.6 |
L36-3 | Saline groundwater | 36.101 | 50 | Na·Mg-Cl | 121.7 | 9454 | 964.8 | 1903 | 2733 | 372.2 | 20,738.2 | −13.7 | −56.1 |
103 | Saline groundwater | 3.43 | 60 | Na-Cl·SO4·HCO3 | 53.5 | 1283 | 2.4 | 16.7 | 840.2 | 893.9 | 787 | −12.3 | −57.9 |
L36-1 | Saline groundwater | 34.371 | 90 | Na·Mg-Cl | 92.9 | 8606 | 1108 | 1875 | 2405 | 332.6 | 20,117.9 | −14.4 | −61.3 |
0722-03 | Saline groundwater | 26.008 | 145 | Na·Mg-Cl | 60.1 | 6256 | 1606 | 1511 | 1573 | 225.8 | 14,889 | −8.2 | −64.6 |
0725-05 | Surface water | 0.532 | — | Na·Ca-SO4·HCO3·Cl | 5.8 | 84.4 | 84.8 | 17.1 | 153.4 | 143.4 | 115.2 | −5.6 | −49.7 |
0724-04 | Surface water | 0.542 | — | Na-SO4·HCO3·Cl | 7.4 | 86.3 | 70.6 | 25.6 | 144.2 | 125.1 | 145.3 | −5.7 | −33.6 |
0722-08 | Surface water | 0.559 | — | Na·Ca-SO4·HCO3·Cl | 8.9 | 85.9 | 75 | 26.9 | 156.2 | 122 | 145.3 | −3.2 | −31.6 |
0725-03 | Surface water | 0.956 | — | Na-SO4·Cl | 9.6 | 206.9 | 91.8 | 32.1 | 288.4 | 100.7 | 276.5 | −2.9 | −27.6 |
0724-12 | Surface water | 2.78 | — | Na-Cl | 23.3 | 744.6 | 99.9 | 129.7 | 278.8 | 12.2 | 1497.8 | −3.4 | −35.2 |
0724-13 | Surface water | 4.453 | — | Na-Cl | 40.2 | 1242 | 143.9 | 192.7 | 380.1 | 122 | 2392.9 | −2.4 | −32.6 |
0725-01 | Surface water | 11.808 | — | Na-Cl | 79 | 3075 | 411.1 | 483.2 | 958.9 | 131.2 | 6735.5 | −1.2 | −19.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Gao, L.; Ma, C.; Yuan, Y. Analysis of the Seawater Intrusion Process Based on Multiple Monitoring Methods: Study in the Southern Coastal Plain of Laizhou Bay, China. Water 2023, 15, 2013. https://doi.org/10.3390/w15112013
Liu H, Gao L, Ma C, Yuan Y. Analysis of the Seawater Intrusion Process Based on Multiple Monitoring Methods: Study in the Southern Coastal Plain of Laizhou Bay, China. Water. 2023; 15(11):2013. https://doi.org/10.3390/w15112013
Chicago/Turabian StyleLiu, Hongwei, Lin Gao, Chuanming Ma, and Yi Yuan. 2023. "Analysis of the Seawater Intrusion Process Based on Multiple Monitoring Methods: Study in the Southern Coastal Plain of Laizhou Bay, China" Water 15, no. 11: 2013. https://doi.org/10.3390/w15112013
APA StyleLiu, H., Gao, L., Ma, C., & Yuan, Y. (2023). Analysis of the Seawater Intrusion Process Based on Multiple Monitoring Methods: Study in the Southern Coastal Plain of Laizhou Bay, China. Water, 15(11), 2013. https://doi.org/10.3390/w15112013