The Structuring Effects of Salinity and Nutrient Status on Zooplankton Communities and Trophic Structure in Siberian Lakes
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Physical and Chemical Characteristics of the Study Lakes
3.2. Food Web Components
3.2.1. Phytoplankton
3.2.2. Zooplankton and Fish
4. Discussion
4.1. Physico-Chemical and Ecological Characteristics of Study Lakes
4.2. Food Web Structure and Interactions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Lake Category | Lake | The Concentration of the Element or Compound (Mean ± SE), mg L−1 | |||||||
K | Mg | Na | S | Cl | SO4 | CO3 | HCO3 | ||
S | Tus | 174.5 ± 20.1 | 5017.9 ± 477.1 | 12,887.9 ± 1714.8 | 7119.2 ± 588.8 | 14,826.8 ± 1493.7 | 20,580.2 ± 994.0 | 146.6 ± 32.0 | 867.0 ± 122.6 |
Slabitelnoe | 101.1 ± 12.6 | 1627.9 ± 168.8 | 11,262.8 ± 668.4 | 6454.4 ± 442.7 | 4813.4 ± 490.0 | 14,115.0 ± 2130.5 | 246.7 ± 39.6 | 951.9 ± 98.8 | |
Krasnenkie-1 | 38.1 ± 4.3 | 598.6 ± 67.3 | 8795.6 ± 973.9 | 4714.7 ± 478.2 | 3633.0 ± 450.8 | 12,222.2 ± 1116.9 | 36.6 ± 13.5 | 551.5 ± 71.1 | |
Krasnenkie-2 | 71.1 ± 7.9 | 593.0 ± 61.0 | 8780.9 ± 1087.8 | 5229.3 ± 632.3 | 1398.3 ± 80.9 | 12,804.3 ± 1094.2 | 108.9 ± 17.4 | 716.2 ± 71.9 | |
Shunet | 34.1 ± 3.1 | 1898.5 ± 246.2 | 4006.4 ± 376.2 | 2376.4 ± 126.9 | 4294.5 ± 558.1 | 4687.5 ± 616.6 | 23.6 ± 7.2 | 547.5 ± 122.4 | |
Uchum | 41.4 ± 1.2 | 249.8 ± 16.3 | 6052.9 ± 396.8 | 2981.1 ± 72.2 | 2105.3 ± 79.0 | 5945.0 ± 936.9 | 464.6 ± 49.6 | 1464.3 ± 257.1 | |
Shira | 35.3 ± 0.6 | 1148.0 ± 61.5 | 3272.3 ± 50.5 | 2552.4 ± 114.2 | 1939.7 ± 48.9 | 4612.5 ± 1019.9 | 138.5 ± 22.3 | 633.0 ± 76.0 | |
B | Bele small | 46.2 ± 2.6 | 842.2 ± 49.7 | 2609.0 ± 71.8 | 1919.0 ± 21.7 | 1255.3 ± 58.5 | 4502.5 ± 918.9 | 227.1 ± 47.3 | 1168.4 ± 282.8 |
Dzhirim | 20.0 ± 3.0 | 211.6 ± 11.7 | 3021.9 ± 185.9 | 1029.0 ± 56.2 | 2012.5 ± 69.1 | 2466.7 ± 66.7 | 179.6 ± 19.9 | 1187.1 ± 186.3 | |
Bele large | 34.4 ± 4.9 | 575.5 ± 74.9 | 1747.2 ± 248.9 | 1277.9 ± 225.5 | 802.4 ± 31.1 | 4200.2 ± 562.0 | 139.5 ± 25.6 | 647.3 ± 78.4 | |
Utichye-3 | 28.2 ± 5.2 | 392.8 ± 58.7 | 993.6 ± 6.3 | 536.4 ± 134.3 | 805.0 ± 175.0 | 1630.0 ± 130.0 | 57.6 ± 33.6 | 898.8 ± 449.9 | |
Utichye-1 | 34.6 ± 3.1 | 417.1 ± 31.6 | 1157.3 ± 128.4 | 597.2 ± 87.9 | 735.0 ± 105.3 | 1282.3 ± 351.2 | 139.5 ± 50.9 | 1171.2 ± 241.3 | |
Vlasyevo | 26.7 ± 5.0 | 302.5 ± 39.9 | 629.1 ± 83.6 | 338.9 ± 41.0 | 414.2 ± 69.4 | 980.0 ± 101.0 | 123.9 ± 7.0 | 636.0 ± 67.0 | |
MS | Sukhoye | 9.3 ± 0.7 | 48.5 ± 2.8 | 551.6 ± 20.6 | 156.6 ± 7.7 | 117.8 ± 18.4 | 409.5 ± 48.5 | 92.3 ± 16.3 | 833.6 ± 70.0 |
Krasnenkoe | 19.2 ± 2.1 | 102.1 ± 5.5 | 353.1 ± 30.2 | 165.6 ± 15.5 | 228.7 ± 32.1 | 469.3 ± 41.6 | 98.2 ± 23.8 | 192.0 ± 76.4 | |
Chalaskol | 14.1 ± 0.8 | 94.8 ± 3.9 | 168.7 ± 2.7 | 87.1 ± 10.5 | 59.3 ± 9.6 | 302.8 ± 44.2 | 66.3 ± 21.2 | 455.3 ± 59.2 | |
Matarak | 8.7 ± 0.2 | 87.3 ± 1.9 | 153.5 ± 3.5 | 72.7 ± 5.9 | 44.3 ± 5.0 | 172.5 ± 48.8 | 35.7 ± 4.7 | 411.4 ± 63.8 | |
F | Itkul | 4.7 ± 0.8 | 57.9 ± 12.3 | 74.8 ± 34.3 | 50.6 ± 28.0 | 43.4 ± 13.9 | 160.5 ± 65.2 | 21.8 ± 9.3 | 230.7 ± 6.7 |
Fyrkal | 1.8 ± 0.2 | 42.9 ± 4.5 | 34.2 ± 7.5 | 17.6 ± 5.6 | 14.6 ± 2.5 | 25.4 ± 1.9 | 25.5 ± 9.1 | 171.3 ± 36.4 | |
Kiprino | 0.4 ± 0.1 | 6.3 ± 0.7 | 32.1 ± 14.2 | 14.7 ± 5.5 | 18.3 ± 2.8 | 44.2 ± 20.2 | 11.6 ± 7.6 | 47.4 ± 5.9 | |
Correlation with dry residual | R2 = 0.82 | R2 = 0.71 | R2 = 0.87 | R2 = 0.88 | R2 = 0.80 | R2 = 0.90 | R2 = 0.08 | R2 = 0.09 | |
p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p = 0.017 | p = 0.010 |
References
- Comín, F.A.; Rodó, X.; Comín, P. Lake Gallocanta (Aragón, NE Spain): A paradigm of fluctuations at different scales of time. Limnetica 1992, 8, 79–86. [Google Scholar] [CrossRef]
- Echaniz, S.A.; Vignatti, A.M. Seasonal variation and influence of turbidity and salinity on the zooplankton of a saline lake in central Argentina. Lat. Am. J. Aquat. Res. 2011, 39, 306–315. [Google Scholar] [CrossRef]
- Hammer, U.T. The effects of climate change on the salinity, water levels and biota of Canadian prairie saline lakes. Verh. Int. Ver. Theor. Angew. Limnol. 1990, 24, 321–326. [Google Scholar] [CrossRef]
- Zhang, E.; Shen, J.; Wang, S.; Yin, Y.; Zhu, Y.; Xia, W. Quantitative reconstruction of the paleosalinity at Qinghai Lake in the past 900 years. Chin. Sci. Bull. 2004, 49, 730–734. [Google Scholar] [CrossRef]
- Yihdego, Y.; Webb, J. Modelling of seasonal and long–term trends in lake salinity in southwestern Victoria. Australas. J. Environ. Manag. 2012, 112, 149–159. [Google Scholar] [CrossRef]
- Williams, W.D. Salinity as a determinant of the structure of biological communities in salt lakes. Hydrobiologia 1998, 381, 191–201. [Google Scholar] [CrossRef]
- Zadereev, E.; Lipka, O.; Karimov, B.; Krylenko, M.; Elias, V.; Pinto, I.S.; Alizade, V.; Anker, Y.; Feest, A.; Kuznetsova, D.; et al. Overview of past, current and future ecosystem and biodiversity trends of inland saline lakes of Europe and Central Asia. Inland Waters 2020, 10, 438–452. [Google Scholar] [CrossRef]
- Jeppesen, E.; Brucet, S.; Naselli–Flores, L.; Papastergiadou, E.; Stefanidis, K.; Noges, T.; Noges, P.; Attayde, J.L.; Zohary, T.; Coppens, J.; et al. Ecological impacts of global warming and water abstraction on lakes and reservoirs due to changes in water level and related changes in salinity. Hydrobiologia 2015, 750, 201–227. [Google Scholar] [CrossRef]
- Gutierrez, M.F.; Tavşanoğlu, Ü.N.; Vidal, N.; Yu, J.; Teixeira–de Mello, F.; Çakiroglu, A.I.; He, H.; Liu, Z.; Jeppesen, E. Salinity shapes zooplankton communities and functional diversity and has complex effects on size structure in lakes. Hydrobiologia 2018, 813, 237–255. [Google Scholar] [CrossRef]
- Jeppesen, E.; Nõges, P.; Davidson, T.A.; Haberman, J.; Nõges, T.; Blank, K.; Lauridsen, T.L.; Søndergaard, M.; Sayer, C.; Laugaste, R.; et al. Zooplankton as indicators in lakes – a plea for including zooplankton in the ecological quality assessment of lakes according to the European Water Framework Directive (WFD). Hydrobiologia 2011, 676, 270–297. [Google Scholar] [CrossRef]
- Lin, Q.; Xu, L.; Liu, Z.; Jeppesen, E.; Han, B.P. Responses of trophic structure and zooplankton community to salinity and temperature in Tibetan Lakes: Implication for the effect of climate warming. Water Res. 2017, 124, 618–629. [Google Scholar] [CrossRef]
- Afonina, E.Y.; Tashlykova, N.A. Fluctuations in plankton community structure of endorheic soda lakes of southeastern Transbaikalia (Russia). Hydrobiologia 2020, 847, 1383–1398. [Google Scholar] [CrossRef]
- Shadrin, N.V.; Anufriieva, E.V. Structure and Trophic Relations in Hypersaline Environments. Biol. Bull. Rev. 2020, 10, 48–56. [Google Scholar] [CrossRef]
- Zsuga, K.; Inelova, Z.; Boros, E. Zooplankton Community Structure in Shallow Saline Steppe Inland Waters. Water 2021, 13, 1164. [Google Scholar] [CrossRef]
- Horváth, Z.; Vad, C.F.; Tóth, A.; Zsuga, K.; Boros, E.; Vörös, L.; Ptacnik, R. Opposing patterns of zooplankton diversity and functioning along a natural stress gradient: When the going gets tough, the tough get going. Oikos 2014, 123, 461–471. [Google Scholar] [CrossRef] [Green Version]
- Moffett, E.R.; Baker, H.K.; Bonadonna, C.C.; Shurin, J.B.; Symons, C.C. Cascading effects of freshwater salinization on plankton communities in the Sierra Nevada. Limnol. Oceanogr. Lett. 2020. [CrossRef]
- Cunillera–Montcusí, D.; Beklioğlu, M.; Cañedo–Argüelles, M.; Jeppesen, E.; Ptacnik, R.; Amorim, C.A.; Arnott, S.E.; Berger, S.A.; Brucet, S.; Dugan, H.A.; et al. Freshwater salinization: A research agenda for a saltier world. Trends Ecol. Evol. 2022, 37, 440–453. [Google Scholar] [CrossRef]
- Arcifa, M.S.; Northcote, T.G.; Froehlich, O. Fish–zooplankton interactions and their effects on water quality of a tropical Brazilian reservoir. Hydrobiologia 1986, 139, 49–58. [Google Scholar] [CrossRef]
- Ger, K.A.; Naus–Wiezer, S.; De Meester, L.; Lürling, M. Zooplankton grazing selectivity regulates herbivory and dominance of toxic phytoplankton over multiple prey generations. Limnol. Oceanogr. 2019, 64, 1214–1227. [Google Scholar] [CrossRef]
- Leitao, E.; Ger, K.A.; Panosso, R. Selective Grazing by a Tropical Copepod (Notodiaptomus iheringi) Facilitates Microcystis Dominance. Front. Microbiol. 2018, 9, 301. [Google Scholar] [CrossRef]
- Kasprzak, P.H.; Lathrop, R.C. Influence of two Daphnia species on summer phytoplankton assemblages from eutrophic lakes. J. Plankton Res. 1997, 19, 1025–1044. [Google Scholar] [CrossRef] [Green Version]
- Hambright, K.D.; Zohary, T.; Easton, J.; Azoulay, B.; Fishbein, T. Effects of zooplankton grazing and nutrients on the bloom–forming, N2–fixing cyanobacterium Aphanizomenon in lake Kinneret. J. Plankton Res. 2001, 23, 165–174. [Google Scholar] [CrossRef] [Green Version]
- Ptacnik, R.; Lepistö, L.; Willén, E.; Brettum, P.; Andersen, T.; Rekolainen, S.; Lyche Solheim, A.; Carvalho, L. Quantitative responses of lake phytoplankton to eutrophication in Northern Europe. Aquat. Ecol. 2008, 42, 227–236. [Google Scholar] [CrossRef] [Green Version]
- Smith, V.H.; Schindler, D.W. Eutrophication science: Where do we go from here? Trends Ecol. Evol. 2009, 24, 201–207. [Google Scholar] [CrossRef]
- Xu, H.; Paerl, H.W.; Qin, B.; Zhu, G.; Gaoa, G. Nitrogen and phosphorus inputs control phytoplankton growth in eutrophic Lake Taihu, China. Limnol. Oceanogr. 2010, 55, 420–432. [Google Scholar] [CrossRef] [Green Version]
- Zadereev, E.S.; Drobotov, A.V.; Tolomeev, A.P.; Anishchenko, O.V.; Yolgina, O.E.; Kolmakova, A.A. The effect of salinity and nutrient load on the ecosystems of selected lakes in the south of Siberia. J. Sib. Fed. Univ. Biol. 2021, 14, 133–153. [Google Scholar] [CrossRef]
- Yolgina, O.E.; Tolomeev, A.P.; Dubovskaya, O.P. Computer processing and analysis of scanned zooplankton samples: Guidelines. J. Sib. Fed. Univ. Biol. 2022, in press. [Google Scholar] [CrossRef]
- Ejsmont–Karabin, J. Empirical equations for biomass calculation of planktonic rotifers. Pol. Arch. Hydrobiol. 1998, 45, 513–522. [Google Scholar]
- McCauley, E.; Murdoch, W.W. Cyclic and stable populations: Plankton as paradigm. Am. Nat. 1987, 129, 97–121. [Google Scholar] [CrossRef]
- Tong, L.J.; Moss, G.A.; Paewai, M.P. Effect of brine shrimp size on the consumption rate, growth, and survival of early stage phyllosoma larvae of the rock lobster Jasus edwardsii. N. Z. J. Mar. Freshwater Res. 2000, 34, 469–473. [Google Scholar] [CrossRef]
- Watkins, J.M.; Rudstam, L.G.; Holeck, K.T. Length–weight regressions for zooplankton biomass calculations—A review and a suggestion for standard equations. Cornell Biological Field Station Publications and Reports. 2011. Available online: https://hdl.handle.net/1813/24566 (accessed on 29 April 2022).
- Gladyshev, M.I.; Sushchik, N.N.; Kolmakova, A.A.; Kalachova, G.S.; Kravchuk, E.S.; Ivanova, E.A.; Makhutova, O.N. Seasonal correlations of elemental and omega–3 PUFA composition of seston and dominant phytoplankton species in a eutrophic Siberian Reservoir. Aquat. Ecol. 2007, 41, 9–23. [Google Scholar] [CrossRef]
- Zadereev, E.S.; Tolomeyev, A.P.; Drobotov, A.V.; Kolmakova, A.A. Impact of weather variability on spatial and seasonal dynamics of dissolved and suspended nutrients in water column of meromictic Lake Shira. Contemp. Probl. Ecol. 2014, 7, 384–396. [Google Scholar] [CrossRef]
- Clesceri, L.S.; Greenberg, A.E.; Trussell, R.R. Standard Methods for the Examination of Water and Wastewater, 17th ed.; American Public Health Association: Washington, DC, USA, 1989. [Google Scholar]
- Kalacheva, G.S.; Gubanov, V.G.; Gribovskaya, I.V.; Gladchenko, I.A.; Zinenko, G.K.; Savitsky, S.V. Chemical analysis of Lake Shira water (1997–2000). Aquat. Ecol. 2002, 36, 123–141. [Google Scholar]
- Anishchenko, O.V.; Tolomeev, A.P.; Ivanova, E.A.; Drobotov, A.V.; Kolmakova, A.A.; Zuev, I.V.; Gribovskaya, I.V. Accumulation of elements by submerged (Stuckenia pectinata (L.) Börner) and emergent (Phragmites australis (Cav.) Trin. ex Steud.) macrophytes under different salinity levels. Plant Physiol. Biochem. 2020, 154, 328–340. [Google Scholar] [CrossRef]
- Zadereev, E.S.; Drobotov, A.V.; Lopatina, T.S.; Ovchinnikov, S.D.; Tolomeev, A.P. Comparison of rapid methods used to determine the concentration, size structure and species composition of algae. J. Sib. Fed. Univ. Biol. 2021, 14, 5–27. [Google Scholar] [CrossRef]
- Oksanen, J.; Blanchet, F.G.; Kindt, R.; Legendre, P.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; Stevens, M.H.H.; Wagner, H. Vegan: Community Ecology Package. R package version 2020 2.5–7. Available online: http://CRAN.R–project.org/package=vegan (accessed on 30 January 2022).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. Available online: https://www.R–project.org/ (accessed on 30 January 2022).
- Jongman, R.H.G.; ter Braak, C.J.F.; van Tongeren, O.F.R. Data Analysis in Community and Landscape Ecology; Cambridge University Press: Cambridge, UK, 1995; p. 299. [Google Scholar]
- Leps, J.; Smilauer, P. Multivariate Analysis of Ecological Data Using CANOCO; Cambridge University Press: Cambridge, UK, 2003; p. 269. [Google Scholar]
- Saccò, M.; White, N.E.; Harrod, C.; Salazar, G.; Aguilar, P.; Cubillos, C.F.; Meredith, K.; Baxter, B.K.; Oren, A.; Anufriieva, E.; et al. Salt to conserve: A review on the ecology and preservation of hypersaline ecosystems. Biol. Rev. 2021, 96, 2828–2850. [Google Scholar] [CrossRef]
- Zadereev, E.S.; Boehrer, B.; Gulati, R.D. Introduction: Meromictic lakes, their terminology and geographic distribution. In Ecology of Meromictic Lakes; Gulati, R.D., Zadereev, E.S., Degermendzhi, A.G., Eds.; Springer Nature: Cham, Switzerland, 2017; pp. 1–11. [Google Scholar]
- Rogozin, D.Y.; Tarnovsky, M.O.; Belolipetskii, V.M.; Zykov, V.V.; Zadereev, E.S.; Tolomeev, A.P.; Drobotov, A.V.; Barkhatov, Y.V.; Gaevsky, N.A.; Gorbaneva, T.B.; et al. Disturbance of meromixis in saline Lake Shira (Siberia, Russia): Possible reasons and ecosystem response. Limnologica 2017, 66, 12–23. [Google Scholar] [CrossRef] [Green Version]
- Rogozin, D.Y.; Zykov, V.V.; Ivanova, E.A.; Anufrieva, T.N.; Barkhatov, Y.V.; Khromechek, E.B.; Botvich, I.Y. Meromixis and Seasonal Dynamics of Vertical Structure of Lake Uchum (South Siberia). Contemp. Probl. Ecol. 2018, 11, 195–206. [Google Scholar] [CrossRef]
- Lange, R.; Staaland, H.; Mostad, A. The effect of salinity and temperature on solubility of oxygen and respiratory rate in oxygen–dependent marine invertebrates. J. Exp. Mar. Biol. Ecol. 1972, 9, 217–229. [Google Scholar] [CrossRef]
- Prokopkin, I.G.; Zadereev, E.S. A model study of the effect of weather forcing on the ecology of a meromictic Siberian lake. J. Oceanol. Limnol. 2018, 36, 2018–2032. [Google Scholar] [CrossRef]
- Zhao, Y.; Song, K.; Wen, Z.; Fang, C.; Shang, Y.; Lv, L. Evaluation of CDOM sources and their links with water quality in the lakes of Northeast China using fluorescence spectroscopy. J. Hydrol. 2017, 550, 80–91. [Google Scholar] [CrossRef]
- Sigua, G.C.; Williams, M.J.; Coleman, S.W.; Starks, R. Nitrogen and phosphorus status of soils and trophic state of lakes associated with forage–based beef cattle operations in Florida. J. Environ. Qual. 2006, 35, 240–252. [Google Scholar] [CrossRef] [Green Version]
- Oglesby, R.T.; Schaffner, W.R. Phosphorus loadings to lakes and some of their responses. Part 2. Regression models of summer phytoplankton standing crops, winter total P, and transparency of New York lakes with known phosphorus loadings. Limnol. Oceanogr. 1978, 23, 135–145. [Google Scholar] [CrossRef] [Green Version]
- Remane, A.; Schlieper, C. Biology of Brackish Water. Die Binnengewässer Bd. XXV, 2nd ed.; E. Schweizerbartsche Verlagsbuchhandlung: Stuttgart, Germany, 1971; p. 372. [Google Scholar]
- Cognetti, G.; Maltagliati, F. Biodiversity and adaptive mechanisms in brackish water fauna. Mar. Pollut. Bull. 2000, 40, 7–14. [Google Scholar] [CrossRef]
- Khlebovich, V.V. Aspects of animal evolution related to critical salinity and internal state. Mar. Biol. 1969, 2, 338–345. [Google Scholar] [CrossRef]
- Rogozin, D.Y.; Pulyayevskaya, M.V.; Zuev, I.V.; Makhutova, O.N.; Degermendzhi, A.G. Growth, diet and fatty acid composition of Gibel carp Carassius gibelio in Lake Shira, a brackish water body in Southern Siberia. J. Sib. Fed. Univ. Biol. 2011, 4, 86–103. [Google Scholar]
- Brucet, S.; Boix, D.; Gascón, S.; Sala, J.; Quintana, X.D.; Badosa, A.; Søndergaard, M.; Lauridsen, T.L.; Jeppesen, E. Species richness of crustacean zooplankton and trophic structure of brackish lagoons in contrasting climate zones: North temperate Denmark and Mediterranean Catalonia (Spain). Ecography 2009, 32, 692–702. [Google Scholar] [CrossRef] [Green Version]
- Egorov, A.N. Mongolian salt lakes: Some features of their geography, thermal patterns, chemistry and biology. Hydrobiologia 1993, 267, 13–21. [Google Scholar] [CrossRef]
- Williams, W.D. Chinese and Mongolian saline lakes: A limnological overview. Hydrobiologia 1991, 210, 39–66. [Google Scholar] [CrossRef]
- Afanaseva, A.O.; Makeeva, E.G.; Lebedeva, S.A.; Isaeva, I.L. Khakassky Nature Reserve (Zapovednik) and Pozarym Nature Reserve (Zakaznik) of the Republic of Khakassia (brief overview). Biodivers. Environ. Prot. Areas 2020, 1, 83–114. (In Russian) [Google Scholar]
- Luk’yantseva, E.N. The fauna of infusoria in fishes and seasonal dynamics of some species in water basins of the Minusinsk depression. Parazitologia 2000, 34, 220–227. (In Russian) [Google Scholar]
- Gaydin, S.T.; Burmakina, G.A. History of fish breeding in the pri–yenisey region (1931–1991). Vestnik KrasGAU 2014, 12, 254–262. (In Russian) [Google Scholar]
- Zadereev, E.S.; Tolomeyev, A.P.; Drobotov, A.V.; Emeliyanova, A.Y.; Gubanov, M.V. The vertical distribution and abundance of Gammarus lacustris in the pelagic zone of the meromictic lakes Shira and Shunet (Khakassia, Russia). Aquat. Ecol. 2010, 44, 531–539. [Google Scholar] [CrossRef]
- Makhutova, O.N.; Shulepina, S.P.; Sharapova, T.A.; Kolmakova, A.A.; Glushchenko, L.A.; Kravchuk, E.S.; Gladyshev, M.I. Intraspecies variability of fatty acid content and composition of a cosmopolitan benthic invertebrate, Gammarus lacustris. Inland Waters 2018, 8, 356–367. [Google Scholar] [CrossRef] [Green Version]
- Wilhelm, F.M.; Schindler, D.W.; McNaught, A.S. The influence of experimental scale on estimating the predation rate of Gammarus lacustris (Crustacea: Amphipoda) on Daphnia in an alpine lake. J. Plankton Res. 2000, 22, 1719–1734. [Google Scholar] [CrossRef] [Green Version]
- Tolomeyev, A.P.; Zadereev, E.S.; Degermendzhy, A.G. Fine stratified distribution of Gammarus lacustris Sars (Crustacea: Amphipoda) in the pelagic zone of the meromictic lake Shira (Khakassia, Russia). Dokl. Biochem. Biophys. 2006, 411, 346–348. [Google Scholar] [CrossRef]
- Shadrin, N.; Yakovenko, V.; Anufriieva, E. Can Gammarus aequicauda (Amphipoda) suppress a population of Baeotendipes noctivagus (Chironomidae) in a hypersaline lake? A case of Lake Moynaki (Crimea). Aquac. Res. 2021, 52, 1705–1714. [Google Scholar] [CrossRef]
- Golubkov, S.M.; Shadrin, N.V.; Golubkov, M.S.; Balushkina, E.V.; Litvinchuk, L.F. Food chains and their dynamics in ecosystems of shallow lakes with different water salinities. Russ. J. Ecol. 2018, 49, 442–448. [Google Scholar] [CrossRef]
- Anufriieva, E.; Shadrin, N. The long–term changes in plankton composition: Is Bay Sivash transforming back into one of the world’s largest habitats of Artemia sp. (Crustacea, Anostraca)? Aquac. Res. 2020, 51, 341–350. [Google Scholar] [CrossRef]
- Sommer, U.; Sommer, F. Cladocerans versus copepods: The cause of contrasting top–down controls on freshwater and marine phytoplankton. Oecologia 2006, 147, 183–194. [Google Scholar] [CrossRef]
- Dawidowicz, P. Effectiveness of phytoplankton control by large–bodied and small–bodied zooplankton. Hydrobiologia 1990, 200, 43–47. [Google Scholar] [CrossRef]
- Degans, H.; De Meester, L. Top–down control of natural phyto– and bacterioplankton prey communities by Daphnia magna and by the natural zooplankton community of the hypertrophic lake Blankaart. Hydrobiologia 2002, 479, 39–49. [Google Scholar] [CrossRef]
- Rellstab, C.; Spaak, P. Starving with a full gut? Effect of suspended particles on the fitness of Daphnia hyalina. Hydrobiologia 2007, 594, 131–139. [Google Scholar] [CrossRef]
- Kopylov, A.I.; Kosolapov, D.B.; Degermendzhy, N.N.; Zotina, T.A.; Romanenko, A.V. Phytoplankton, bacterial production and protozoan bacterivory in stratified, brackish–water Lake Shira (Khakasia, Siberia). Aquat. Ecol. 2002, 36, 205–218. [Google Scholar] [CrossRef]
- Temerova, T.A.; Tolomeyev, A.P.; Degermendzhy, A.G. Growth of dominant zooplankton species feeding on plankton microflora in Lake Shira. Aquat. Ecol. 2002, 36, 235–243. [Google Scholar] [CrossRef]
- Palmer, F.E.; Methot, R.D., Jr.; Staley, J.T. Patchiness in the distribution of planktonic heterotrophic bacteria in lakes. Appl. Env. Microbiol. 1976, 31, 1003–1005. [Google Scholar] [CrossRef] [Green Version]
- Carrias, J.F.; Amblard, C.; Bourdier, G. Vertical and temporal heterogeneity of planktonic ciliated protozoa in a humic lake. J. Plankton Res. 1994, 16, 471–485. [Google Scholar] [CrossRef]
- Khromechek, E.B.; Barkhatov, Y.V.; Rogozin, D.Y. Community structure and vertical distribution of planktonic ciliates in the saline meromictic lake Shira during breakdown of meromixis. Ecohydrol. Hydrobiol. 2021, 21, 142–152. [Google Scholar] [CrossRef]
- McCauley, E. The estimation of the abundance and biomass of zooplankton in samples. In A Manual on Methods for the Assessment of Secondary Productivity in Fresh Waters; Downing, J.A., Rigler, F.H., Eds.; Blackwell Scientific: Oxford, UK, 1984; pp. 228–265. [Google Scholar]
- Póda, C.; Jordán, F. Aquatic food web research in mesocosms: A literature survey. J. Limnol. 2020, 79, 308–313. [Google Scholar] [CrossRef]
No. | Lake | Coordinate | S, km2 | Dlake/Dsample, m | Strat 1/DObott 2 | ES 3 | TDS, g L−1 | Dry Residual, g L−1 |
---|---|---|---|---|---|---|---|---|
1 | Tus | 54.739596°, 89.957181° | 2.54 | 2.9/0.5–2.0 | 1 */2 | 2 | 38.73 ± 2.42 | 66.48 ± 3.15 |
2 | Slabitelnoe | 54.758119°, 89.926589° | 0.16 | 1.1/0.5–1.0 | 1 */1 | 4 | 27.62 ± 1.43 | 43.75 ± 2.79 |
3 | Krasnenkie-1 | 54.789130°, 90.309674° | 0.61 | 1.4/0.5–1.0 | 0/2 | 4 | 21.89 ± 1.55 | 30.02 ± 2.60 |
4 | Krasnenkie-2 | 54.801329°, 90.320764° | 0.20 | 1.3/0.5–1.0 | 0/2 | 4 | 19.77 ± 1.60 | 27.24 ± 2.55 |
5 | Shunet | 54.419047°, 90.228202° | 0.56 | 6.5/2.0 | 2/0 | 2 | 15.40 ± 0.71 | 20.80 ± 2.56 |
6 | Uchum | 55.094143°, 89.716882° | 5.66 | 8.1/2.0 | 2/0 | 2 | 15.39 ± 0.56 | 19.96 ± 0.98 |
7 | Shira | 54.504697°, 90.201220° | 39.13 | 24.2/2.0 | 2/0 | 1, 2 | 11.39 ± 0.14 | 17.35 ± 0.57 |
8 | Bele small | 54.682150°, 90.228909° | 28.26 | 17.1/2.0 | 1/2 | 2 | 9.13 ± 0.10 | 12.52 ± 0.45 |
9 | Dzhirim | 54.810638°, 90.429847° | 2.27 | 6.2/2.0 | 1/1 | 4 | 8.86 ± 0.04 | 10.18 ± 0.20 |
10 | Bele large | 54.642512°, 90.146674° | 45.02 | 18.3/2.0 | 1/2 | 1, 2 | 6.04 ± 0.03 | 7.80 ± 0.26 |
11 | Utichye-3 | 54.512453°, 90.463401° | 1.67 | 6.4/2.0 | 1/1 | 3 | 4.82 ± 0.08 | 6.16 ± 0.62 |
12 | Utichye-1 | 54.481329°, 90.414246° | 0.41 | 1.8/1.0 | 1/1 | 4 | 4.30 ± 0.04 | 5.79 ± 0.24 |
13 | Vlasyevo | 54.457138°, 90.383218° | 1.20 | 6.5/2.0 | 1/1 | 3 | 3.23 ± 0.05 | 3.27 ± 0.27 |
14 | Sukhoye | 54.823422°, 90.377964° | 0.34 | 4.2/2.0 | 0/1 | 3, 4 | 1.77 ± 0.03 | 2.09 ± 0.15 |
15 | Krasnenkoe | 54.445164°, 90.337008° | 0.14 | 1.3/0.5 | 0/2 | 4 | 1.60 ± 0.09 | 1.79 ± 0.15 |
16 | Chalaskol | 54.401568°, 90.213695° | 0.34 | 2.7/1.0 | 0/2 | 3, 4 | 0.98 ± 0.01 | 1.12 ± 0.04 |
17 | Matarak | 54.406200°, 90.193142° | 0.79 | 5.8/2.0 | 0/1 | 2, 3 | 0.84 ± 0.00 | 0.94 ± 0.06 |
18 | Itkul | 54.468351°, 90.110088° | 20.51 | 9.6/2.0 | 1/1 | 1, 2 | 0.41 ± 0.01 | 0.57 ± 0.17 |
19 | Fyrkal | 54.602622°, 89.802478° | 8.95 | 1.5/0.5–1.0 | 0/2 | 2, 3 | 0.30 ± 0.01 | 0.33 ± 0.04 |
20 | Kiprino | 54.710063°, 89.848019° | 0.31 | 3.8/2.0 | 0/1 | 2 | 0.08 ± 0.01 | 0.15 ± 0.02 |
Lake | Ptotal, mg L−1 | Ptotal, mg L−1 | Ndiss, mg L−1 | Ndiss, mg L−1 | Turbidity, FTU | Turbidity, FTU | CDOM, r.u. | CDOM, r.u. |
---|---|---|---|---|---|---|---|---|
Tus | 0.097 ± 0.029 | 0.078 ± 0.010 | 0.22 ± 0.13 | 0.25 ± 0.04 | 2.7 ± 0.6 | 5.4 ± 1.2 | 2.87 ± 0.17 | 4.56 ± 0.49 |
Slabitelnoe | 0.076 ± 0.024 | 0.12 ± 0.02 | 3.9 ± 1.2 | 6.61 ± 0.49 | ||||
Krasnenkie-1 | 0.112 ± 0.006 | 0.31 ± 0.09 | 13.7 ± 6.1 | 7.95 ± 0.58 | ||||
Krasnenkie-2 | 0.148 ± 0.017 | 0.37 ± 0.15 | 10.3 ± 2.9 | 7.26 ± 0.52 | ||||
Shunet | 0.028 ± 0.012 | 0.22 ± 0.11 | 1.7 ± 0.1 | 3.46 ± 0.21 | ||||
Uchum | 0.067 ± 0.005 | 0.39 ± 0.14 | 4.0 ± 2.3 | 2.90 ± 0.27 | ||||
Shira | 0.018 ± 0.005 | 0.13 ± 0.05 | 1.8 ± 0.5 | 0.83 ± 0.06 | ||||
Bele small | 0.019 ± 0.008 | 0.519 ± 0.173 | 0.09 ± 0.03 | 0.26 ± 0.06 | 2.5 ± 0.6 | 13.2 ± 4.8 | 0.26 ± 0.04 | 5.35 ± 1.09 |
Dzhirim | 0.835 ± 0.078 | 0.26 ± 0.09 | 30.1 ± 10.2 | 11.39 ± 1.10 | ||||
Bele large | 0.009 ± 0.001 | 0.15 ± 0.02 | 2.1 ± 0.5 | 0.37 ± 0.04 | ||||
Utichye-3 | 0.626 ± 0.581 | 0.28 ± 0.07 | 1.7 ± 0.6 | 4.29 ± 0.28 | ||||
Utichye-1 | 1.584 ± 0.611 | 0.64 ± 0.30 | 37.7 ± 22.3 | 12.77 ± 1.86 | ||||
Vlasyevo | 0.038 ± 0.003 | 0.16 ± 0.05 | 4.9 ± 0.8 | 3.03 ± 0.33 | ||||
Sukhoye | 0.580 ± 0.089 | 0.227 ± 0.066 | 0.26 ± 0.05 | 0.20 ± 0.02 | 69.1 ± 28.4 | 23.7 ± 9.4 | 12.43 ± 0.99 | 7.09 ± 1.09 |
Krasnenkoe | 0.211 ± 0.136 | 0.22 ± 0.03 | 6.5 ± 2.7 | 5.47 ± 0.61 | ||||
Chalaskol | 0.084 ± 0.008 | 0.19 ± 0.05 | 13.6 ± 2.4 | 8.82 ± 1.17 | ||||
Matarak | 0.030 ± 0.007 | 0.12 ± 0.02 | 5.4 ± 1.3 | 1.68 ± 0.21 | ||||
Itkul | 0.006 ± 0.001 | 0.015 ± 0.002 | 0.07 ± 0.02 | 0.16 ± 0.04 | 0.5 ± 0.1 | 2.4 ± 0.8 | 0.45 ± 0.07 | 1.28 ± 0.22 |
Fyrkal | 0.023 ± 0.004 | 0.14 ± 0.03 | 5.3 ± 1.8 | 2.05 ± 0.28 | ||||
Kiprino | 0.014 ± 0.002 | 0.25 ± 0.10 | 1.5 ± 0.4 | 1.32 ± 0.13 | ||||
The significance of the correlation ANOVA | p = 0.30 | Current effect: F(3, 76) = 4.59, p = 0.005 | p = 0.72 | Current effect: F(3, 75) = 0,87, p = 0.462 | p = 0.25 | Current effect: F(3, 76) = 3.22, p = 0.027 | p = 0.76 | Current effect: F(3, 76) = 5.42, p = 0.002 |
Parameter | Lake Is Not Used for Cattle Watering or Cattle Pens Are Located Close to the Lake | Lake is Used for Cattle Watering or Cattle Pens Are Located Close to the Lake | The Significance of the Effect (One-Way ANOVA) | ||
---|---|---|---|---|---|
Mean | SE | Mean | SE | ||
Ptotal, mg L−1 | 0.08 | 0.05 | 0.45 | 0.11 | p < 0.001 |
Turbidity, FTU | 2.84 | 0.35 | 23.10 | 5.60 | p < 0.001 |
CDOM, r.u. | 1.96 | 0.19 | 9.09 | 0.56 | p < 0.001 |
The concentration of suspended particles in the epilimnion measured with FlowCam, particles mL−1 | 13 207 | 1 916 | 116 606 | 36 378 | p < 0.001 |
The concentration of chlorophyll a in the epilimnion, µg L−1 | 7.98 | 1.31 | 43.39 | 10.82 | p < 0.001 |
The content of organic carbon in seston, mg L−1 | 1.25 | 0.13 | 3.77 | 0.59 | p < 0.001 |
Classes/Morphological Characteristics | Description | ||||
---|---|---|---|---|---|
Chlorophyta | Concentration of chlorophyll a (Chl a) of Green algae | ||||
Cyanobacteria | Chl a of Cyanobacteria | ||||
Bacillariophyta (Diatoms) | Chl a of Diatoms | ||||
Cryptophyta | Chl a of Cryptomonads | ||||
Diameter | Mean particle diameter | ||||
Aspect ratio | Ratio of minimal to maximal Ferret diameter | ||||
Selected predictors | Description | VIF | R2adj | F | Pr(>F) |
Yellow substance | Coloured dissolved organic matter, detected at 370/680 nm excitation-emission wavelengths | 1.3 | 0.13 | 12.64 | 0.002 |
Fish | Presence/absence of fish | 1.4 | 0.18 | 5.71 | 0.002 |
Clad/Zooplankton | Ratio of cladoceran biomass to total zooplankton biomass | 1.2 | 0.20 | 3.20 | 0.018 |
Temp | Temperature | 1.0 | 0.22 | 3.00 | 0.016 |
Taxon, Short Name | Description | ||||
---|---|---|---|---|---|
Calanoida | Arctodiaptomus salinus, Calanoind copepod species | ||||
Cyclopoida | Cyclopoid copepod species | ||||
Brachionus sp. | Brachionus plicatilis, Brachionus sp. | ||||
Moina | Moina mongolica. | ||||
D. magna | Daphnia magna | ||||
Daphnia sp. | Daphnia longispina, Daphnia sp. | ||||
Bosmina | Bosmina spp. | ||||
Asplanchna | Asplanchna sp. | ||||
Ceriodaphnia | Ceriodaphnia sp. | ||||
Keratella | Keratella quadrata, Keratella cochlearis, Keratella testudo | ||||
Harpacticoida | Harpacticoid copepod species | ||||
Chydorus | Chydorus sp. | ||||
Diaphanosoma | Diaphanosoma sp. | ||||
Hexarthra | Hexarthra sp. | ||||
Filinia | Filinia sp. | ||||
Alona | Alona sp. | ||||
L. kindtii | Leptodora kindtii | ||||
Artemia | Artemia sp. | ||||
Selected predictors | Description | VIF | R2.adj | F | Pr(>F) |
TDS | Total dissolved salts | 3.5 | 0.18 | 18.74 | 0.002 |
P-tot | Total phosphorus | 2.5 | 0.22 | 4.17 | 0.004 |
N-min | Mineral forms of nitrogen | 1.6 | 0.24 | 3.88 | 0.014 |
Particles tot | Total count of particles measured by FlowCam | 6.7 | 0.26 | 2.53 | 0.008 |
Fish | Presence/absence of fish | 4.6 | 0.27 | 2.55 | 0.008 |
Depth | Maximum depth of lake | 4.7 | 0.29 | 2.68 | 0.014 |
Yellow substance | Coloured dissolved organic matter, detected at 370/680 nm excitation-emission wavelengths | 6.5 | 0.31 | 3.25 | 0.002 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zadereev, E.; Drobotov, A.; Anishchenko, O.; Kolmakova, A.; Lopatina, T.; Oskina, N.; Tolomeev, A. The Structuring Effects of Salinity and Nutrient Status on Zooplankton Communities and Trophic Structure in Siberian Lakes. Water 2022, 14, 1468. https://doi.org/10.3390/w14091468
Zadereev E, Drobotov A, Anishchenko O, Kolmakova A, Lopatina T, Oskina N, Tolomeev A. The Structuring Effects of Salinity and Nutrient Status on Zooplankton Communities and Trophic Structure in Siberian Lakes. Water. 2022; 14(9):1468. https://doi.org/10.3390/w14091468
Chicago/Turabian StyleZadereev, Egor, Anton Drobotov, Olesya Anishchenko, Anzhelika Kolmakova, Tatiana Lopatina, Natalia Oskina, and Alexander Tolomeev. 2022. "The Structuring Effects of Salinity and Nutrient Status on Zooplankton Communities and Trophic Structure in Siberian Lakes" Water 14, no. 9: 1468. https://doi.org/10.3390/w14091468