Human Health Risk and Quality Assessment of Spring Water Associated with Nitrates, Potentially Toxic Elements, and Fecal Coliforms: A Case from Southern Mexico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Preprocessing and Preparation of the Inputs
- Water uses: it was obtained from the analysis of the REPDA database [45]. The map was elaborated in QGis, and it was classified into five use categories (domestic, urban public, agricultural, recreational, and other uses). Public urban and domestic uses are the most essential for the survival/health of the population and occupy the first place of use in the study area. These can change in relation to the increase or decrease of anthropogenic activities and population growth. The importance of including this variable is based on the impact on health generated by the various uses of water.
- Geology: the mapping was obtained from SGM (2004) [44]. The importance of including this criterion was for the textural and structural conditions analysis of the rocks, such as porosity and permeability, with the objective of capturing an overview of the infiltration capacity of geological formations to incorporate pollutants in the emanation of the springs. Various lithologies were recognized, with limestone being the most relevant due to its high vulnerability [47].
- Land use/land cover changes: the cartography of land use/vegetation cover [46] was prepared and classified into five categories, and they are agricultural land, urban area, pasture, forest, and shrubby vegetation. The objective of the mapping was to anticipate the deterioration that water sources may suffer due to pollution generated by agricultural (use of fertilizers and pesticides) and urban (wastewater discharge) areas, as well as to analyze its possible negative effect on human health [48].
- Concessioned volume: the elaboration of the concessioned volume map was carried out based on consultation and analysis of the REPDA database [45]. It is important to analyze the springs with a greater concessioned volume, as the population’s health may be affected by the dermal or oral contact they have with the water.
- Location of springs: the REPDA database was consulted and analyzed in the year 2022 [45]; it contains information on the 106 springs of the ABC with the permanent flow throughout the year and with concession titles. In addition, fieldwork included the participation of the municipal authorities and community personnel with the objective of identifying the exact location where the springs emanate, corroborating information, and visualizing the environment. The technical sheet proposed by CONAGUA [49,50] was also considered. This allowed us to gather information on the characteristics of the springs, such as an identifier (ID), name of the spring, UTM coordinates, municipality, use, concessioned volume (m3/year), title of concession/assignment, owner, and registration date. This database was used to develop the ABC spring location map and will serve as a conservation and protection strategy in future studies.
2.3. Multi-Criteria Evaluation (AHP Technique)
2.4. Water Quality Assessment
2.4.1. Field Sampling and Data Analysis
2.4.2. Hydrogeochemistry
2.4.3. Statistical Analysis
2.5. Health Risk Assessment
2.5.1. Non-Carcinogenic Health Risk
2.5.2. Human Health Risk Assessment Due to Fecal Coliforms
3. Results and Discussion
3.1. Spring Location Map
3.2. Multi-Criteria Evaluation (AHP Technique Results)
3.3. Hydrochemical Characteristics and Water Quality Assesment
3.4. Human Health Risk Assessment
3.4.1. Non-Carcinogenic Health Risk
3.4.2. Human Health Risk Assessment Due to Fecal Coliforms
4. Conclusions
- The AHP technique was a useful tool for identifying priority springs. This technique was applied by means of the Terrset software; however, Terrset is primarily used by the scientific community, which can be a limitation for government entities and the private sector. A total of 6.6% of springs are in the category of low priority, 14.2% in the medium category, and 79.2% in the high category. These percentages are strongly related to the weight assigned to the spring water use factor (relative weight 0.5943). The analysis of the 79.2% of springs with high priority, in relation to access routes as well as the dangerous zones due to crime, resulting in the selection of 20 springs distributed homogeneously in the ABC in order to optimize economic resources in the quality analysis. These springs could be considered by CONAGUA (commission in charge of water resources management in Mexico) to propose a quality monitoring network at the aquifer level.
- Spring water is slightly alkaline, with TDS ranging from 20.52 to 230.5 (dry season) and 1.2 to 257 mg/L (rainy season). In relation to the normative standards of water for human consumption [62,63], the springs exceeded the maximum permissible limits by 100% for fecal coliforms, 25% for nitrates, 5% for sulfates, 5% for iron, and 5% for cadmium.
- Polluted water represents a risk to human health due to water ingestion and/or dermal exposure. There is a higher non-carcinogenic risk by the oral route in children (with an average HI value of 0.6371) and a higher risk by the dermal route in adults (with an average HI value of 1.2378). The highest dermal risks are located in the south-southeast of the study area. However, the approaches used in this study contain some potential uncertainties. The RfD obtained from the USEPA could not be specific for Latin America; in addition, the application of the average concentration of each element to assess the level of risk to health in the inhabitants of the place was based on a point sampling of the sites.
- The human health risk from fecal coliforms was medium in the dry season and high in the rainy season. The recommendations are based on the following: in situ treatment such as boiling or chlorination of the water would be the most cost-effective actions to overcome the problem, intensification of the monitoring quality capacity, inventory/relocate pollution sources that are upstream of the springs and protect the places where the springs emanate in order to avoid gastrointestinal diseases. Finally, the results of this research will serve to improve groundwater management while optimizing the economic resources invested in the ABC water quality sampling. This methodology can also be applied to other aquifers in the country by the authorities in charge, CONAGUA in Mexico.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leite, N.K.; Stolberg, J.; da Cruz, S.P.; Tavela, A.D.O.; Safanelli, J.L.; Marchini, H.R.; Exterkoetter, R.; Leite, G.M.C.; Krusche, A.V.; Johnson, M.S. Hydrochemistry of Shallow Groundwater and Springs Used for Potable Supply in Southern Brazil. Environ. Earth Sci. 2018, 77, 80. [Google Scholar] [CrossRef]
- Pande, C.B.; Moharir, K.N.; Singh, S.K.; Elbeltagi, A.; Pham, Q.B.; Panneerselvam, B.; Panneerselvam, B.; Varade, A.M.; Kouadri, S. Groundwater flow modeling in the basaltic hard rock area of Maharashtra, India. Appl. Water Sci. 2022, 12, 12. [Google Scholar] [CrossRef]
- Yaghobi, S.; Faramarzi, M.; Karimi, H.; Sarvarian, J. Simulation of Land-Use Changes in Relation to Changes of Groundwater Level in Arid Rangeland in Western Iran. Int. J. Environ. Sci. Technol. 2019, 16, 1637–1648. [Google Scholar] [CrossRef]
- Moldovan, A.; Hoaghia, M.-A.; Kovacs, E.; Mirea, I.C.; Kenesz, M.; Arghir, R.A.; Petculescu, A.; Levei, E.A.; Moldovan, O.T. Quality and Health Risk Assessment Associated with Water Consumption—A Case Study on Karstic Springs. Water 2020, 12, 3510. [Google Scholar] [CrossRef]
- Aher, S.; Deshmukh, K.; Gawali, P.; Zolekar, R.; Deshmukh, P. Hydrogeochemical Characteristics and Groundwater Quality Investigation along the Basinal Cross-Section of Pravara River, Maharashtra, India. J. Asian Earth Sci. X 2022, 7, 100082. [Google Scholar] [CrossRef]
- Davraz, A.; Batur, B. Hydrogeochemistry Characteristics of Groundwater and Health Risk Assessment in Yalvaç–Gelendost Basin (Turkey). Appl. Water Sci. 2021, 11, 67. [Google Scholar] [CrossRef]
- WHO. Guidelines on Sanitation and Health; World Health Organization: Geneva, Switzerland, 2018.
- El Mountassir, O.; Bahir, M.; Ouazar, D.; Chehbouni, A.; Carreira, P.M. Temporal and Spatial Assessment of Groundwater Contamination with Nitrate Using Nitrate Pollution Index (NPI), Groundwater Pollution Index (GPI), and GIS (Case Study: Essaouira Basin, Morocco). Environ. Sci. Pollut. Res. Int. 2022, 29, 17132–17149. [Google Scholar] [CrossRef]
- Ather, D.; Muhammad, S.; Ali, W. Fluoride and Nitrate Contaminations of Groundwater and Potential Health Risks Assessment in the Khyber District, North-Western Pakistan. Int. J. Environ. Anal. Chem. 2022, 1–16. [Google Scholar] [CrossRef]
- Yu, G.; Wang, J.; Liu, L.; Li, Y.; Zhang, Y.; Wang, S. The Analysis of Groundwater Nitrate Pollution and Health Risk Assessment in Rural Areas of Yantai, China. BMC Public Health 2020, 20, 437. [Google Scholar] [CrossRef]
- Wakejo, W.K.; Meshesha, B.T.; Habtu, N.G.; Mekonnen, Y.G. Anthropogenic Nitrate Contamination of Water Resources in Ethiopia: An Overview. Water Sci. Technol. Water Supply 2022, 22, 8157–8172. [Google Scholar] [CrossRef]
- Banowati, L.; Aeni, H.F.; Herawati, C. Relationship between Bacteriological Quality of Drilled Well Water and the Incidence of Diarrhea among Families. J. Phys. Conf. Ser. 2020, 1477, 062023. [Google Scholar] [CrossRef]
- Gizachew, M.; Admasie, A.; Wegi, C.; Assefa, E. Bacteriological Contamination of Drinking Water Supply from Protected Water Sources to Point of Use and Water Handling Practices among Beneficiary Households of Boloso Sore Woreda, Wolaita Zone, Ethiopia. Int. J. Microbiol. 2020, 2020, 5340202. [Google Scholar] [CrossRef]
- Chauhan, J.S.; Badwal, T.; Badola, N. Assessment of Potability of Spring Water and Its Health Implication in a Hilly Village of Uttarakhand, India. Appl. Water Sci. 2020, 10, 73. [Google Scholar] [CrossRef]
- Wagh, V.M.; Panaskar, D.B.; Mukate, S.V.; Aamalawar, M.L.; Laxman Sahu, U. Nitrate associated health risks from groundwater of Kadava River Basin Nashik, Maharashtra, India. Hum. Ecol. Risk Assess. Int. J. 2020, 26, 654–672. [Google Scholar] [CrossRef]
- Chen, F.; Yao, L.; Mei, G.; Shang, Y.; Xiong, F.; Ding, Z. Groundwater Quality and Potential Human Health Risk Assessment for Drinking and Irrigation Purposes: A Case Study in the Semiarid Region of North China. Water 2021, 13, 783. [Google Scholar] [CrossRef]
- Dhaliwal, S.S.; Singh, J.; Taneja, P.K.; Mandal, A. Remediation techniques for removal of heavy metals from the soil contami-nated through different sources: A review. Environ. Sci. Pollut. Res. 2020, 27, 1319–1333. [Google Scholar] [CrossRef]
- He, X.; Li, P.; Ji, Y.; Wang, Y.; Su, Z.; Elumalai, V. Groundwater Arsenic and Fluoride and Associated Arsenicosis and Fluorosis in China: Occurrence, Distribution and Management. Expo. Health 2020, 12, 355–368. [Google Scholar] [CrossRef]
- Sheikhi, S.; Faraji, Z.; Aslani, H. Arsenic health risk assessment and the evaluation of groundwater quality using GWQI and multivariate statistical analysis in rural areas, Hashtroud, Iran. Environ. Sci. Pollut. Res. 2021, 28, 3617–3631. [Google Scholar] [CrossRef]
- Papazotos, P. Potentially toxic elements in groundwater: A hotspot research topic in environmental science and pollution re-search. Environ. Sci. Pollut. Res. 2021, 28, 47825–47837. [Google Scholar] [CrossRef]
- CONAGUA. Actualización de la Disponibilidad Media Anual de Agua en el Acuífero Buenavista de Cuéllar Estado de Guerrero. México: Comisión Nacional del Agua. DOF, Diciembre de 2020. Available online: https://sigagis.conagua.gob.mx/gas1/Edos_Acuiferos_18/guerrero/DR_1204.pdf (accessed on 23 November 2021).
- Salcedo Sánchez, E.R.; Martínez, J.M.E.; Morales, M.M.; Talavera Mendoza, O.; Alberich, M.V.E. Ecological and Health Risk Assessment of Potential Toxic Elements from a Mining Area (Water and Sediments): The San Juan-Taxco River System, Guerrero, Mexico. Water 2022, 14, 518. [Google Scholar] [CrossRef]
- Flores Ronces, A. Isótopos de Estroncio Como Trazadores de Interacción Agua-Roca en la Región Minera de Taxco, Guerrero. Master’s Thesis, Universidad Autónoma de Guerrero, Acapulco de Juárez, Mexico, 2019. [Google Scholar]
- Arroyo-Díaz, F.; Salgado-Souto, S.A.; Del Rio-Salas, R.; Talavera-Mendoza, O.; Ramírez-Guzmán, A.; Ruíz, J.; Sarmiento-Villagrana, A.; Guzmán-Martínez, M. PTE and Multi-Isotope Assessment of Spring Water Used for Human Consumption in the Historical Mining Region of Taxco de Alarcón in Southern Mexico. J. S. Am. Earth Sci. 2022, 116, 103811. [Google Scholar] [CrossRef]
- Gad, M.; Gaagai, A.; Eid, M.H.; Szűcs, P.; Hussein, H.; Elsherbiny, O.; Elsayed, S.; Khalifa, M.M.; Moghanm, F.S.; Moustapha, M.E.; et al. Groundwater Quality and Health Risk Assessment Using Indexing Approaches, Multivariate Statistical Analysis, Artificial Neural Networks, and GIS Techniques in El Kharga Oasis, Egypt. Water 2023, 15, 1216. [Google Scholar] [CrossRef]
- Adimalla, N. Spatial Distribution, Exposure, and Potential Health Risk Assessment from Nitrate in Drinking Water from Semi-Arid Region of South India. Hum. Ecol. Risk Assess 2020, 26, 310–334. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhou, Y.; Wang, X.; Wang, Z.; Bai, Y. Water Quality Evolution Mechanism Modeling and Health Risk Assessment Based on Stochastic Hybrid Dynamic Systems. Expert Syst. Appl. 2022, 193, 116404. [Google Scholar] [CrossRef]
- Bodrud-Doza, M.; Islam, S.M.D.-U.; Rume, T.; Quraishi, S.B.; Rahman, M.S.; Bhuiyan, M.A.H. Groundwater Quality and Human Health Risk Assessment for Safe and Sustainable Water Supply of Dhaka City Dwellers in Bangladesh. Groundw. Sustain. Dev. 2020, 10, 100374. [Google Scholar] [CrossRef]
- Li, J.; Sun, C.; Chen, W.; Zhang, Q.; Zhou, S.; Lin, R.; Wang, Y. Groundwater Quality and Associated Human Health Risk in a Typical Basin of the Eastern Chinese Loess Plateau. Water 2022, 14, 1371. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, W.; Yang, P.; Feng, J.; Zhang, R.; Gao, Z.; Jin, H.; Song, X.; Gao, X. Hydrogeochemical Characteristics, Water Quality, and Human Health Risks of Groundwater in Wulian, North China. Water 2023, 15, 359. [Google Scholar] [CrossRef]
- Mandindi, W.Z.; Nyaba, L.; Mketo, N.; Nomngongo, P.N. Seasonal Variation of Drinking Water Quality and Human Health Risk Assessment: A Case Study in Rural Village of the Eastern Cape, South Africa. Water 2022, 14, 2013. [Google Scholar] [CrossRef]
- Ramos, E.; Bux, R.K.; Medina, D.I.; Barrios-Piña, H.; Mahlknecht, J. Spatial and Multivariate Statistical Analyses of Human Health Risk Associated with the Consumption of Heavy Metals in Groundwater of Monterrey Metropolitan Area, Mexico. Water 2023, 15, 1243. [Google Scholar] [CrossRef]
- Chaudhry, A.K.; Sachdeva, P. Groundwater Quality and Non-Carcinogenic Health Risk Assessment of Nitrate in the Semi-Arid Region of Punjab, India. J. Water Health 2020, 18, 1073–1083. [Google Scholar] [CrossRef] [PubMed]
- Malakootian, M.; Mohammadi, A.; Faraji, M. Investigation of Physicochemical Parameters in Drinking Water Resources and Health Risk Assessment: A Case Study in NW Iran. Environ. Earth Sci. 2020, 79, 195. [Google Scholar] [CrossRef]
- Shukla, S.; Saxena, A. Groundwater Quality and Associated Human Health Risk Assessment in Parts of Raebareli District, Uttar Pradesh, India. Groundw. Sustain. Dev. 2020, 10, 100366. [Google Scholar] [CrossRef]
- Alamerew, Y.A.; Kambanou, M.L.; Sakao, T.; Brissaud, D. A Multi-Criteria Evaluation Method of Product-Level Circularity Strategies. Sustainability 2020, 12, 5129. [Google Scholar] [CrossRef]
- Valente, R.A.; de Mello, K.; Metedieri, J.F.; Américo, C. A Multicriteria Evaluation Approach to Set Forest Restoration Priorities Based on Water Ecosystem Services. J. Environ. Manag. 2021, 285, 112049. [Google Scholar] [CrossRef]
- Taheri, K.; Missimer, T.M.; Amini, V.; Bahrami, J.; Omidipour, R. A GIS-Expert-Based Approach for Groundwater Quality Monitoring Network Design in an Alluvial Aquifer: A Case Study and a Practical Guide. Environ. Monit. Assess 2020, 192, 684. [Google Scholar] [CrossRef]
- Esquivel-Martínez, J.M.; Expósito-Castillo, J.L.; Esteller-Alberich, M.V.; Gómez-Albores, M.A.; Medina-Rivas, C.M.; Fonseca-Ortiz, C.R. Prioritization of Areas for Groundwater Monitoring Using Analytic Hierarchy Process Method in Geographic Information Systems: A Case of Mexico. Int. J. Environ. Sci. Technol. 2022. [CrossRef]
- Mega, N.; Khechana, S. Groundwater Quality Assessment by Analytic Hierarchy Process (Geographic Information Systems-Based Model) in Souf Region (South-East of Algeria). Int. J. Environ. Sci. Technol. 2021, 18, 3459–3468. [Google Scholar] [CrossRef]
- Saaty, T.L. How to Make a Decision: The Analytic Hierarchy Process. Eur. J. Oper. Res. 1990, 48, 9–26. [Google Scholar] [CrossRef]
- Saranya, T.; Saravanan, S. Assessment of Groundwater Vulnerability Using Analytical Hierarchy Process and Evidential Belief Function with DRASTIC Parameters, Cuddalore, India. Int. J. Environ. Sci. Technol. 2023, 20, 1837–1856. [Google Scholar] [CrossRef]
- INEGI. Censo de Población y Vivienda 2020. Instituto Nacional de Estadística y Geografía (INEGI). 2020. Available online: https://inegi.org.mx/programas/ccpv/2020/#Micro (accessed on 23 March 2023).
- SGM. Edición de Cartas Geológicas y Geoquímicas Escala 1:50,000. Servicio Geológico Mexicano. 2004. Available online: http://www.sgm.gob.mx/cartas/Cartas_Ed50.jsp (accessed on 19 December 2021).
- CONAGUA. Base de datos del Registro Público de Derechos del Agua (REPDA). 2022. Available online: https://app.conagua.gob.mx/consultarepda.aspx (accessed on 10 December 2021).
- INEGI. Usos del Suelo y Vegetación. Instituto Nacional de Estadística y Geografía (INEGI). 2018. Available online: https://www.inegi.org.mx/temas/usosuelo/ (accessed on 23 March 2022).
- Martínez-Salvador, C.; Moreno-Gómez, M.; Liedl, R. Estimating Pollutant Residence Time and NO3 Concentrations in the Yucatan Karst Aquifer; Considerations for an Integrated Karst Aquifer Vulnerability Methodology. Water 2019, 11, 1431. [Google Scholar] [CrossRef]
- Foster, S.; Hirata, R.; Gomes, D.; D’Elia, M.; Paris, M. Protección de la calidad del agua subterránea. In Guía Para Empresas de Agua, Autoridades Municipales y Agencias Ambientales, 2nd ed.; Banco Mundial: Washington, DC, USA, 2007; pp. 17–69. [Google Scholar]
- Lopez Valle, S. Estrategias Para la Protección de Manantiales: Propuesta Metodológica de Acuerdo al Entorno Físico-Social y Proyección de Escenarios. Ph.D. Thesis, Universidad Autónoma del Estado de México, Toluca, Mexico, 2018. [Google Scholar]
- Silva García, J.T.; Ochoa Estrada, S.; Cruz Cárdenas, G.; Nava Velázquez, J.; Villalpando Barragán, F. Manantiales de la cuenca del río Duero Michoacán: Operación, calidad y cantidad. Rev. Int. Contam. Ambient. 2016, 32, 55–68. [Google Scholar]
- Eastman, J.R. IDRISI TerrSet. In Geospatial Monitoring and Modeling System; Clark Labs: Worcester, MA, USA, 2016. [Google Scholar]
- Drobne, S.; Lisec, A. Multi-attribute Decision Analysis in GIS: Weighted Linear Combination and ordered weighted averaging. Informatica 2009, 33, 459–474. [Google Scholar]
- Saaty, T.L. Relative Measurement and Its Generalization in Decision Making Why Pairwise Comparisons Are Central in Mathematics for the Measurement of Intangible Factors the Analytic Hierarchy/Network Process. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 2008, 102, 251–318. [Google Scholar] [CrossRef]
- Hajkowicz, S.; Collins, K. A Review of Multiple Criteria Analysis for Water Resource Planning and Management. Water Resour. Manag. 2007, 21, 1553–1566. [Google Scholar] [CrossRef]
- Yavuz Kumlu, K.B.; Tüdeş, Ş. Determination of Earthquake-Risky Areas in Yalova City Center (Marmara Region, Turkey) Using GIS-Based Multicriteria Decision-Making Techniques (Analytical Hierarchy Process and Technique for Order Preference by Similarity to Ideal Solution). Nat. Hazards 2019, 96, 999–1018. [Google Scholar] [CrossRef]
- Bagdanavičiūtė, I.; Valiūnas, J. GIS-Based Land Suitability Analysis Integrating Multi-Criteria Evaluation for the Allocation of Potential Pollution Sources. Environ. Earth Sci. 2013, 68, 1797–1812. [Google Scholar] [CrossRef]
- Boulding, J.R. Practical Handbook of Soil, Vadose Zone, and Ground-Water Contamination Assessment, Prevention and Remediation; Lewis Pub: Boca Raton, FL, USA, 1995. [Google Scholar]
- DOF. PROYECTO de Norma Oficial Mexicana PROY-NOM-230-SSA1-2002, Salud Ambiental. Diario Oficial de la Federación. 2003. Available online: https://www.dof.gob.mx/nota_detalle.php?codigo=691563&fecha=01/08/2003 (accessed on 18 March 2022).
- APHA; AWWA; WEF. Standard Methods for the Examination Water and Wastewater, 21st ed.; APHA; AWWA; WEF: Washington, DC, USA, 2005. [Google Scholar]
- DOF. Declaratoria de Vigencia de la Norma Mexicana NMX-AA-102-SCFI-2019. Calidad del Agua-Enumeración de Escherichia coli y Bacterias Coliformes-Método de Filtración por Membrana. Diario Oficial de la Federación. 2020. Available online: https://www.dof.gob.mx/nota_detalle.php?codigo=5596379&fecha=08/07/2020#gsc.tab=0 (accessed on 20 April 2022).
- Aqueous Solutions LCC. The Geochemist’s Workbench; Versión 11; Software; Department of Geology at the University of Illinois Urbana Champaign: Champaign, IL, USA, 2016; Available online: https://www.gwb.com/ (accessed on 15 December 2022).
- WHO. Guidelines for Drinking-Water Quality, 4th ed.; Incorporating 1st and 2nd Addenda; WHO: Geneva, Switzerland, 2017; Volume 1.
- DOF. Norma Oficial Mexicana NOM-127-SSA1-2021, Agua Para Uso y Consumo Humano. Límites Permisibles de la Calidad del Agua. Diario Oficial de la Federación. 2022. Available online: https://www.dof.gob.mx/nota_detalle.php?codigo=5650705&fecha=02/05/2022 (accessed on 15 April 2022).
- USEPA. Guidelines for Carcinogen Risk Assessment; EPA/630/P-03/001F; Risk Assessment Forum: Washington, DC, USA, 2005. [Google Scholar]
- USEPA. Exposure Factors Handbook; EPA/600/R-09/052F; National Center for Environmental Assessment: Washington, DC, USA, 2011. Available online: http://www.epa.gov/ncea/efh (accessed on 15 October 2021).
- EPA. Regional Screening Levels (RSLs), Risk Assessment, 2013; US EPA: Washington, DC, USA, 2013.
- Prasad, S.; Saluja, R.; Joshi, V.; Garg, J.K. Heavy metal pollution in surface water of the Upper Ganga River, India: Human health risk assessment. Environ. Monit. Assess 2020, 192, 742. [Google Scholar] [CrossRef]
- Kan, X.; Dong, Y.; Feng, L.; Zhou, M.; Hou, H. Contamination and Health Risk Assessment of Heavy Metals in China’s Lead-Zinc Mine Tailings: A Meta-Analysis. Chemosphere 2021, 267, 128909. [Google Scholar] [CrossRef]
- USEPA. Human health evaluation manual (Part A). In Risk Assessment Guidance for Superfund; Ofce of Emergency and Remedial Response, US Environmental Protection Agency: Washington, DC, USA, 1989; Volume 1. [Google Scholar]
- Daghara, A.; Al-Khatib, I.A.; Al-Jabari, M. Quality of Drinking Water from Springs in Palestine: West Bank as a Case Study. J. Environ. Public Health 2019, 2019, 8631732. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines for Drinking-Water Quality; World Health Organization: Geneva, Switzerland, 2004.
- Ahmed, N.; Bodrud-Doza, M.; Islam, S.M.D.-U.; Choudhry, M.A.; Muhib, M.I.; Zahid, A.; Hossain, S.; Moniruzzaman, M.; Deb, N.; Bhuiyan, M.A.Q. Hydrogeochemical Evaluation and Statistical Analysis of Groundwater of Sylhet, North-Eastern Bangladesh. Acta Geochim. 2019, 38, 440–455. [Google Scholar] [CrossRef]
- Qasemi, M.; Shams, M.; Sajjadi, S.A.; Farhang, M.; Erfanpoor, S.; Yousefi, M.; Zarei, A.; Afsharnia, M. Cadmium in Groundwater Consumed in the Rural Areas of Gonabad and Bajestan, Iran: Occurrence and Health Risk Assessment. Biol. Trace Elem. Res. 2019, 192, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Kapembo, M.L.; Mukeba, F.B.; Sivalingam, P.; Mukoko, J.B.; Bokolo, M.K.; Mulaji, C.K.; Mpiana, P.T.; Poté, J.W. Survey of Water Supply and Assessment of Groundwater Quality in the Suburban Communes of Selembao and Kimbanseke, Kinshasa in Democratic Republic of the Congo. Sustain. Water Resour. Manag. 2022, 8, 3. [Google Scholar]
Factors | Geology | Water Use | Land Use | Volume | Weights |
---|---|---|---|---|---|
Geology | 1 | 0.1136 | |||
Water use | 7 | 1 | 0.5943 | ||
Land use | 3 | 1/3 | 1 | 0.2532 | |
Volume | 1/5 | 1/9 | 1/7 | 1 | 0.0390 |
Symbol | Name | Unit | Recommended Value |
---|---|---|---|
Cw | Element concentration | mg L−1 | |
IR | Ingestion rate | L día−1 | Adult 2.5 Child 0.80 |
EF | Exposure frequency | day y−1 | 350 |
ED | Total exposure duration | Year | Adult 30; Child 6 |
BW | Average body weight | Kg | Adult 52; Child 10 |
SA | Exposed skin area | cm2 | Adult 57,000 Child 28,000 |
AF | Adherence factor dermal | - | 0.07 |
ABSd | Absorption fraction | - | 0.03 |
ET | Exposure time | h day−1 | 0.58 |
CF | Conversion factor | Kg mg−1 | 10−2 |
AT | Average exposure time | Day | Adult 10,950; Child 2190 |
RfDingestion | Reference dose of PTE | mg kg−1 Day -1 | Fe = 0.7, Mn = 0.024, Zn = 0.3, Cd = 0.001, Ni = 0.02, NO3− = 1.16 |
RfDdermal | Reference dose of PTE | mg kg−1 Day -1 | Fe = 0.7, Mn = 0.00096, Zn = 0.06, Ni = 0.0054, NO3− = 1.1 |
Range of Fecal Coliforms (CFU/100 mL) | Degree of Risk |
---|---|
<1 | No risk |
1–10 | Simple risk |
11–100 | Medium risk |
101–1000 | High risk |
>1000 | Very high risk |
Dry Season | Rainy Season | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Parameters | Units | Min | Max | Mean | SD | P a (%) | Min | Max | Mean | SD | P a (%) | NOM-127-SSA1-2021 [63] | WHO (2017) [62] |
Coliforms | CFU/100 mL | 0 | 2300 | 240.2 | 550.95 | 85% | 3 | 640 | 205.55 | 219.07 | 100% | 0 | 0 |
T | °C | 16.8 | 28.1 | 22.8 | 3.02 | 16.4 | 24.7 | 21.6 | 2.30 | - | - | ||
pH | 6.08 | 7.91 | 6.90 | 0.44 | 20% | 6.1 | 7.5 | 6.7 | 0.39 | 20% | 6.5-8.5 | 7–8 | |
EC | (μS/m) | 40.86 | 1259 | 465.6 | 299.59 | 40.03 | 1200 | 463.6 | 316.32 | - | - | ||
TDS | 20.52 | 632.1 | 230.8 | 146.30 | 1.2 | 649.0 | 257.0 | 178.51 | 1000 | 1000 | |||
Ca2+ | 13.50 | 239.4 | 99.29 | 53.61 | 10.2 | 229.5 | 97.9 | 56.81 | - | - | |||
Mg2+ | 0.14 | 55.9 | 10.4 | 12.45 | 0.2 | 59.6 | 10.1 | 12.75 | - | - | |||
Na+ | 1.1 | 29.3 | 9.92 | 7.24 | 0.9 | 53.4 | 15.1 | 13.26 | - | 200 | |||
K+ | 0.6 | 6.40 | 1.75 | 1.56 | 0.04 | 7.9 | 2.0 | 1.94 | - | - | |||
NO3- | 0.56 | 26.0 | 5.62 | 6.93 | 10% | 0.2 | 42.1 | 7.9 | 10.39 | 25% | 11 | 50 | |
Cl− | 1.2 | 36.5 | 7.16 | 10.53 | 0.3 | 39.5 | 8.9 | 13.52 | - | 250 * | |||
HCO3- | 58.26 | 519.5 | 310.5 | 129.10 | 55.6 | 517.1 | 316.6 | 141.84 | - | - | |||
SO42− | 1.1 | 574.5 | 58.90 | 135.72 | 5% | 0.3 | 570.6 | 69.9 | 129.46 | 5% | 400 | 250 | |
B | mg/L | 0.01 | 2.4 | 0.24 | 0.68 | 0.02 | 0.13 | 0.08 | 0.04 | - | - | ||
Mn | 0.001 | 0.115 | 0.016 | 0.03 | 0.001 | 0.15 | 0.02 | 0.04 | 0.15 | 0.1–0.4 | |||
Ba | 0.01 | 0.18 | 0.04 | 0.04 | 0.01 | 0.18 | 0.04 | 0.04 | 1.3 | 2.4 | |||
Fe | 0.003 | 0.410 | 0.055 | 0.12 | 5% | 0.01 | 0.96 | 0.15 | 0.32 | 5% | 0.30 | 0.30 * | |
Zn | 0.002 | 0.823 | 0.070 | 0.22 | 0.004 | 0.273 | 0.03 | 0.07 | - | 3–5 | |||
F− | 0.07 | 0.54 | 0.25 | 0.14 | 0.065 | 0.490 | 0.223 | 0.14 | 1.5 | - | |||
Li | 0.001 | 0.069 | 0.014 | 0.01 | 0.001 | 0.075 | 0.015 | 0.01 | - | - | |||
Sr | 0.024 | 2.306 | 0.349 | 0.49 | 0.029 | 2.205 | 0.366 | 0.48 | - | - | |||
Ni | 0.010 | 0.010 | 0.010 | 0.010 | 0.005 | 0.017 | 0.009 | 0.003 | 0.07 | 0.07 | |||
Si | 4.50 | 42.10 | 17.76 | 11.06 | 4.2 | 44.0 | 18.1 | 11.08 | - | - | |||
Al | 0.023 | 0.094 | 0.055 | 0.03 | 0.023 | 0.094 | 0.05 | 0.03 | 0.2 | - | |||
Cd | 0.012 | 0.012 | 0.012 | 0.012 | 5% | 0.012 | 0.012 | 0.012 | 0.012 | 5% | 0.005 | 0.003 |
Oral | Dermal | ||||||
---|---|---|---|---|---|---|---|
Average | Min | Max | Average | Min | Max | ||
Adult | |||||||
HQ | NO−3 | 0.4655 | 0.0117 | 2.4637 | 0.9218 | 0.0288 | 4.8559 |
Zn | 0.0076 | 0.0009 | 0.0618 | 0.2348 | 0.0096 | 2.1585 | |
Fe | 0.0153 | 0.0008 | 0.0932 | 0.1699 | 0.0081 | 0.9167 | |
Mn | 0.0804 | 0.0020 | 0.4390 | 0.0072 | 0.0001 | 0.0607 | |
Ni | 0.0062 | 0.0031 | 0.0118 | 0.0200 | 0.0011 | 0.0428 | |
Cd | n.a | n.a | 0.8498 | n.a | n.a | n.a | |
HI | 0.5924 | 0.0630 | 2.4835 | 1.2378 | 0.0458 | 4.8705 | |
Oral | Dermal | ||||||
Average | Min | Max | Average | Min | Max | ||
Child | |||||||
HQ | NO−3 | 0.5517 | 0.0172 | 2.9097 | 0.2351 | 0.0074 | 1.2404 |
Zn | 0.0059 | 0.0007 | 0.0485 | 1.2318 × 10−3 | 2.2912 × 10−5 | 1.0343 × 10−2 | |
Fe | 0.0120 | 0.0006 | 0.0732 | 0.0256 | 0.0014 | 0.1561 | |
Mn | 0.0631 | 0.0015 | 0.3449 | 0.0672 | 0.0002 | 0.3676 | |
Ni | 0.0073 | 0.0036 | 0.0139 | 0.0034 | 0.0002 | 0.0073 | |
Cd | n.a | n. a | 0.6676 | n. a | n. a | n. a | |
HI | 0.6371 | 0.0315 | 2.9148 | 0.2865 | 0.0103 | 1.2405 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colín Carreño, M.A.; Esquivel Martínez, J.M.; Salcedo Sánchez, E.R.; Álvarez Bastida, C.; Padilla Serrato, J.G.; Lopezaraiza Mikel, M.E.; Talavera Mendoza, Ó. Human Health Risk and Quality Assessment of Spring Water Associated with Nitrates, Potentially Toxic Elements, and Fecal Coliforms: A Case from Southern Mexico. Water 2023, 15, 1863. https://doi.org/10.3390/w15101863
Colín Carreño MA, Esquivel Martínez JM, Salcedo Sánchez ER, Álvarez Bastida C, Padilla Serrato JG, Lopezaraiza Mikel ME, Talavera Mendoza Ó. Human Health Risk and Quality Assessment of Spring Water Associated with Nitrates, Potentially Toxic Elements, and Fecal Coliforms: A Case from Southern Mexico. Water. 2023; 15(10):1863. https://doi.org/10.3390/w15101863
Chicago/Turabian StyleColín Carreño, Manuel Alejandro, Juan Manuel Esquivel Martínez, Edith Rosalba Salcedo Sánchez, Carolina Álvarez Bastida, Jesús Guadalupe Padilla Serrato, Martha Elena Lopezaraiza Mikel, and Óscar Talavera Mendoza. 2023. "Human Health Risk and Quality Assessment of Spring Water Associated with Nitrates, Potentially Toxic Elements, and Fecal Coliforms: A Case from Southern Mexico" Water 15, no. 10: 1863. https://doi.org/10.3390/w15101863
APA StyleColín Carreño, M. A., Esquivel Martínez, J. M., Salcedo Sánchez, E. R., Álvarez Bastida, C., Padilla Serrato, J. G., Lopezaraiza Mikel, M. E., & Talavera Mendoza, Ó. (2023). Human Health Risk and Quality Assessment of Spring Water Associated with Nitrates, Potentially Toxic Elements, and Fecal Coliforms: A Case from Southern Mexico. Water, 15(10), 1863. https://doi.org/10.3390/w15101863