Temperature and Secchi Disk Depth Increase More Rapidly in the Subpolar Bering/Okhotsk Seas Than in the Subtropical South China Sea
Abstract
1. Introduction
2. Sea Surface Temperature
3. Chlorophyll Concentration
4. Secchi Disk Depth
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bindoff, N.L.; Cheung, W.W.; Kairo, J.G.; Arístegui, J.; Guinder, V.A.; Hallberg, R.; Hilmi, N.J.M.; Jiao, N.; Karim, M.S.; Levin, L. Changing ocean, marine ecosystems, and dependent communities. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; IPCC: Geneva, Switzerland, 2019; pp. 477–587. [Google Scholar]
- Lotze, H.K.; Tittensor, D.P.; Bryndum-Buchholz, A.; Eddy, T.D.; Cheung, W.W.L.; Galbraith, E.D.; Barange, M.; Barrier, N.; Bianchi, D.; Blanchard, J.L.; et al. Global ensemble projections reveal trophic amplification of ocean biomass declines with climate change. Proc. Natl. Acad. Sci. USA 2019, 116, 12907–12912. [Google Scholar] [CrossRef] [PubMed]
- IPCC. AR6 Synthesis Report: Climate Change 2022; IPCC: Geneva, Switzerland, 2022. [Google Scholar]
- Chen, C.-T.A.; Huang, T.-H.; Lui, H.-K.; Zhang, J. Unheralded submarine groundwater discharge. Oceanogr. Fish. Open Access J. 2019, 10, 126–128. [Google Scholar]
- Wang, S.L.; Chen, C.T.A.; Huang, T.H.; Tseng, H.C.; Lui, H.K.; Peng, T.R.; Kandasamy, S.; Zhang, J.; Yang, L.Y.; Gao, X.L.; et al. Submarine groundwater discharge helps making nearshore waters heterotrophic. Sci. Rep. 2018, 8, 11650. [Google Scholar] [CrossRef] [PubMed]
- Lui, H.K.; Chen, C.T.A.; Hou, W.P.; Yu, S.J.; Chan, J.W.; Bai, Y.; He, X.Q. Transient carbonate chemistry in the expanded Kuroshio region. In Changing Asia-Pacific Marginal Seas; Chen, C.T.A., Guo, X.Y., Eds.; Springer: Singapore, 2020; pp. 307–320. [Google Scholar] [CrossRef]
- Chen, C.T.A.; Andreev, A.; Kim, K.R.; Yamamoto, M. Roles of continental shelves and marginal seas in the biogeochemical cycles of the North Pacific Ocean. J. Oceanogr. 2004, 60, 17–44. [Google Scholar] [CrossRef]
- Wiese, F.K.; Van Pelt, T.I.; Wiseman, W.J. Bering Sea linkages. Deep-Sea Res. Part II 2012, 65-70, 2–5. [Google Scholar] [CrossRef]
- Xie, L.L.; Guan, Y.; Hu, J.Y.; Zheng, Q.A. Advances in interscale and interdisciplinary approaches to the South China Sea. Acta Oceanol. Sin. 2021, 40, 196–199. [Google Scholar] [CrossRef]
- Hallett, C.S.; Hobday, A.J.; Tweedley, J.R.; Thompson, P.A.; McMahon, K.; Valesini, F.J. Observed and predicted impacts of climate change on the estuaries of south-western Australia, a Mediterranean climate region. Reg. Environ. Chang. 2018, 18, 1357–1373. [Google Scholar] [CrossRef]
- Bai, Y.; He, X.Q.; Yu, S.J.; Chen, C.T.A. Changes in the Ecological Environment of the Marginal Seas along the Eurasian Continent from 2003 to 2014. Sustainability 2018, 10, 635. [Google Scholar] [CrossRef]
- Stabeno, P.J.; Kachel, N.B.; Moore, S.E.; Napp, J.M.; Sigler, M.; Yamaguchi, A.; Zerbini, A.N. Comparison of warm and cold years on the southeastern Bering Sea shelf and some implications for the ecosystem. Deep-Sea Res. Part II 2012, 65-70, 31–45. [Google Scholar] [CrossRef]
- Wang, M.Y.; Overland, J.E.; Stabeno, P. Future climate of the Bering and Chukchi Seas projected by global climate models. Deep-Sea Res. Part II 2012, 65–70, 46–57. [Google Scholar] [CrossRef]
- Chen, C.T.A.; Yu, S.J.; Huang, T.H.; Bai, Y.; He, X.Q. Changes in temperature, chlorophyll concentration, and Secchi Disk Depth in the Bering Sea from 1998 to 2016. In Changing Asia-Pacific Marginal Seas; Chen, C.T.A., Guo, X.Y., Eds.; Springer: Singapore, 2020; pp. 5–18. [Google Scholar] [CrossRef]
- Chen, C.T.A.; Yu, S.J.; Huang, T.H.; Bai, Y.; He, X.Q. Changes in temperature, chlorophyll concentration, and Secchi Disk Depth in the Okhotsk Sea from 1998 to 2016. In Changing Asia-Pacific Marginal Seas; Chen, C.T.A., Guo, X.Y., Eds.; Springer: Singapore, 2020; pp. 57–68. [Google Scholar] [CrossRef]
- Chen, C.T.A.; Yu, S.J.; Huang, T.H.; Lui, H.K.; Bai, Y.; He, X.Q. Changing biogeochemistry in the South China Sea. In Changing Asia-Pacific Marginal Seas; Chen, C.T.A., Guo, X.Y., Eds.; Springer: Singapore, 2020; pp. 203–216. [Google Scholar] [CrossRef]
- Nakanowatari, T.; Mitsudera, H. Long-term trend and interannual to decadal variability in the Sea of Okhotsk. In Changing Asia-Pacific Marginal Seas; Chen, C.T.A., Guo, X.Y., Eds.; Springer: Singapore, 2020; pp. 19–56. [Google Scholar] [CrossRef]
- Schmidtko, S.; Stramma, L.; Visbeck, M. Decline in global oceanic oxygen content during the past five decades. Nature 2017, 542, 335–339. [Google Scholar] [CrossRef] [PubMed]
- Breitburg, D.; Levin, L.A.; Oschlies, A.; Grégoire, M.; Chavez, F.P.; Conley, D.J.; Garçon, V.; Gilbert, D.; Gutiérrez, D.; Isensee, K.; et al. Declining oxygen in the global ocean and coastal waters. Science 2018, 359, eaam7240. [Google Scholar] [CrossRef] [PubMed]
- Oschlies, A. A committed fourfold increase in ocean oxygen loss. Nat. Commun. 2021, 12, 2037. [Google Scholar] [CrossRef] [PubMed]
- Qi, D.; Ouyang, Z.; Chen, L.; Wu, Y.; Lei, R.; Chen, B.; Feely, R.A.; Anderson, L.G.; Zhong, W.; Lin, H.; et al. Climate change drives rapid decadal acidification in the Arctic Ocean from 1994 to 2020. Science 2022, 377, 1544–1550. [Google Scholar] [CrossRef]
- Nan, F.; Yu, F.; Xue, H.J.; Zeng, L.L.; Wang, D.X.; Yang, S.L.; Nguyen, K.C. Freshening of the upper ocean in the South China Sea since the early 1990s. Deep-Sea Res. Part I 2016, 118, 20–29. [Google Scholar] [CrossRef]
- Durack, P.J.; Wijffels, S.E. Fifty-year trends in global ocean salinities and their relationship to broad-scale warming. J. Clim. 2010, 23, 4342–4362. [Google Scholar] [CrossRef]
- Nan, F.; Xue, H.J.; Chai, F.; Wang, D.X.; Yu, F.; Shi, M.C.; Guo, P.F.; Xiu, P. Weakening of the Kuroshio intrusion into the South China Sea over the past two decades. J. Clim. 2013, 26, 8097–8110. [Google Scholar] [CrossRef]
- Nan, F.; Xue, H.J.; Yu, F. Kuroshio intrusion into the South China Sea: A review. Prog. Oceanogr. 2015, 137, 314–333. [Google Scholar] [CrossRef]
- Lui, H.K.; Chen, K.Y.; Chen, C.T.A.; Wang, B.S.; Lin, H.L.; Ho, S.H.; Tseng, C.J.; Yang, Y.; Chan, J.W. Physical forcing-driven productivity and sediment flux to the deep basin of Northern South China Sea: A decadal time series study. Sustainability 2018, 10, 971. [Google Scholar] [CrossRef]
- Huang, T.H.; Chen, C.T.A.; Lee, J.; Wu, C.R.; Wang, Y.L.; Bai, Y.; He, X.Q.; Wang, S.L.; Kandasamy, S.; Lou, J.Y.; et al. East China Sea increasingly gains limiting nutrient P from South China Sea. Sci. Rep. 2019, 9, 5648. [Google Scholar] [CrossRef]
- Liu, Y.; Peng, Z.C.; Zhou, R.J.; Song, S.H.; Liu, W.G.; You, C.F.; Lin, Y.P.; Yu, K.F.; Wu, C.C.; Wei, G.J.; et al. Acceleration of modern acidification in the South China Sea driven by anthropogenic CO2. Sci. Rep. 2014, 4, 5148. [Google Scholar] [CrossRef] [PubMed]
- Lui, H.K.; Chen, C.T.A. Deducing acidification rates based on short-term time series. Sci. Rep. 2015, 5, 11517. [Google Scholar] [CrossRef] [PubMed]
- Screen, J.A.; Simmonds, I. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 2010, 464, 1334–1337. [Google Scholar] [CrossRef] [PubMed]
- He, X.Q.; Pan, D.L.; Bai, Y.; Wang, T.Y.; Chen, C.T.A.; Zhu, Q.K.; Hao, Z.Z.; Gong, F. Recent changes of global ocean transparency observed by SeaWiFS. Cont. Shelf Res. 2017, 143, 159–166. [Google Scholar] [CrossRef]
- Belkin, I.M. Rapid warming of large marine ecosystems. Prog. Oceanogr. 2009, 81, 207–213. [Google Scholar] [CrossRef]
- IPCC. Global Warming of 1.5 °C; IPCC: Geneva, Switzerland, 2018. [Google Scholar]
- Wang, M.Y.; Overland, J.E. A sea ice free summer Arctic within 30 years? Geophys. Res. Lett. 2009, 36, L07502. [Google Scholar] [CrossRef]
- Chen, C.T.A. Rare northward flow in the Taiwan Strait in winter: A note. Cont. Shelf Res. 2003, 23, 387–391. [Google Scholar] [CrossRef]
- Naik, H.; Chen, C.T.A. Biogeochemical cycling in the Taiwan Strait. Estuar. Coast. Shelf Sci. 2008, 78, 603–612. [Google Scholar] [CrossRef]
- Han, A.Q.; Dai, M.H.; Gan, J.P.; Kao, S.J.; Zhao, X.Z.; Jan, S.; Li, Q.; Lin, H.; Chen, C.T.A.; Wang, L.; et al. Inter-shelf nutrient transport from the East China Sea as a major nutrient source supporting winter primary production on the northeast South China Sea shelf. Biogeosciences 2013, 10, 8159–8170. [Google Scholar] [CrossRef]
- Chen, C.T.A.; Bai, Y.; Huang, T.H.; He, X.Q.; Chen, H.W.; Yu, S.J. Southward spreading of the Changjiang Diluted Water in the La Nina spring of 2008. Sci. Rep. 2021, 11, ARTN 307. [Google Scholar] [CrossRef] [PubMed]
- Jan, S.; Chen, C.T.A. Potential biogeochemical effects from vigorous internal tides generated in Luzon Strait: A case study at the southernmost coast of Taiwan. J. Geophys. Res.-Oceans 2009, 114, C04021. [Google Scholar] [CrossRef]
- Hsu, P.C.; Lee, H.J.; Zheng, Q.A.; Lai, J.W.; Su, F.C.; Ho, C.R. Tide-induced periodic sea surface temperature drops in the coral reef area of Nanwan Bay, Southern Taiwan. J. Geophys. Res.-Oceans 2020, 125, ARTN e2019JC015226. [Google Scholar] [CrossRef]
- Wu, C.R.; Chang, C.W.J. Interannual variability of the South China Sea in a data assimilation model. Geophys. Res. Lett. 2005, 32, L17611. [Google Scholar] [CrossRef]
- Li, H.L.; Wiesner, M.G.; Chen, J.F.; Ling, Z.; Zhang, J.J.; Ran, L.H. Long-term variation of mesopelagic biogenic flux in the central South China Sea: Impact of monsoonal seasonality and mesoscale eddy. Deep-Sea Res. Part I 2017, 126, 62–72. [Google Scholar] [CrossRef]
- Xu, Z.H.; Ji, F.; Liu, B.; Feng, T.C.; Gao, Y.; He, Y.L.; Chang, F. Long-term evolution of global sea surface temperature trend. Int. J. Climatol. 2021, 41, 4494–4508. [Google Scholar] [CrossRef]
- Giuliani, S.; Bellucci, L.G.; Nhon, D.H. The coast of Vietnam: Present status and future challenges for sustainable development. In World Seas: An Environmental Evaluation; Elsevier: Amsterdam, The Netherlands, 2019; pp. 415–435. [Google Scholar]
- Chen, C.T.A. Buoyancy leads to high productivity of the Changjiang diluted water: A note. Acta Oceanol. Sin. 2008, 27, 133–140. [Google Scholar]
- Chen, C.T.A.; Wang, S.L.; Lu, X.X.; Zhang, S.R.; Lui, H.K.; Tseng, H.C.; Wang, B.J.; Huang, H.I. Hydrogeochemistry and greenhouse gases of the Pearl River, its estuary and beyond. Quat. Int. 2008, 186, 79–90. [Google Scholar] [CrossRef]
- Dai, M.H.; Lu, Z.M.; Zhai, W.D.; Chen, B.S.; Cao, Z.M.; Zhou, K.B.; Cai, W.J.; Chen, C.T.A. Diurnal variations of surface seawater pCO2 in contrasting coastal environments. Limnol. Oceanogr. 2009, 54, 735–745. [Google Scholar] [CrossRef]
- Walvoord, M.A.; Striegl, R.G. Increased groundwater to stream discharge from permafrost thawing in the Yukon River basin: Potential impacts on lateral export of carbon and nitrogen. Geophys. Res. Lett. 2007, 34, L12402. [Google Scholar] [CrossRef]
- Siegel, D.A.; Behrenfeld, M.; Maritorena, S.; McClain, C.R.; Antoine, D.; Bailey, S.W.; Bontempi, P.S.; Boss, E.S.; Dierssen, H.M.; Doney, S.C.; et al. Regional to global assessments of phytoplankton dynamics from the SeaWiFS mission. Remote Sens. Environ. 2013, 135, 77–91. [Google Scholar] [CrossRef]
- Giesbrecht, K.; Varela, D.; Wiktor, J.; Grebmeier, J.; Kelly, B.; Long, J. A decade of summertime measurements of phytoplankton biomass, productivity and assemblage composition in the Pacific Arctic Region from 2006 to 2016. Deep-Sea Res. Part II 2019, 162, 93–113. [Google Scholar] [CrossRef]
- Thomas, M.K.; Kremer, C.T.; Klausmeier, C.A.; Litchman, E. A global pattern of thermal adaptation in marine phytoplankton. Science 2012, 338, 1085–1088. [Google Scholar] [CrossRef] [PubMed]
- Wohlers, J.; Engel, A.; Llner, E.; Breithaupt, P.; Rgens, K.; Hoppe, H.-G.; Sommer, U.; Riebesell, U. Changes in biogenic carbon flow in response to sea surface warming. Proc. Natl. Acad. Sci. USA 2009, 106, 7067–7072. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Xing, X.G.; Liu, H.L.; Yuan, Y.P.; Wang, Y.T.; Chai, F. The variability of chlorophyll-a and its relationship with dynamic factors in the basin of the South China Sea. J. Marine Syst. 2019, 200, ARTN 103230. [Google Scholar] [CrossRef]
- Lui, H.-K.; Chen, C.-T.A.; Hou, W.-P.; Liau, J.-M.; Chou, W.-C.; Wang, Y.-L.; Wu, C.-R.; Lee, J.; Hsin, Y.-C.; Choi, Y.-Y. Intrusion of Kuroshio helps to diminish coastal hypoxia in the coast of northern South China Sea. Front. Mar. Sci. 2020, 7, 565952. [Google Scholar] [CrossRef]
- Palacz, A.P.; Xue, H.J.; Armbrecht, C.; Zhang, C.Y.; Chai, F. Seasonal and inter-annual changes in the surface chlorophyll of the South China Sea. J. Geophys. Res.-Oceans 2011, 116, C09015. [Google Scholar] [CrossRef]
- Li, Q.P.; Wang, Y.J.; Dong, Y.; Gan, J.P. Modeling long-term change of planktonic ecosystems in the northern South China Sea and the upstream Kuroshio Current. J. Geophys. Res.-Oceans 2015, 120, 3913–3936. [Google Scholar] [CrossRef]
- Gregg, W.W.; Rousseaux, C.S. Global ocean primary production trends in the modern ocean color satellite record (1998–2015). Environ. Res. Lett. 2019, 14, ARTN 124011. [Google Scholar] [CrossRef]
- Li, T.; Bai, Y.; He, X.Q.; Tao, B.Y.; Chen, X.Y.; Gong, F.; Wang, T.Y. Phytoplankton size classes changed oppositely over shelf and basin areas of the South China Sea during 2003–2018. Prog. Oceanogr. 2021, 191, ARTN 102496. [Google Scholar] [CrossRef]
- Li, T.; Bai, Y.; He, X.Q.; Chen, X.Y.; Chen, C.T.A.; Tao, B.Y.; Pan, D.L.; Zhang, X. The relationship between POC export efficiency and primary production: Opposite on the shelf and basin of the northern South China Sea. Sustainability 2018, 10, 3634. [Google Scholar] [CrossRef]
- Chen, Y.L.L. Spatial and seasonal variations of nitrate-based new production and primary production in the South China Sea. Deep-Sea Res. Part I 2005, 52, 319–340. [Google Scholar] [CrossRef]
- Shih, Y.Y.; Shiah, F.K.; Lai, C.C.; Chou, W.C.; Tai, J.H.; Wu, Y.S.; Lai, C.Y.; Ko, C.Y.; Hung, C.C. Comparison of primary production using in situ and satellite-derived values at the SEATS Station in the South China Sea. Front. Mar. Sci. 2021, 8, ARTN 747763. [Google Scholar] [CrossRef]
- He, X.Q.; Bai, Y.; Pan, D.L.; Huang, N.L.; Dong, X.; Chen, J.S.; Chen, C.T.A.; Cui, Q.F. Using geostationary satellite ocean color data to map the diurnal dynamics of suspended particulate matter in coastal waters. Remote Sens. Environ. 2013, 133, 225–239. [Google Scholar] [CrossRef]
- He, X.; Bai, Y.; Pan, D.; Chen, C.T.A.; Cheng, Q.; Wang, D.; Gong, F. Satellite views of the seasonal and interannual variability of phytoplankton blooms in the eastern China seas over the past 14 yr (1998–2011). Biogeosciences 2013, 10, 4721–4739. [Google Scholar] [CrossRef]
- He, X.Q.; Bai, Y.; Chen, C.T.A.; Hsin, Y.C.; Wu, C.R.; Zhai, W.D.; Liu, Z.L.; Gong, F. Satellite views of the episodic terrestrial material transport to the southern Okinawa Trough driven by typhoon. J. Geophys. Res.-Oceans 2014, 119, 4490–4504. [Google Scholar] [CrossRef]
- Rohan, S.K.; Kotwicki, S.; Kearney, K.A.; Schulien, J.A.; Laman, E.A.; Cokelet, E.D.; Beauchamp, D.A.; Britt, L.L.; Aydin, K.Y.; Zador, S.G. Using bottom trawls to monitor subsurface water clarity in marine ecosystems. Prog. Oceanogr. 2021, 194, ARTN 102554. [Google Scholar] [CrossRef]
- Wang, J.; Tong, Y.; Feng, L.; Zhao, D.; Zheng, C.M.; Tang, J. Satellite-observed decreases in water turbidity in the Pearl River Estuary: Potential linkage with sea-level rise. J. Geophys. Res.-Oceans 2021, 126, ARTN e2020JC016842. [Google Scholar] [CrossRef]
Mean | Changing Rate (%/yr) | Changing Rate (/Decade) | p Value | ||
---|---|---|---|---|---|
Bering Sea | SST | 4.34 °C | - | 0.62 °C | 0.06 |
Chl | 1.43 μg/L | −0.05 | −0.007 μg/L | 0.92 | |
SDD | 13.41 m | 0.32 | 0.432 m | 0.37 | |
Okhotsk Sea | SST | 4.35 °C | - | 0.408 °C | 0.38 |
Chl | 1.57 μg/L | 0.30 | 0.047 μg/L | 0.56 | |
SDD | 12.67 m | 0.36 | 0.457 m | 0.30 | |
South China Sea | SST | 27.97 °C | - | 0.089 °C | 0.52 |
Chl | 0.44 μg/L | −0.02 | −0.001 μg/L | 0.91 | |
SDD | 30.03 m | 0.10 | 0.289 m | 0.36 |
Time Scale | Mean Chl (μg/L) | Changing Rate (%/yr) | Changing Rate (μg/L/Decade) | p Value | ||
---|---|---|---|---|---|---|
Bering Sea | Phase 1 | 1998–2008 | 1.44 | 2.41 | 0.347 | 0.04 |
Phase 2 | 2009–2018 | 1.41 | −2.22 | −0.313 | 0.11 | |
1998–2018 | 1.43 | −0.05 | −0.007 | 0.92 | ||
Okhotsk Sea | Phase 1 | 1998–2008 | 1.55 | 2.46 | 0.383 | 0.06 |
Phase 2 | 2009–2018 | 1.59 | −1.93 | −0.307 | 0.21 | |
1998–2018 | 1.57 | 0.30 | 0.047 | 0.56 | ||
South China Sea | Phase 1 | 1998–2006 | 0.43 | 3.49 | 0.151 | <0.005 |
Phase 2 | 2007–2018 | 0.44 | −2.52 | −0.112 | <0.005 | |
1998–2018 | 0.44 | −0.02 | −0.001 | 0.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.-T.; Yu, S.; Huang, T.-H.; Bai, Y.; He, X.; Lui, H.-K. Temperature and Secchi Disk Depth Increase More Rapidly in the Subpolar Bering/Okhotsk Seas Than in the Subtropical South China Sea. Water 2023, 15, 98. https://doi.org/10.3390/w15010098
Chen C-T, Yu S, Huang T-H, Bai Y, He X, Lui H-K. Temperature and Secchi Disk Depth Increase More Rapidly in the Subpolar Bering/Okhotsk Seas Than in the Subtropical South China Sea. Water. 2023; 15(1):98. https://doi.org/10.3390/w15010098
Chicago/Turabian StyleChen, Chen-Tung (Arthur), Shujie Yu, Ting-Hsuan Huang, Yan Bai, Xianqiang He, and Hon-Kit Lui. 2023. "Temperature and Secchi Disk Depth Increase More Rapidly in the Subpolar Bering/Okhotsk Seas Than in the Subtropical South China Sea" Water 15, no. 1: 98. https://doi.org/10.3390/w15010098
APA StyleChen, C.-T., Yu, S., Huang, T.-H., Bai, Y., He, X., & Lui, H.-K. (2023). Temperature and Secchi Disk Depth Increase More Rapidly in the Subpolar Bering/Okhotsk Seas Than in the Subtropical South China Sea. Water, 15(1), 98. https://doi.org/10.3390/w15010098