Effects of Chelating Agents Addition on Ryegrass Extraction of Cadmium and Lead in Artificially Contaminated Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil and Plant Sample Analysis
2.2. Sample Collection and Experimental Processing
2.2.1. Sample Collection
2.2.2. Analysis of the Effect of Different Chelating Agents on Heavy Metal Extraction in the Study Soil
2.2.3. Analysis of the Effect of Different Chelating Agents on Heavy Metal Extraction in Ryegrass
2.3. Data Processing
3. Results and Discussion
3.1. Comparison of the Activation Effect of Chelating Agents on Cd and Pb in Soil
3.2. Effect of Chelating Agents on the Speciation of Cd and Pb in Soil
3.3. Effect of Chelating Agents on the Amount of Extracted Heavy Metals in Ryegrass
3.4. Correlation Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wenzhong, T.; Yuansheng, P.; Hua, Z.; Yu, Z.; Limin, S.; Hong, Z. Twenty years of China’s water pollution control: Experiences and challenges. Chemosphere 2022, 295, 133875. [Google Scholar]
- Soa, A.; Jb, B.; Mm, B.; Js, B.; Gln, B. Effect of co-applied corncob biochar with farmyard manure and NPK fertilizer on tropical soil. Sci. Resour. Environ. Sustain. 2021, 5, 100034. [Google Scholar]
- Barrutia, O.; Garbisu, C.; Hernandez-Allica, J.; Garcia-Plazaola, J.I.; Becerril, J.M. Differences in EDTA-assisted metal phytoextraction between metallicolous and non-metallicolous accessions of Rumex acetosa L. Environ. Pollut. 2010, 158, 1710–1715. [Google Scholar] [CrossRef]
- Pietrzak, U.; Uren, N.C. Remedial options for copper-contaminated vineyard soils. Soil Res. 2011, 49, 44–45. [Google Scholar] [CrossRef]
- Cui, J.L.; Luo, C.L.; Tang, W.Y.; Chan, T.S.; Li, X.D. Speciation and leaching of trace metal contaminants from e-waste contaminated soils. J. Hazard. Mater. 2017, 329, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Zhao, G.; Zhang, G.; He, Q.; Wu, Q. Effect of mixed chelators of EDTA, GLDA, and citric acid on bioavailability of residual heavy metals in soils and soil properties. Chemosphere 2018, 209, 776–782. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Luo, D.; Yao, G.; Huang, X.; Xiao, T. Comparative Activation Process of Pb, Cd and Tl Using Chelating Agents from Contaminated Red Soils. Int. J. Environ. Res. Public Health 2020, 17, 497. [Google Scholar] [CrossRef] [PubMed]
- Marchant, B.P.; Saby, N.; Arrouays, D. A survey of topsoil arsenic and mercury concentrations across France. Chemosphere 2017, 181, 635–644. [Google Scholar] [CrossRef] [PubMed]
- Jian, H.; Wpca, B.; Zqz, C.; Ran, L.D.; Meng, C.E.; Wjd, C.; Wmm, F.; Xue, F.G.; Xmwb, H.; Ning, W.D. Source tracing of potentially toxic elements in soils around a typical coking plant in an industrial area in northern China. Sci. Total Environ. 2022, 807, 151091. [Google Scholar] [CrossRef]
- Adriano, D.; Wenzel, W.W.; Vangronsveld, J.; Bolan, N.S. Role of assisted natural remediation in environmental cleanup. Geoderma 2004, 122, 121–142. [Google Scholar] [CrossRef]
- Obeng-Gyasi, E.; Roostaei, J.; Gibson, M. Lead Distribution in Urban Soil in a Medium-Sized City: Household-Scale Analysis. Environ. Sci. Technol. 2021, 55, 3696–3705. [Google Scholar] [CrossRef] [PubMed]
- Hansson, S.; Grusson, Y.; Chimienti, M.; Claustres, A.; Jean, S.; Le Roux, G. Legacy Pb pollution in the contemporary environment and its potential bioavailability in three mountain catchments. Sci. Total Environ. 2019, 671, 1227–1236. [Google Scholar] [CrossRef]
- Mielke, H.W.; Gonzales, C.R.; Powell, E.T.; Laidlaw, M.A.S.; Egendorf, S.P. The concurrent decline of soil lead and children’s blood lead in New Orleans. Proc. Natl. Acad. Sci. 2019, 116, 22058–22064. [Google Scholar] [CrossRef]
- Qin, F.; Shan, X.; Wei, B. Effects of low-molecular-weight organic acids and residence time on desorption of Cu, Cd, and Pb from soils. Chemosphere 2004, 57, 253–263. [Google Scholar] [CrossRef]
- Klaminder, J.; Bindler, R.; Emteryd, O.; Appleby, P.; Grip, H. Estimating the Mean Residence Time of Lead in the Organic Horizon of Boreal Forest Soils using 210-lead, Stable Lead and a Soil Chronosequence. Biogeochemistry 2006, 78, 31–49. [Google Scholar] [CrossRef]
- Singh, D.; Tiwari, A.; Gupta, R. Phytoremediation of lead from wastewater using aquatic plants. J. Agric Technol. 2012, 8, 1–11. [Google Scholar] [CrossRef]
- Yu, G.; Ullah, H.; Wang, X.; Liu, J.; Chen, B.; Jiang, P.; Lin, H.; Sunahara, G.I.; You, S.; Zhang, X.; et al. Integrated transcriptome and metabolome analysis reveals the mechanism of tolerance to manganese and cadmium toxicity in the Mn/Cd hyperaccumulator Celosia argentea Linn. J. Hazard. Mater. 2023, 443, 130206. [Google Scholar] [CrossRef]
- Nivetha, N.; Srivarshine, B.; Sowmya, B.; Rajendiran, M.; Saravanan, P.; Rajeshkannan, R.; Rajasimman, M.; Pham, T.H.T.; Shanmugam, V.; Dragoi, E.-N. A comprehensive review on bio-stimulation and bio-enhancement towards remediation of heavy metals degeneration. Chemosphere 2022, 312, 137099. [Google Scholar] [CrossRef]
- Hu, B.; Jia, X.; Hu, J.; Xu, D.; Xia, F.; Li, Y. Assessment of heavy metal pollution and health risks in the soil-plant-human system in the Yangtze River Delta, China. Int. J. Environ. Res. Public Health 2017, 14, 1042. [Google Scholar] [CrossRef]
- Wang, L.; Han, X.; Liang, T.; Yan, X.; Yang, X.; Pei, Z.; Tian, S.; Wang, S.; Lima, E.C.; Rinklebe, J. Cosorption of Zn (II) and chlortetracycline onto montmorillonite: pH effects and molecular investigations. J. Hazard. Mater. 2022, 424, 127368. [Google Scholar] [CrossRef]
- Singh, R.; Gautam, N.; Mishra, A.; Gupta, R. Heavy metals and living systems: An overview. Indian J Pharm. 2011, 43, 246–253. [Google Scholar] [CrossRef] [PubMed]
- Assessing the applicability of phytoremediation of soils with mixed organic and heavy metal contaminants. Environ. Sci. Bio/Technol. 2016, 15, 299–326. [CrossRef]
- EGWRTAC. Remediation of Metals-Contaminated Soils and Groundwater; Technology Evaluation Report TE-97-01; Ground-Water Remediation Technologies Analysis Center: Pittsburgh, PA, USA, 1997. [Google Scholar]
- USEPA. Situ Treatment Technologies for Contaminated Soil; Report number EPA 542/F-06/013; USEPA: Washington, DC, USA, 2006. [Google Scholar]
- Wuana, R.A.; Okieimen, F.E. Heavy Metals in Contaminated Soils: A Review of Sources, Chemistry, Risks and Best Available Strategies for Remediation. Int. Sch. Res. Not. 2011, 2011, 402647. [Google Scholar] [CrossRef]
- Saleh, H.M.; Moussa, H.R.; El-Saied, F.A.; Dawoud, M.; Bayoumi, T.A.; Wahed, R.S.A. Mechanical and physicochemical evaluation of solidified dried submerged plants subjected to extreme climatic conditions to achieve an optimum waste containment. Prog. Nucl. Energy 2020, 122, 103285. [Google Scholar] [CrossRef]
- Nowack, B.; Schulin, R.; Robinson, B.H. Critical assessment of chelant-enhanced metal phytoextraction. Environ. Sci. Technol. 2006, 40, 5225–5232. [Google Scholar] [CrossRef]
- Shrestha, P.; Bellitürk, K.; Grres, J.H. Phytoremediation of Heavy Metal-Contaminated Soil by Switchgrass: A Comparative Study Utilizing Different Composts and Coir Fiber on Pollution Remediation, Plant Productivity, and Nutrient Leaching. Int. J. Environ. Res. Public Health 2019, 16, 1261. [Google Scholar] [CrossRef] [PubMed]
- Hou, D.; Al-Tabbaa, A. Sustainability: A new imperative in contaminated land remediation. Environ. Sci. Policy 2014, 39, 25–34. [Google Scholar] [CrossRef]
- Saleh, H.M.; Aglan, R.F.; Mahmoud, H.H. Ludwigia stolonifera for remediation of toxic metals from simulated wastewater. Chem. Ecol. 2018, 35, 164–178. [Google Scholar] [CrossRef]
- Va, A.; Smsbc, D.; Hjs, E.; Rw, E.; El, A.; Im, F.; Jrb, G. Phytoremediation potential of twelve wild plant species for toxic elements in a contaminated soil. Environ. Int. 2021, 146, 106233. [Google Scholar] [CrossRef]
- Ding, Z.L.; Shu-Qian, L.I.; Xu, Z.; Cao, C.G. Mechanisms and Applications of the Phytoremediation of Heavy Metal Contamination in Soils. Hubei Agric. Sci. 2014, 53, 5617–5623. [Google Scholar]
- Peer, W.A.; Baxter, I.R.; Richards, E.L.; Freeman, J.L.; Murphy, A.S. Phytoremediation and hyperaccumulator plants. In Molecular Biology of Metal Homeostasis and Detoxification; Springer Nature: Berlin/Heidelberg, Germany, 2005; pp. 299–340. [Google Scholar]
- Evangelou, M.W.; Ebel, M.; Schaeffer, A. Chelate assisted phytoextraction of heavy metals from soil. Effect, mechanism, toxicity, and fate of chelating agents. Chemosphere 2007, 68, 989–1003. [Google Scholar] [CrossRef] [PubMed]
- Chibuike, G.U.; Obiora, S.C. Heavy Metal Polluted Soils: Effect on Plants and Bioremediation Methods. Appl. Environ. Soil Sci. 2014, 2014, 752708. [Google Scholar] [CrossRef]
- Attinti, R.; Barrett, K.R.; Datta, R.; Sarkar, D. Ethylenediaminedisuccinic acid (EDDS) enhances phytoextraction of lead by vetiver grass from contaminated residential soils in a panel study in the field. Environ. Pollut. 2017, 225, 524–533. [Google Scholar] [CrossRef]
- Luo, C.L.; Shen, Z.; Li, X. Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS. Chemosphere 2005, 59, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Tananonchai, A.; Sampanpanish, P.; Chanpiwat, P.; Tancharakorn, S.; Sukkha, U. Effect of EDTA and NTA on cadmium distribution and translocation in Pennisetum purpureum Schum cv. Mott. Environ. Sci. Pollut. Res. 2019, 26, 9851–9860. [Google Scholar] [CrossRef] [PubMed]
- Li, F.-L.; Qiu, Y.; Xu, X.; Yang, F.; Wang, Z.; Feng, J.; Wang, J. EDTA-enhanced phytoremediation of heavy metals from sludge soil by Italian ryegrass (Lolium perenne L.). Ecotoxicol. Environ. Saf. 2020, 191, 110185. [Google Scholar] [CrossRef] [PubMed]
- Cao, M.; Yuan, H.; Qian, S.; Wang, L.; Jing, C.; Lu, X. Enhanced desorption of PCB and trace metal elements (Pb and Cu) from contaminated soils by saponin and EDDS mixed solution. Environ. Pollut. 2013, 174, 93–99. [Google Scholar] [CrossRef]
- Wu, Q.; Cui, Y.; Tang, X.; Yang, H.; Sun, J. Extraction of Heavy Metals from Sludge Using Biodegradable Chelating Agent N, N-bis (carboxymethyl) Glutamic Acid Tetrasodium. Huanjing Kexue 2015, 36, 1733–1738. [Google Scholar] [CrossRef]
- Van Thinh, N.; Osanai, Y.; Adachi, T.; Vuong, B.T.S.; Kitano, I.; Chung, N.T.; Thai, P.K. Removal of lead and other toxic metals in heavily contaminated soil using biodegradable chelators: GLDA, citric acid and ascorbic acid. Chemosphere 2021, 263, 127912. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, S.; Xu, X.; Zhong, Q.; Zhang, C.; Jia, Y.; Li, T.; Deng, O.; Li, Y. Heavy metal removal by GLDA washing: Optimization, redistribution, recycling, and changes in soil fertility. Sci. Total Environ. 2016, 569, 557–568. [Google Scholar] [CrossRef]
- Schneider, J.; Potthoff-Karl, B.; Kud, A.; Baur, R.; Oftring, A.; Greindl, T. Use of Glycine-N,N-diacetic Acid Derivatives as Biodegradable Complexing Agents for Alkaline Earth Metal Ions and Heavy Metal Ions. Available online: https://patentscope2.wipo.int/search/en/detail.jsf?docId=WO1994029421 (accessed on 9 April 2023).
- Diarra, I.; Kotra, K.K.; Prasad, S. Assessment of biodegradable chelating agents in the phytoextraction of heavy metals from multi–metal contaminated soil. Chemosphere 2020, 273, 128483. [Google Scholar] [CrossRef]
- Suanon, F.; Sun, Q.; Dimon, B.; Mama, D.; Yu, C.-P. Heavy metal removal from sludge with organic chelators: Comparative study of N, N-bis (carboxymethyl) glutamic acid and citric acid. J. Environ. Manag. 2016, 166, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Gadepalle, V.P.; Ouki, S.K.; Van Herwijnen, R.; Hutchings, T. Effects of amended compost on mobility and uptake of arsenic by rye grass in contaminated soil. Chemosphere 2008, 72, 1056–1061. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Ni, L.; Chen, W.; Wang, J.; Ma, F. Analysis of lead forms and transition in agricultural soil by nano-fluorescence method. J. Hazard. Mater. 2020, 389, 121469. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Zhang, G.; Wei, Z.; Zhang, L.; He, Q.; Wu, Q.; Qian, T. Mixed chelators of EDTA, GLDA, and citric acid as washing agent effectively remove Cd, Zn, Pb, and Cu from soils. J. Soils Sediments 2018, 18, 835–844. [Google Scholar] [CrossRef]
- Yang, Z.-H.; Dong, C.-D.; Chen, C.-W.; Sheu, Y.-T.; Kao, C.-M. Using poly-glutamic acid as soil-washing agent to remediate heavy metal-contaminated soils. Environ. Sci. Pollut. Res. 2018, 25, 5231–5242. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Gao, Y.; Xiong, H. Removal of heavy metals from polluted soil using the citric acid fermentation broth: A promising washing agent. Environ. Sci. Pollut. Res. 2017, 24, 9506–9514. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, S.; Zhong, Q.; Xu, X.; Li, T.; Jia, Y.; Zhang, Y.; Peijnenburg, W.J.; Vijver, M.G. Effect of soil washing with biodegradable chelators on the toxicity of residual metals and soil biological properties. Sci. Total Environ. 2018, 625, 1021–1029. [Google Scholar] [CrossRef]
- Cheng, S.; Lin, Q.; Wang, Y.; Luo, H.; Huang, Z.; Fu, H.; Chen, H.; Xiao, R. The removal of Cu, Ni, and Zn in industrial soil by washing with EDTA-organic acids. Arab. J. Chem. 2020, 30, 5160–5170. [Google Scholar] [CrossRef]
- Olaniran, A.O.; Balgobind, A.; Pillay, B. Bioavailability of Heavy Metals in Soil: Impact on Microbial Biodegradation of Organic Compounds and Possible Improvement Strategies. Int. J. Mol. Sci. 2013, 14, 10197–10228. [Google Scholar] [CrossRef]
- Li, J.; Lu, Y.; Shim, H.; Deng, X.; Lian, J.; Jia, Z.; Li, J. Use of the BCR sequential extraction procedure for the study of metal availability to plants. J. Environ. Monit. 2010, 12, 466–471. [Google Scholar] [CrossRef] [PubMed]
- Pinto, I.; Neto, I.; Soares, H. Biodegradable chelating agents for industrial, domestic, and agricultural applications—A review. Environ. Sci. Pollut. Res. 2014, 21, 11893–11906. [Google Scholar] [CrossRef] [PubMed]
- Hh, A.; Maamb, C.; Yt, B.; Ki, B.; Hs, D.; Zabe, F.; Msa, A.; Tm, A.; Immr, G. Chelator-assisted washing for the extraction of lead, copper, and zinc from contaminated soils: A remediation approach. Appl. Geochem. 2019, 109, 104397. [Google Scholar]
- Moslehi, A.; Feizian, M.; Higueras, P.; Eisvand, H.R. Assessment of EDDS and vermicompost for the phytoextraction of Cd and Pb by sunflower (Helianthus annuus L.). Int. J. Phytoremediation 2019, 21, 191–199. [Google Scholar] [CrossRef]
- Hasan, M.M.; Uddin, M.N.; Ara-Sharmeen, I.; Alharby, H.F.; Alzahrani, Y.; Hakeem, K.R.; Zhang, L. Assisting phytoremediation of heavy metals using chemical amendments. Plants 2019, 8, 295. [Google Scholar] [CrossRef] [PubMed]
- Salama, F.M.; AL-Huqail, A.A.; Ali, M.; Abeed, A.H.A. Cd Phytoextraction Potential in Halophyte Salicornia fruticosa: Salinity Impact. Plants 2022, 11, 2556. [Google Scholar] [CrossRef]
Index | pH1/2.5 | Organic Material (g·kg−1) | Total Potassium (mg·kg−1) | Total Cd (mg·kg−1) | Total Pb (mg·kg−1) |
---|---|---|---|---|---|
Values | 7.70 | 13.80 | 0.31 | 0.33 | 16.3 |
Items | EDTA | Aerial Dry Weight | Root Dry Weight | Aerial (Pb) | Root (Pb) | Aerial (Cd) | Root (Cd) | Total Extraction of Pb | Total Extraction of Cd |
---|---|---|---|---|---|---|---|---|---|
EDTA | 1.00 | ||||||||
Aerial part biomass (dry weight) | −0.823 ** | 1.00 | |||||||
Root part biomass (dry weight) | −0.946 ** | 0.834 ** | 1.00 | ||||||
Aerial part (Pb) | 0.737 * | −0.865 ** | −0.707 * | 1.00 | |||||
Root part (Pb) | 0.884 ** | −0.916 ** | −0.814 ** | 0.917 ** | 1.00 | ||||
Aerial part (Cd) | 0.691 * | −0.683 * | −0.23 | 0.65 | 0.63 | 1.00 | |||
Root part (Cd) | 0.793 * | −0.955 ** | −0.758 * | 0.950 ** | 0.956 ** | 0.730 * | 1.00 | ||
Total extraction of Pb | −0.689 * | 0.49 | 0.828 ** | −0.26 | −0.36 | 0.21 | −0.33 | 1.00 | |
Total extraction of Cd | −0.919 ** | 0.66 | 0.931 ** | −0.46 | −0.668 * | −0.04 | −0.55 | 0.862 ** | 1.00 |
Items | GLDA | Aerial Dry Weight | Root Dry Weight | Aerial (Pb) | Root (Pb) | Aerial (Cd) | Root (Cd) | Total Extraction of Pb | Total Extraction of Cd |
---|---|---|---|---|---|---|---|---|---|
GLDA | 1 | ||||||||
Aerial part biomass (dry weight) | −0.874 ** | 1 | |||||||
Root part biomass (dry weight) | −0.931 ** | 0.947 ** | |||||||
Aerial part (Pb) | 0.719 * | −0.878 ** | −0.839 ** | 1 | |||||
Root part (Pb) | 0.934 ** | −0.980 ** | −0.969 ** | 0.873 ** | |||||
Aerial part (Cd) | 0.710 * | −0.768 * | −0.58 | 0.792 * | 0.697* | 1 | |||
Root part (Cd) | 0.904 ** | −0.954 ** | −0.945 ** | 0.908 ** | 0.974** | 0.698 * | 1 | ||
Total extraction of Pb | −0.873 ** | 0.794 * | 0.935 ** | −0.67 | −0.828 ** | −0.30 | −0.804 ** | 1 | |
Total extraction of Cd | −0.66 | 0.38 | 0.61 | −0.18 | −0.49 | 0.16 | −0.38 | 0.759 * | 1 |
Items | CA | Aerial Dry Weight | Root Dry Weight | Aerial (Pb) | Root (Pb) | Aerial (Cd) | Root (Cd) | Total Extraction of Pb | Total Extraction of Cd |
---|---|---|---|---|---|---|---|---|---|
CA | 1.00 | ||||||||
Aerial dry weight | −0.54 | 1.00 | |||||||
Root dry weight | −0.771 * | 0.788 * | 1.00 | ||||||
Aerial (Pb) | 0.946 ** | −0.66 | −0.782 * | 1.00 | |||||
Root (Pb) | 0.842 ** | −0.821 ** | −0.850 ** | 0.947 ** | 1.00 | ||||
Aerial (Cd) | 0.697 * | −0.835 ** | −0.857 ** | 0.827 ** | 0.957 ** | 1.00 | |||
Root (Cd) | 0.933 ** | −0.772 * | −0.849 ** | 0.949 ** | 0.948 ** | 0.868 ** | 1.00 | ||
Total extraction of Pb | 0.812 ** | −0.751 * | −0.714 * | 0.942 ** | 0.975 ** | 0.910 ** | 0.910 ** | 1.00 | |
Total extraction of Cd | 0.906 ** | −0.722 * | −0.734 * | 0.940 ** | 0.931 ** | 0.843 ** | 0.979 ** | 0.937 ** | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, W.; Wang, R.; Li, H.; Yang, X.; Li, J.; Wang, H.; Jiang, C.; Wang, Z. Effects of Chelating Agents Addition on Ryegrass Extraction of Cadmium and Lead in Artificially Contaminated Soil. Water 2023, 15, 1929. https://doi.org/10.3390/w15101929
Dong W, Wang R, Li H, Yang X, Li J, Wang H, Jiang C, Wang Z. Effects of Chelating Agents Addition on Ryegrass Extraction of Cadmium and Lead in Artificially Contaminated Soil. Water. 2023; 15(10):1929. https://doi.org/10.3390/w15101929
Chicago/Turabian StyleDong, Wen, Ruichen Wang, Huaien Li, Xiao Yang, Jiake Li, Hui Wang, Chunbo Jiang, and Zhe Wang. 2023. "Effects of Chelating Agents Addition on Ryegrass Extraction of Cadmium and Lead in Artificially Contaminated Soil" Water 15, no. 10: 1929. https://doi.org/10.3390/w15101929
APA StyleDong, W., Wang, R., Li, H., Yang, X., Li, J., Wang, H., Jiang, C., & Wang, Z. (2023). Effects of Chelating Agents Addition on Ryegrass Extraction of Cadmium and Lead in Artificially Contaminated Soil. Water, 15(10), 1929. https://doi.org/10.3390/w15101929