Variability in the Chemical Composition of Spring Waters in the Postomia River Catchment (Northwest Poland)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection and Preparation
2.3. Chemical Analysis
2.4. Reagents and Certified Reference Material
2.5. Statistical Analysis
3. Results
3.1. Physico-Chemical Properties of Springs Water
3.2. Statistical Analysis
4. Discussion
5. Conclusions
- i
- Waters of springs in the investigated area are of calcium-hydrogen carbonate (Ca2+-HCO3−) and calcium-hydrogen carbonate-sulphur (Ca2+-HCO3−-SO42−) types.
- ii
- The study showed differences between valley springs and scarp-foot springs in terms of electrical conductivity and concentrations of F−, SO42−, NO3−, Mg2+, Ba, Zn, and U.
- iii
- Greater variability was observed between the physical and chemical conditions of the spring waters due to their location in terms of land cover. The pH values and the concentrations of Fe, Mo, Rb, and Th were higher than in agricultural areas, and the concentrations of F−, Cl−, K+, Na+, Mo, Sb, Se, and Sr were higher than in forested areas.
- iv
- Springs in agricultural areas had lower pH values than those in other areas, and higher NO3− concentrations.
- v
- Road traffic had a limited effect on the physical and chemical status of water in the springs. Only HCO3− values and SO42− concentrations were related to the distance from the road network. The concentrations of Cl−, SO42− and K+ were higher in the waters of springs located more than 50 m from the road network.
- vi
- Cluster analysis permitted dividing the springs into groups with similar concentrations of MEs, TEs, and REEs in water. The designation of these groups, however, was not related to spring type or land use.
- vii
- Principal component analysis did not permit the identification of a single dominant origin with regard to most of the studied elements. This suggests an interaction of different pollution sources.
- viii
- The analysis of REE concentrations in relation to chondrite concentrations indicates a disturbing pattern of presence in springs 14, 18, and 24, potentially resulting from local anthropogenic factors. Furthermore, the concentrations of REEs were at low levels, indicating their geogenic origin.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bajkiewicz-Grabowska, E.; Mikulski, Z. General Hydrology; Wydawnictwo Naukowe PWN: Warszawa, Poland, 1999; p. 313. (In Polish) [Google Scholar]
- Wieczysty, A. Engineering Hydrogeology; Państwowe Wydawnictwo Naukowe: Warszawa, Poland, 1982; pp. 619–623. (In Polish) [Google Scholar]
- Jokiel, P. Springs, their role in the environment and importance in water management. Folia Geogr. 1997, 2, 5–7. (In Polish) [Google Scholar]
- Pokładek, R.; Kowalczyk, T.; Orzepowski, W.; Pulikowski, K. Na, K, Ca and Mg concentrations in effluent water drained from agricultural catchment basins in Lower Silesia. J. Elem. 2012, 16, 467–479. [Google Scholar] [CrossRef]
- Wiśnios, M.; Kanownik, W.; Bogdał, A. Hydrochemistry of springs in the Ojców National Park. Acta Sci. Pol. Form. Circumiectus 2015, 14, 205–217. [Google Scholar] [CrossRef]
- Major, M.; Cieśliński, R. Impact of hydrometeorological conditions on the chemical composition of water in closed-basin kettle ponds: A comparative study of two postglacial areas. J. Elem. 2017, 22, 151–167. [Google Scholar] [CrossRef]
- Wolanin, A.; Żelazny, M. Seasonal changes in chemistry of Tatra spring waters in the Chochołowski and the Koscielski stream catchments in 2009. In Waters in Geographical Studies; Ciupa, T., Suligowski, R., Eds.; Uniwersytet Humanistyczno-Przyrodniczy w Kielcach: Kielce, Poland, 2010; pp. 347–355. (In Polish) [Google Scholar]
- Dynowska, I. Regional diversity of springs in Poland. Folia Geogr. 1986, 18, 5–30. (In Polish) [Google Scholar]
- Szumińska, D.; Fabianowska, K. Conditions of occurrence and dynamics of groundwater outflows in outwash plains based on the middle part of the Wda catchment. J. Health Sci. 2013, 3, 88–105. (In Polish) [Google Scholar]
- Maksymiuk, Z.; Moniewski, P. Hydrological and landscape role of springs in a small catchment in the western part of the Wzniesienie Łódzkie edge zone. Folia Geogr. 2000, 5, 67–87. (In Polish) [Google Scholar]
- Puk, K. Conditions of occurrence and the production and temperature regime for groundwater outflows in the Sierakowski Landscape Park and in the adjacent area. In Badania Fizjograficzne nad Polską Zachodnią; Wydawnictwo Poznańskiego Towarzystwa Przyjaciół Nauk: Poznań, Poland, 2005; pp. 137–143. (In Polish) [Google Scholar]
- Kazakis, N.; Vaudouris, K.S. Groundwater vulnerability and pollution risk assessment of porous aquifers to nitrate: Modifying the DRASTIC method using quantitative parameters. J. Hydrol. 2015, 525, 13–25. [Google Scholar] [CrossRef]
- Moosavirad, S.M.; Janardhana, M.R.; Khairy, H. Impact of anthropogenic activities on the chemistry and quality of groundwater: A case study from a terrain near Zarand City, Kerman Province, SE Iran. Environ. Earth Sci. 2013, 69, 2451–2467. [Google Scholar] [CrossRef]
- Amiri, V.; Sohrabi, N.; Dadgar, M.A. Evaluation of groundwater chemistry and its suitability for drinking and agricultural uses in the Lenjanat plain central Iran. Environ. Earth Sci. 2015, 74, 6163–6176. [Google Scholar] [CrossRef]
- Szczucińska, A. Spring water chemistry in a formerly glaciated area of western Poland the contribution of natural and anthropogenic factors. Environ. Earth Sci. 2016, 75, 712. [Google Scholar] [CrossRef] [Green Version]
- Rao, N.S.; Rao, P.S.; Reddy, G.V.; Nagamani, M.; Vidyasagar, G.; Satyanarayana, N.L.V.V. Chemical characteristics of groundwater and assessment of groundwater quality in Varaha River Basin, Visakhapatnam District, Andhra Pradesh, India. Environ. Monit. Assess. 2012, 184, 5189–5214. [Google Scholar] [CrossRef] [PubMed]
- Fujita, S.; Takahashi, A.; Weng, J.H.; Huang, L.F.; Kim, H.K.; Li, C.K.; Huang, F.T.C.; Jeng, F.T. Precipitation chemistry in East Asia. Atmos. Environ. 2000, 34, 525–537. [Google Scholar] [CrossRef]
- Hayashi, M.; Quinton, W.L.; Pietroniro, J.; Gibson, J.J. Hydrologic functions of wetlands in a discontinuous permafrost basin indicated by isotopic and chemical signatures. J. Hydrol. 2004, 296, 81–97. [Google Scholar] [CrossRef]
- Said-Pullicino, D.; Kaiser, K.; Guggenberger, G.; Gigliotti, G. Changes in the chemical composition of water-extractable organic matter during composting: Distribution between stable and labile organic matter pools. Chemosphere 2007, 66, 2166–2176. [Google Scholar] [CrossRef]
- Satora, S. Diversity of chemical composition of flysch Carpathian groundwater. Infrastrukt. Ekol. Teren. Wiej. 2009, 6, 157–160. (In Polish) [Google Scholar]
- Subramani, T.; Rajmohan, N.; Elango, L. Groundwater geochemistry and identification of hydrogeochemical processes in a hard rock region, Southern India. Environ. Monit. Assess. 2010, 162, 123–137. [Google Scholar] [CrossRef]
- Kozłowski, M.; Komisarek, J. Groundwater chemistry and hydrogeochemical processes in a soil catena of the Poznań Lakeland, central Poland. J. Elem. 2017, 22, 681–695. [Google Scholar] [CrossRef]
- Merk, M.; Goeppert, N.; Goldscheider, N. Processes controlling spatial and temporal dynamics of spring water chemistry in the Black Forest National Park. Sci. Total Environ. 2020, 723, 137742. [Google Scholar] [CrossRef]
- Meng, F.; Liang, X.; Xiao, C.; Wang, G. Hydrochemical characteristics and identification of pollution ions of the springs in the south of Yanbian City, China. Environ. Geochem. Health 2022, 44, 2215–2233. [Google Scholar] [CrossRef]
- Thapa, B.; Pant, R.R.; Thakuri, S.; Pond, G. Assessment of spring water quality in Jhimruk River Watershed, Lesser Himalaya, Nepal. Environ. Earth Sci. 2020, 79, 1–14. [Google Scholar] [CrossRef]
- Gao, Z.; Liu, J.; Xu, X.; Wang, Q.; Wang, M.; Feng, J.; Fu, T. Temporal variations of spring water in karst areas: A case study of Jinan Spring Area, Northern China. Water 2020, 12, 1009. [Google Scholar] [CrossRef] [Green Version]
- Ansari, M.; Deodhar, A.; Kumar, U.S. Modeling of geochemical processes and multivariate statistical analysis for hydrochemical assessment of spring water of the Outer Himalaya, India. Environ. Earth Sci. 2019, 78, 1–17. [Google Scholar] [CrossRef]
- Bogdał, A.; Kowalik, T.; Kanownik, W.; Ostrowski, K.; Wiśnios, M. Assessment of physico-chemical status of meteoric water and outflow from the Wolninka stream catchment. Gaz Woda Tech. Sanit. 2012, 8, 362–365. (In Polish) [Google Scholar]
- Siwek, J. Springs in the Catchment Areas of Prądnik, Dłubnia and Szreniawa. Natural and Anthropogenic Conditioning of Water Quality; Uniwersytet Jagielloński: Kraków, Poland, 2004; pp. 7–98. (In Polish) [Google Scholar]
- Baścik, M.; Chełmicki, W.; Korska, A.; Pociask-Karteczka, J.; Siwek, J. Springs of the Krakowsko-Wieluńska and Miechowska Uplands. Changes in the Years 1973–2000; Uniwersytet Jagielloński: Kraków, Poland, 2001; pp. 7–107. (In Polish) [Google Scholar]
- Policht-Latawiec, A.; Kanownik, W.; Łukasik, D. Impact of point pollutions on water quality in the San River. Infrastrukt. Ekol. Teren. Wiej. 2013, 4, 253–269. (In Polish) [Google Scholar]
- Al-Khashman, O.A.; Jaradat, A.Q. Assessment of groundwater quality and its suitability for drinking and agricultural uses in arid environment. Stoch. Environ. Res. Risk Assess. 2014, 28, 743–753. [Google Scholar] [CrossRef]
- Naseems, S.; Hamza, S.; Bashir, E. Groundwater geochemistry of Winder agricultural farms, Balochistan, Pakistan and assessment for irrigation water quality. Eur. Water 2010, 31, 21–32. [Google Scholar]
- Abdesselam, S.; Halitim, A.; Jan, A.; Trolard, F.; Bourrie, G. Anthropogenic contamination of groundwater with nitrate in arid region: Case study of southern Hodna (Algeria). Environ. Earth. Sci. 2013, 70, 2129–2141. [Google Scholar] [CrossRef]
- Shirazi, S.M.; Adham, M.I.; Zardari, N.H.; Ismail, Z.; Imran, H.M.; Mangrio, M.A. Groundwater quality and hydrogeological characteristics of Malacca state in Malaysia. J. Water Land Dev. 2015, 24, 11–19. [Google Scholar] [CrossRef] [Green Version]
- Jasik, M.; Małek, S.; Żelazny, M. Effect of water stage and tree stand composition on spatiotemporal differentiation of spring water chemistry draining Carpathian flysch slopes (Gorce Mts). Sci. Total Environ. 2017, 599, 1630–1637. [Google Scholar] [CrossRef]
- Uliasz-Misiak, B.; Winid, B.; Lewandowska-Śmierzchalska, J.; Matuła, R. Impact of road transport on groundwater quality. Sci. Total Environ. 2022, 824, 153804. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Nie, L.; Xu, Y.; Du, C.; Zhang, T.; Wang, Y. Effects of highway-related pollutant on the groundwater quality of turfy swamps in the Changbai Mountain Area. Int. J. Environ. Res. Public Health 2018, 15, 1652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jamshidi, A.; Goodarzi, A.R.; Razmara, P. Long-term impacts of road salt application on the groundwater contamination in urban environments. Environ. Sci. Pollut. Res. 2020, 27, 30162–30177. [Google Scholar] [CrossRef]
- Pisarska-Jamroży, M. Physiographic characteristics and genesis of the Noteć-Warta proglacial stream valley. In Nature and Cultural Value of the Wista-Odra Waterway; Przyroda i Turystyka Regionu Pomorza i Kujaw; Wydawnictwo LOGO: Bydgoszcz, Poland, 2008; Volume II. (In Polish) [Google Scholar]
- Wacławski, M. Engineering Geology and Hydrogeology, Part II. Hydrogeology; Wydawnictwo Politechniki Krakowskiej: Kraków, Poland, 1999; pp. 178–184. (In Polish) [Google Scholar]
- Walna, B.; Siepak, M. Heavy metals: Their pathway from the ground, groundwater and springs to Lake Góreckie (Poland). Environ. Monit. Assess. 2012, 184, 3315–3340. [Google Scholar] [CrossRef] [PubMed]
- Siepak, M.; Sojka, M. Application of multivariate statistical approach to identify trace elements sources in surface waters: A case study of Kowalskie and Stare Miasto reservoirs, Poland. Environ. Monit. Assess. 2017, 189, 364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sojka, M.; Siepak, M.; Pietrewicz, K. Concentration of Rare Earth Elements in surface water and bottom sediments in Lake Wadąg, Poland. J. Elem. 2019, 24, 125–140. [Google Scholar]
- Sojka, M.; Choiński, A.; Ptak, M.; Siepak, M. The variability of lake water chemistry in the Bory Tucholskie National Park (northern Poland). Water 2020, 12, 394. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, N. Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. Geochim. Cosmochim. Acta 1974, 38, 757–775. [Google Scholar] [CrossRef]
- Tabachnick, B.; Fidell, L. Using Multivariate Statistics; Pearson: Boston, MA, USA, 2007; 815p. [Google Scholar]
- Elliott, M.; Stettler, N. Using a mixture model for multiple imputation in the presence of outliers: The ‘Healthy for life’ project. Appl. Statist. 2007, 56 Pt 1, 63–78. [Google Scholar] [CrossRef]
- Sojka, M.; Siepak, M.; Zioła, A.; Frankowski, M.; Murat Błażejewska, S.; Siepak, J. Application of multivariate statistical techniques to evaluation of water quality in the Mała Wełna River (Western Poland). Environ. Monit. Assess. 2008, 147, 159–170. [Google Scholar] [CrossRef]
- Ptak, M.; Sojka, M.; Choiński, A.; Nowak, B. Effect of environmental conditions and morphometric parameters on surface water temperature in Polish lakes. Water 2018, 10, 580. [Google Scholar] [CrossRef] [Green Version]
- Glińska-Lewczuk, K.; Gołaś, I.; Koc, J.; Gotkowska-Płachta, A.; Harnisz, M.; Rochwerge, A. The impact of urban areas on the water quality gradient along a lowland river. Environ. Monit. Assess. 2016, 188, 624. [Google Scholar] [CrossRef] [Green Version]
- Sojka, M.; Jaskuła, J.; Siepak, M. Heavy Metals in Bottom Sediments of Reservoirs in the Lowland Area of Western Poland: Concentrations, Distribution, Sources and Ecological Risk. Water 2019, 11, 56. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.W.; Lin, K.H.; Kuo, Y.M. Application of factor analysis in the assessment of groundwater quality in blackfoot disease in Taiwan. Sci. Total Environ. 2003, 313, 77–89. [Google Scholar] [CrossRef]
- Mazurek, M.; Dobrowolski, R.; Osadowski, Z. Geochemistry of deposits from spring-fed fens in West Pomerania (Poland) and its significance for palaeoenvironmental reconstruction. Géomorphologie Relief Process. Environ. 2014, 20, 323–342. [Google Scholar] [CrossRef] [Green Version]
- Nowicki, Z.; Sadurski, A. Hydrogeological aspects of Quaternary sediments in Poland. Państwowy Inst. Geol.-Państwowy Inst. Badaw. 2010, 441, 123–229. [Google Scholar]
- Moniewski, P.; Stolarska, M. Natural and anthropogenic impact factors on basic physicochemical characteristics of water in a small catchment of the suburban area of Łódź. Woda-Sr.-Obsz. Wiej. 2007, 1, 105–122. (In Polish) [Google Scholar]
- Górniak, A.; Jekatierynczuk-Rudczyk, E.; Dobrzyń, P. Hydrochemistry of three dystrophic lakes in Northeastern Poland. Acta Hydrochim. Et Hydrobiol. 1999, 27, 12–18. [Google Scholar] [CrossRef]
- Chomutowska, H.; Wilamowski, K. Research on the physico-chemical status of waters in the Bialowieza Forest. In Ochrona Środowiska i Zasobów Naturalnych; IOŚ: Warszawa, Poland, 2012; Volume 54, pp. 190–199. (In Polish) [Google Scholar]
- Chełmicki, W. Water Resources, Degradation, Protection; Wydawnictwo Naukowe PWN: Warszawa, Poland, 2001. (In Polish) [Google Scholar]
- Kowalski, J. Hydrogeology with Basics of Geology; Wydawnictwo Uniwersytetu Przyrodniczego: Wrocław, Poland, 2007; pp. 90–134. (In Polish) [Google Scholar]
- Lee, B.D.; Jeong, C.H.; Lee, Y.C.; Lee, Y.J.; Yang, J.H.; Choo, C.O.; Hong, J.W. Statistical analysis and thermodynamic equilibrium modelling for chemical composition of groundwater and spring water at Jeju Island, South Korea. Water 2020, 12, 777. [Google Scholar] [CrossRef] [Green Version]
- Macioszczyk, A.; Dobrzyński, D. Hydrogeochemistry of the Active Groundwater Exchange Zone; Wydawnictwo PWN: Warszawa, Poland, 2002; pp. 258–282. (In Polish) [Google Scholar]
- Grzebisz, W.; Przygocka-Cyna, K.; Szczepaniak, W.; Diatta, J.; Potarzycki, J. Sodesium as a nutritional tool of nitrogen efficient management—Plant production and environment. J. Elem. 2010, 15, 771–788. [Google Scholar]
- Niedzielski, P.; Siepak, J.; Siepak, M.; Kraska, M. Occurrence of arsenic, antimony and selenium in surface waters of Drawieński National Park. Pol. J. Environ. Stud. 2002, 11, 41–45. [Google Scholar]
- Niemiec, M. Accumulation of zinc in water, sediments and bleak fish (Alburnus alburnus L.) in the ecosystem of the Dunajec River. J. Elem. 2016, 21, 173–184. [Google Scholar] [CrossRef]
- Frankowski, M.; Sojka, M.; Zioła, A.; Siepak, M.; Murat-Błażejewska, S. Distribution of heavy metals in the Mała Wełna River system (Western Poland). Oceanol. Hydrobiol. Stud. 2009, 2, 1–11. [Google Scholar] [CrossRef]
- Chudaev, O.V.; Chelnokov, G.A.; Bragin, I.V.; Kharitonova, N.A.; Blokhin, M.G.; Aleksandrov, I.A. REE fractionation in the rivers of eastern and southern Sikhote Alin with natural and anthropogenic anomalies. Russ. J. Pac. Geol. 2015, 9, 428–438. [Google Scholar] [CrossRef]
- Noack, C.W.; Dzombak, D.A.; Karamalidis, A.K. Rare earth element distributions andtrends in natural waters with a focus on groundwater. Environ. Sci. Technol. 2014, 48, 4317–4326. [Google Scholar] [CrossRef]
- Kulaksız, S.; Bau, M. Anthropogenic dissolved and colloid/nanoparticle-bound samarium, lanthanum and gadolinium in the Rhine River and the impending destruction of the natural rare earth element distribution in rivers. Earth Planet. Sci. Lett. 2013, 362, 43–50. [Google Scholar] [CrossRef]
Parameters | Units | LOD | Minimum | Lower Quartile | Mean | Median | Upper Quartile | Maximum | Standard Deviation | Skewness | |
---|---|---|---|---|---|---|---|---|---|---|---|
Physical parameters | T | [°C] | - | 7.5 | 9.1 | 9.3 | 9.3 | 9.8 | 10.0 | 0.6 | −1.2 |
EC | [μS/cm] | - | 284 | 328 | 433 | 419 | 548 | 602 | 109 | 0.2 | |
pH | [-] | - | 6.42 | 7.60 | 7.67 | 7.69 | 7.79 | 8.90 | 0.38 | −0.11 | |
Macro elements | Alkalinity | [mval/L] | - | 1.8 | 2.8 | 3.1 | 3.0 | 3.6 | 4.6 | 0.7 | 0.2 |
Hardness | [mg/L] | - | 160.9 | 197.3 | 219.4 | 224.4 | 245.4 | 274.1 | 33.2 | −0.09 | |
CODMn | - | 2.00 | 2.75 | 4.44 | 4.25 | 5.60 | 7.50 | 1.73 | 0.20 | ||
HCO3− | - | 109.8 | 167.8 | 188.4 | 183.0 | 219.6 | 280.6 | 42.2 | 0.16 | ||
F− | 0.001 | 0.07 | 0.09 | 0.11 | 0.11 | 0.14 | 0.18 | 0.03 | 0.62 | ||
Cl− | 0.011 | 4.72 | 9.61 | 13.81 | 11.4 | 15.5 | 32.3 | 7.65 | 1.42 | ||
SO42− | 0.02 | 8.47 | 28.5 | 55.8 | 53.8 | 84.7 | 119.0 | 31.1 | 0.25 | ||
NO2− | 0.001 | 0.003 | 0.008 | 0.049 | 0.011 | 0.020 | 0.441 | 0.109 | 3.24 | ||
NO3− | 0.001 | 0.095 | 0.747 | 7.29 | 1.21 | 7.24 | 55.6 | 12.9 | 2.68 | ||
NH4+ | 0.004 | 0.132 | 0.443 | 0.636 | 0.603 | 0.740 | 1.84 | 0.347 | 1.70 | ||
PO43− | 0.01 | 0.07 | 0.09 | 0.11 | 0.10 | 0.12 | 0.21 | 0.04 | 1.33 | ||
K+ | 0.06 | 0.30 | 0.93 | 2.02 | 1.41 | 2.41 | 6.60 | 1.60 | 1.70 | ||
Na+ | 0.26 | 2.55 | 4.81 | 6.42 | 5.51 | 7.37 | 15.1 | 2.97 | 1.52 | ||
Mg2+ | 0.01 | 1.91 | 5.52 | 6.29 | 6.72 | 7.64 | 11.3 | 2.23 | −0.38 | ||
Ca2+ | 0.19 | 60.7 | 68.4 | 77.5 | 78.1 | 84.7 | 98.6 | 10.9 | 0.24 | ||
Fe | 0.06 × 10−3 | 0.05 | 0.63 | 3.98 | 1.34 | 4.67 | 25.3 | 5.98 | 2.26 | ||
Mn | 0.01 × 10−3 | 0.01 | 0.03 | 0.26 | 0.06 | 0.17 | 2.96 | 0.63 | 3.71 | ||
Trace elements | Al | [µg/L] | 0.07 | 4.67 | 15.6 | 51.5 | 20.2 | 54.5 | 351.5 | 72.6 | 3.02 |
As | 0.01 | 0.68 | 1.09 | 2.53 | 1.60 | 3.16 | 12.6 | 2.54 | 2.80 | ||
Cd | 0.0004 | 0.0009 | 0.003 | 0.021 | 0.012 | 0.032 | 0.088 | 0.023 | 1.43 | ||
Co | 0.0007 | 0.09 | 0.15 | 0.28 | 0.20 | 0.26 | 1.35 | 0.25 | 3.24 | ||
Cr | 0.007 | 0.02 | 0.10 | 0.21 | 0.15 | 0.25 | 0.74 | 0.17 | 1.72 | ||
Cu | 0.04 | 0.57 | 0.87 | 2.90 | 2.36 | 4.38 | 9.77 | 2.45 | 1.23 | ||
Li | 0.001 | 0.48 | 1.14 | 2.89 | 2.34 | 3.56 | 12.1 | 2.51 | 2.16 | ||
Mo | 0.02 | <0.02 | 0.19 | 0.43 | 0.35 | 0.45 | 1.86 | 0.43 | 1.99 | ||
Ni | 0.01 | 0.65 | 0.85 | 1.34 | 1.27 | 1.60 | 2.64 | 0.58 | 0.93 | ||
Pb | 0.002 | 0.22 | 0.50 | 1.39 | 1.07 | 1.88 | 4.62 | 1.14 | 1.50 | ||
Rb | 0.0008 | 0.37 | 0.69 | 1.75 | 0.82 | 1.26 | 13.8 | 2.78 | 3.63 | ||
Sb | 0.004 | 0.01 | 0.06 | 0.13 | 0.08 | 0.12 | 1.22 | 0.22 | 4.60 | ||
Se | 0.01 | 0.08 | 0.14 | 0.25 | 0.22 | 0.38 | 0.53 | 0.14 | 0.70 | ||
Sr | 0.001 | 49.5 | 66.8 | 95.5 | 82.8 | 113.9 | 200.4 | 40.3 | 1.16 | ||
V | 0.001 | 0.11 | 0.30 | 0.71 | 0.55 | 0.92 | 3.64 | 0.70 | 2.98 | ||
Zn | 0.03 | 1.85 | 4.63 | 27.7 | 9.97 | 33.0 | 163.4 | 39.9 | 2.10 | ||
Rare-earth elements | La | 0.001 | 0.005 | 0.043 | 0.280 | 0.077 | 0.289 | 3.251 | 0.609 | 4.60 | |
Ce | 0.0003 | 0.020 | 0.098 | 0.579 | 0.176 | 0.634 | 6.10 | 1.16 | 4.29 | ||
Pr | 0.0003 | 0.001 | 0.010 | 0.064 | 0.019 | 0.063 | 0.720 | 0.136 | 4.50 | ||
Nd | 0.001 | 0.008 | 0.045 | 0.254 | 0.079 | 0.247 | 2.86 | 0.538 | 4.52 | ||
Sm | 0.003 | 0.001 | 0.008 | 0.050 | 0.017 | 0.048 | 0.552 | 0.104 | 4.47 | ||
Eu | 0.0006 | 0.0007 | 0.008 | 0.020 | 0.010 | 0.018 | 0.178 | 0.033 | 4.33 | ||
Gd | 0.001 | 0.002 | 0.009 | 0.055 | 0.014 | 0.052 | 0.662 | 0.124 | 4.64 | ||
Tb | 0.001 | <0.001 | <0.001 | 0.007 | 0.002 | 0.007 | 0.088 | 0.017 | 4.65 | ||
Dy | 0.001 | <0.001 | 0.007 | 0.042 | 0.013 | 0.036 | 0.487 | 0.091 | 4.62 | ||
Ho | 0.0002 | 0.0002 | 0.0010 | 0.008 | 0.002 | 0.0072 | 0.0996 | 0.0187 | 4.72 | ||
Er | 0.0007 | 0.0010 | 0.0042 | 0.023 | 0.007 | 0.0216 | 0.2822 | 0.0527 | 4.72 | ||
Tm | 0.0007 | <0.0007 | <0.0007 | 0.003 | 0.0008 | 0.0024 | 0.0359 | 0.0067 | 4.88 | ||
Lu | 0.0007 | <0.0007 | <0.0007 | 0.003 | 0.0007 | 0.0024 | 0.0330 | 0.0062 | 4.69 | ||
Th | 0.001 | <0.001 | 0.004 | 0.023 | 0.013 | 0.030 | 0.119 | 0.027 | 2.06 | ||
U | 0.0008 | 0.009 | 0.112 | 0.339 | 0.233 | 0.462 | 1.30 | 0.312 | 1.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siepak, M.; Lewandowska, A.; Sojka, M. Variability in the Chemical Composition of Spring Waters in the Postomia River Catchment (Northwest Poland). Water 2023, 15, 157. https://doi.org/10.3390/w15010157
Siepak M, Lewandowska A, Sojka M. Variability in the Chemical Composition of Spring Waters in the Postomia River Catchment (Northwest Poland). Water. 2023; 15(1):157. https://doi.org/10.3390/w15010157
Chicago/Turabian StyleSiepak, Marcin, Agnieszka Lewandowska, and Mariusz Sojka. 2023. "Variability in the Chemical Composition of Spring Waters in the Postomia River Catchment (Northwest Poland)" Water 15, no. 1: 157. https://doi.org/10.3390/w15010157