A Review on Machine Learning, Artificial Intelligence, and Smart Technology in Water Treatment and Monitoring
Abstract
:1. Introduction
2. Review Search Criteria and Methodology
3. Machine-Learning Models, Artificial-Intelligence Methods, and Smart Technology
3.1. Machine-Learning Models and Artificial-Intelligence Methods
3.2. Smart Technology—The Internet of Things (IoT) and Smart Sensing Technology
4. Applications in Water and Wastewater Treatment
4.1. Chlorination and Disinfection By-Product Management
4.2. Adsorption Processes
4.3. Membrane-Filtration Processes
4.4. Artificial Intelligence in Water Treatment: A Brief Case Study of ANN, SVM, and RF Models for Adsorption-Efficiency Prediction
5. Applications in Water-Quality Management
5.1. Water-Quality Management
5.2. Artificial Intelligence in Water-Quality Management: A Brief Case Study of ANFIS and ANN Models for WQI Prediction
6. Applications in Water-Based Agriculture
6.1. Hydroponics and Aquaponics
6.2. Smart Technology and Artificial Intelligence in Water-Based Agriculture: A Brief Case Study of IoT and FIS in Aquaponics
7. Common Challenges with AI and ML Implementation in Water Treatment and Monitoring
7.1. Learning and Reproducibility Challenges
7.2. Data Challenges
7.3. Benchmark and Standardization Challenges
7.4. Result Comparison Challenges
7.5. Explainability Challenges
8. Recommendations for AI/ML Implementation in Water Treatment and Monitoring
8.1. Recommendations for Data Management and Reproducibility
8.2. Recommendations for Transparency and Explainable AI/ML Models and Methods
8.3. Recommendations for Introducing Causality into AI/ML Models and Methods
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Faherty, A. Tapped out: How Newark, New Jersey’s lead drinking water crisis illuminates the inadequacy of the federal drinking water regulatory scheme and fuels environmental injustice throughout the nation. Environ. Claims J. 2020, 33, 304–327. [Google Scholar] [CrossRef]
- Ebenstein, A. The consequences of industrialization: Evidence from water pollution and digestive cancers in China. Rev. Econ. Stat. 2012, 94, 186–201. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, G.; Gadelha, F.; Kublik, N.; Proctor, A.; Reichelm, L.; Weissinger, E.; Wohlleb, G.; Halden, R. Comparison of land, water, and energy requirements of lettuce grown using hydroponic vs. conventional agricultural methods. Int. J. Environ. Res. Public Health 2015, 12, 6879–6891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, L.; Yang, Y.; Lv, H.; Wang, D.; Li, Y.; He, W. Water usage for energy production and supply in China: Decoupled from industrial growth? Sci. Total. Environ. 2020, 719, 137278. [Google Scholar] [CrossRef] [PubMed]
- Vu, C.T.; Wu, T. Recent progress in adsorptive removal of per- and poly-fluoroalkyl substances (PFAS) from water/wastewater. Crit. Rev. Environ. Sci. Technol. 2020, 52, 90–129. [Google Scholar] [CrossRef]
- Riedl, M.O. Human-centered Artificial Intelligence and machine learning. Hum. Behav. Emerg. Technol. 2019, 1, 33–36. [Google Scholar] [CrossRef] [Green Version]
- Simopoulou, M.; Sfakianoudis, K.; Maziotis, E.; Antoniou, N.; Rapani, A.; Anifandis, G.; Bakas, P.; Bolaris, S.; Pantou, A.; Pantos, K.; et al. Are computational applications the “Crystal Ball” in the IVF laboratory? the evolution from mathematics to Artificial Intelligence. J. Assist. Reprod. Genet. 2018, 35, 1545–1557. [Google Scholar] [CrossRef]
- Krittanawong, C. The rise of artificial intelligence and the uncertain future for physicians. Eur. J. Intern. Med. 2018, 48, E13–E14. [Google Scholar] [CrossRef]
- Suquet, J.; Godo-Pla, L.; Valentí, M.; Verdaguer, M.; Martin, M.J.; Poch, M.; Monclús, H. Development of an environmental decision support system for enhanced coagulation in drinking water production. Water 2020, 12, 2115. [Google Scholar] [CrossRef]
- Report: Data Demand Will Drive $92 Billion in Investment by 2030. Water Finance & Management (WFM). 2020. Available online: https://waterfm.com/report-data-demand-will-drive-92-billion-in-investment-by-2030/ (accessed on 26 February 2022).
- Alam, G.; Ihsanullah, I.; Naushad, M.; Sillanpää, M. Applications of artificial intelligence in water treatment for optimization and automation of adsorption processes: Recent advances and prospects. Chem. Eng. J. 2022, 427, 130011. [Google Scholar] [CrossRef]
- Xie, Y.; Chen, Y.; Lian, Q.; Yin, H.; Peng, J.; Sheng, M.; Wang, Y. Enhancing real-time prediction of effluent water quality of wastewater treatment plant based on improved feedforward neural network coupled with optimization algorithm. Water 2022, 14, 1053. [Google Scholar] [CrossRef]
- Rokach, L.; Maimon, O. Decision Trees. In Data Mining and Knowledge Discovery Handbook; Maimon, O., Rokach, L., Eds.; Springer: Boston, MA, USA, 2005. [Google Scholar] [CrossRef]
- Han, J.; Kamber, M.; Pei, J. Data Mining. The Morgan Kaufmann Series in Data Management Systems; Morgan Kaufmann Publishers: Burlington, MA, USA, 2012. [Google Scholar] [CrossRef]
- Singh, A.; Thakur, N.; Sharma, A. A review of supervised machine learning algorithms. In Proceedings of the 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, India, 16–18 March 2016; pp. 1310–1315. [Google Scholar]
- Liu, Y.; Wang, Y.; Zhang, J. New Machine Learning Algorithm: Random Forest. In Lecture Notes in Computer Science, Proceedings of the International Conference on Information Computing and Applications (ICICA 2012), Chengdu, China, 14–16 September 2012; Liu, B., Ma, M., Chang, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; Volume 7473. [Google Scholar] [CrossRef]
- Livingston, F.J. Implementation of Breiman’s Random Forest Machine Learning Algorithm. In ECE591Q Machine Learning Journal Paper; 2005; pp. 1–13. Available online: https://datajobs.com/data-science-repo/Random-Forest-[Frederick-Livingston].pdf (accessed on 3 March 2022).
- Hastie, T.; Friedman, J.; Tisbshirani, R. The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Springer: New York, NY, USA, 2017. [Google Scholar]
- Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Chua, K.S. Efficient computations for large least square support vector machine classifiers. Pattern Recognit. Lett. 2003, 24, 75–80. [Google Scholar] [CrossRef]
- Noble, W.S. What is a support vector machine? Nat. Biotechnol. 2006, 24, 1565–1567. [Google Scholar] [CrossRef] [PubMed]
- Caie, P.D.; Dimitriou, N.; Arandjelović, O. Precision Medicine in digital pathology via Image Analysis and machine learning. Artif. Intell. Deep. Learn. Pathol. 2021, 8, 149–173. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MITP: Frechen, Germany, 2018. [Google Scholar]
- Kosko, B.; Isaka, S. Fuzzy Logic. Sci. Am. 1993, 269, 76–81. Available online: http://www.jstor.org/stable/24941550 (accessed on 23 October 2021). [CrossRef]
- Moraga, C.; Trillas, E.; Guadarrama, S. Multiple-valued logic and artificial intelligence fundamentals of Fuzzy Control Revisited. In Artificial Intelligence in Logic Design; Springer: Dordrecht, The Netherlands, 2004; pp. 9–37. [Google Scholar] [CrossRef]
- Afroozeh, M.; Reza Sohrabi, M.; Davallo, M.; Mirnezami, S.Y.; Motiee, F.; Khosravi, M. Application of artificial neural network, fuzzy inference system and adaptive neuro-fuzzy inference system to predict the removal of pb(ii) ions from the aqueous solution by using magnetic graphene/nylon 6. Chem. Sci. J. 2018, 9, 2. [Google Scholar] [CrossRef]
- Moon, T.; Kim, Y.; Kim, H.; Choi, M.; Kim, C. Fuzzy rule-based inference of reasons for high effluent quality in Municipal Wastewater Treatment Plant. Korean J. Chem. Eng. 2011, 28, 817–824. [Google Scholar] [CrossRef]
- Cherkassky, V. Fuzzy Inference Systems: A critical review. In Computational Intelligence: Soft Computing and Fuzzy-Neuro Integration with Applications; Springer: Berlin/Heidelberg, Germany, 1998; pp. 177–197. [Google Scholar] [CrossRef]
- Ling, W.-K. Nonlinear Digital Filters; Academic Press: Cambridge, MA, USA, 2007. [Google Scholar] [CrossRef]
- Mathew, T.V. Genetic Algorithm. 2012. Available online: https://datajobs.com/data-science-repo/Genetic-Algorithm-Guide-[Tom-Mathew].pdf (accessed on 22 October 2021).
- Yang, X.-S. Nature-Inspired Optimization Algorithms; Academic Press: Cambridge, MA, USA, 2021; ISBN 9780128219867. [Google Scholar]
- Katoch, S.; Chauhan, S.S.; Kumar, V. A review on Genetic Algorithm: Past, present, and future. Multimed. Tools Appl. 2020, 80, 8091–8126. [Google Scholar] [CrossRef]
- Yegnanarayana, B. Artificial Neural Networks; Prentice-Hall of India: Delhi, India, 2006; ISBN 9788120312531. [Google Scholar]
- Uhrig, R.E. Introduction to artificial neural networks. In Proceedings of the IECON ‘95—21st Annual Conference on IEEE Industrial Electronics, Orlando, FL, USA, 6–10 November 1995. [Google Scholar] [CrossRef]
- Samet, H. K-nearest neighbor finding using maxnearestdist. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 30, 243–252. [Google Scholar] [CrossRef]
- Jiang, L.; Cai, Z.; Wang, D.; Jiang, S. Survey of improving K-nearest-neighbor for classification. In Proceedings of the Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2007), Haikou, China, 24–27 August 2007. [Google Scholar] [CrossRef]
- Gaya, M.S.; Yusuf, L.A.; Mustapha, M.; Muhammad, B.; Sani, A.; Tijjani Aminu Tijjani, A.; Wahab, N.A.; Khairi, M.T.M. Estimation of turbidity in water treatment plant using Hammerstein-Wiener and neural network technique. Indones. J. Electr. Eng. Comput. Sci. 2017, 5, 666. [Google Scholar] [CrossRef]
- Zhu, Y. Estimation of an N–L–N hammerstein–wiener model. Automatica 2002, 38, 1607–1614. [Google Scholar] [CrossRef]
- Abba, S.I.; Pham, Q.B.; Usman, A.G.; Linh, N.T.; Aliyu, D.S.; Nguyen, Q.; Bach, Q.-V. Emerging evolutionary algorithm integrated with kernel principal component analysis for modeling the performance of a water treatment plant. J. Water Process Eng. 2020, 33, 101081. [Google Scholar] [CrossRef]
- Wills, A.; Schön, T.B.; Ljung, L.; Ninness, B. Identification of Hammerstein–Wiener Models. Automatica 2013, 49, 70–81. [Google Scholar] [CrossRef] [Green Version]
- Allafi, W.; Zajic, I.; Uddin, K.; Burnham, K.J. Parameter estimation of the fractional-order Hammerstein–wiener model using simplified refined instrumental variable fractional-order Continuous Time. IET Control Theory Appl. 2017, 11, 2591–2598. [Google Scholar] [CrossRef] [Green Version]
- Karimi, N.; Kazem, S.; Ahmadian, D.; Adibi, H.; Ballestra, L.V. On a generalized gaussian radial basis function: Analysis and applications. Eng. Anal. Bound. Elem. 2020, 112, 46–57. [Google Scholar] [CrossRef]
- Powell, M.J. Approximation Theory and Methods; Cambridge University Press: Cambridge, UK, 1981. [Google Scholar] [CrossRef]
- Baddari, K.; Aïfa, T.; Djarfour, N.; Ferahtia, J. Application of a radial basis function artificial neural network to seismic data inversion. Comput. Geosci. 2009, 35, 2338–2344. [Google Scholar] [CrossRef]
- DiPietro, R.; Hager, G.D. Deep learning: RNNS and LSTM. In Handbook of Medical Image Computing and Computer Assisted Intervention; Academic Press: Cambridge, MA, USA, 2020; pp. 503–519. [Google Scholar] [CrossRef]
- Zhang, H.; Shinn, M.; Gupta, A.; Gurfinkel, A.; Le, N.; Narodytska, N. cover Verification of Recurrent Neural Networks for Cognitive Tasks via Reachability Analysis. Front. Artif. Intell. Appl. 2020, 325, 1690–1697. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Smagulova, K.; James, A.P. Overview of long short-term memory neural networks. In Deep Learning Classifiers with Memristive Networks; Springer: Cham, Switzerland, 2019; pp. 139–153. [Google Scholar] [CrossRef]
- Kim, P. Convolutional Neural Network. In MATLAB Deep Learning; Apress: Berkeley, CA, USA, 2017; pp. 121–147. [Google Scholar] [CrossRef]
- Acharya, U.R.; Oh, S.L.; Hagiwara, Y.; Tan, J.H.; Adam, M.; Gertych, A.; Tan, R.S. A deep convolutional neural network model to classify heartbeats. Comput. Biol. Med. 2017, 89, 389–396. [Google Scholar] [CrossRef]
- Gu, J.; Wang, Z.; Kuen, J.; Ma, L.; Shahroudy, A.; Shuai, B.; Liu, T.; Wang, X.; Wang, G.; Cai, J.; et al. Recent advances in Convolutional Neural Networks. Pattern Recognit. 2018, 77, 354–377. [Google Scholar] [CrossRef] [Green Version]
- Dumoulin, V.; Visin, F. A guide to convolution arithmetic for deep learning. arXiv 2016, arXiv:1603.07285. [Google Scholar]
- Farhoudi, J.; Hosseini, S.M.; Sedghi-Asl, M. Application of neuro-fuzzy model to estimate the characteristics of local scour downstream of stilling basins. J. Hydroinformatics 2009, 12, 201–211. [Google Scholar] [CrossRef]
- Karaboga, D.; Kaya, E. Adaptive network based Fuzzy Inference System (ANFIS) training approaches: A comprehensive survey. Artif. Intell. Rev. 2018, 52, 2263–2293. [Google Scholar] [CrossRef]
- Kumar, K.; Davim, J.P.; Adedeji, P.A.; Masebinu, S.O.; Akinlabi, S.A.; Madushele, N. Adaptive Neuro-fuzzy Inference System (ANFIS) Modelling in Energy System and Water Resources. In Optimization Using Evolutionary Algorithms and Metaheuristics: Applications in Engineering; Essay; CRC Press, Taylor & Francis Group: Abingdon, UK, 2020. [Google Scholar]
- Zhu, Q.-Y.; Qin, A.K.; Suganthan, P.N.; Huang, G.-B. Evolutionary extreme learning machine. Pattern Recognit. 2005, 38, 1759–1763. [Google Scholar] [CrossRef]
- Huang, G.; Zhu, Q.; Siew, C. Extreme learning machine: A new learning scheme of Feedforward Neural Networks. In Proceedings of the 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541), Budapest, Hungary, 25–29 July 2004. [Google Scholar] [CrossRef]
- Huang, G. Extreme Learning Machine; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Jagtap, S.; Skouteris, G.; Choudhari, V.; Rahimifard, S. Improving water efficiency in the beverage industry with the internet of things. In Implementing Data Analytics and Architectures for Next Generation Wireless Communications; Bahtt, C., Kumar, N., Bashir, A.K., Alazab, M., Eds.; IGI Global: Hershey, PA, USA, 2022; pp. 18–26. [Google Scholar] [CrossRef]
- Wortmann, F.; Flüchter, K. Internet of things. Bus. Inf. Syst. Eng. 2015, 57, 221–224. [Google Scholar] [CrossRef]
- Jagtap, S.; Skouteris, G.; Choudhari, V.; Rahimifard, S.; Duong, L.N. An internet of things approach for water efficiency: A case study of the beverage factory. Sustainability 2021, 13, 3343. [Google Scholar] [CrossRef]
- González García, C.; Núñez-Valdez, E.; García-Díaz, V.; G-Bustelo, C.P.; Cueva-Lovelle, J.M. A review of artificial intelligence in the internet of things. Int. J. Interact. Multimed. Artif. Intell. 2019, 5, 9. [Google Scholar] [CrossRef]
- Frank, R. Understanding Smart Sensors; Artech House Publishers: Norwood, MA, USA, 2013. [Google Scholar]
- Li, H.Y.; Osman, H.; Kang, C.W.; Ba, T. Numerical and experimental investigation of UV disinfection for water treatment. Appl. Therm. Eng. 2017, 111, 280–291. [Google Scholar] [CrossRef]
- Sedlak, D.L.; von Gunten, U. The chlorine dilemma. Science 2011, 331, 42–43. [Google Scholar] [CrossRef]
- Richardson, S. Disinfection by-products and other emerging contaminants in drinking water. TrAC Trends Anal. Chem. 2003, 22, 666–684. [Google Scholar] [CrossRef]
- Imo, T.S.; Oomori, T.; Toshihiko, M.; Tamaki, F. The comparative study of trihalomethanes in drinking water. Int. J. Environ. Sci. Technol. 2007, 4, 421–426. [Google Scholar] [CrossRef] [Green Version]
- Librantz, A.F.; Santos, F.C.; Dias, C.G. Artificial neural networks to control chlorine dosing in a water treatment plant. Acta Sci. Technol. 2018, 40, e37275. [Google Scholar] [CrossRef]
- Godo-Pla, L.; Rodríguez, J.J.; Suquet, J.; Emiliano, P.; Valero, F.; Poch, M.; Monclús, H. Control of primary disinfection in a drinking water treatment plant based on a fuzzy inference system. Process Saf. Environ. Prot. 2021, 145, 63–70. [Google Scholar] [CrossRef]
- Singh, K.P.; Gupta, S. Artificial intelligence based modeling for predicting the disinfection by-products in water. Chemom. Intell. Lab. Syst. 2012, 114, 122–131. [Google Scholar] [CrossRef]
- Mahato, J.K.; Gupta, S.K. Exploring applicability of artificial intelligence and multivariate linear regression model for prediction of trihalomethanes in drinking water. Int. J. Environ. Sci. Technol. 2021. [Google Scholar] [CrossRef]
- Park, J.; Lee, C.; Cho, K.H.; Hong, S.; Kim, Y.M.; Park, Y. Modeling trihalomethanes concentrations in water treatment plants using machine learning techniques. Desalination Water Treat. 2018, 111, 125–133. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.; Dai, Q.; Zheng, L.; Hong, H.; Deng, W.; Wu, F. Radial basis function artificial neural network able to accurately predict disinfection by-product levels in tap water: Taking haloacetic acids as a case study. Chemosphere 2020, 248, 125999. [Google Scholar] [CrossRef]
- Xu, Z.; Shen, J.; Qu, Y.; Chen, H.; Zhou, X.; Hong, H.; Sun, H.; Lin, H.; Deng, W.; Wu, F. Using simple and easy water quality parameters to predict trihalomethane occurrence in tap water. Chemosphere 2022, 286, 131586. [Google Scholar] [CrossRef]
- Peleato, N.M. Application of convolutional neural networks for prediction of disinfection by-products. Sci. Rep. 2022, 12, 612. [Google Scholar] [CrossRef]
- Okoji, C.N.; Okoji, A.I.; Ibrahim, M.S.; Obinna, O. Comparative analysis of adaptive neuro-fuzzy inference system (ANFIS) and RSRM models to predict DBP (trihalomethanes) levels in the water treatment plant. Arab. J. Chem. 2022, 15, 103794. [Google Scholar] [CrossRef]
- Cordero, J.A.; He, K.; Janya, K.; Echigo, S.; Itoh, S. Predicting formation of haloacetic acids by chlorination of organic compounds using machine-learning-assisted quantitative structure-activity relationships. J. Hazard. Mater. 2021, 408, 124466. [Google Scholar] [CrossRef] [PubMed]
- Artioli, Y. Adsorption. In Encyclopedia of Ecology; Elsevier: Amsterdam, The Netherlands, 2008; pp. 60–65. [Google Scholar] [CrossRef]
- Karri, R.R.; Sahu, J.N.; Meikap, B.C. Improving efficacy of Cr (VI) adsorption process on sustainable adsorbent derived from waste biomass (sugarcane bagasse) with help of ant colony optimization. Ind. Crop. Prod. 2020, 143, 111927. [Google Scholar] [CrossRef]
- Bhagat, S.K.; Pyrgaki, K.; Salih, S.Q.; Tiyasha, T.; Beyaztas, U.; Shahid, S.; Yaseen, Z.M. Prediction of copper ions adsorption by attapulgite adsorbent using tuned-artificial intelligence model. Chemosphere 2021, 276, 130162. [Google Scholar] [CrossRef]
- Mazloom, M.S.; Rezaei, F.; Hemmati-Sarapardeh, A.; Husein, M.M.; Zendehboudi, S.; Bemani, A. Artificial intelligence based methods for Asphaltenes adsorption by nanocomposites: Application of group method of data handling, least squares support vector machine, and Artificial Neural Networks. Nanomaterials 2020, 10, 890. [Google Scholar] [CrossRef] [PubMed]
- Mesellem, Y.; Hadj, A.A.; Laidi, M.; Hanini, S.; Hentabli, M. Computational intelligence techniques for modeling of dynamic adsorption of organic pollutants on activated carbon. Neural Comput. Appl. 2021, 33, 12493–12512. [Google Scholar] [CrossRef]
- Al-Yaari, M.; Aldhyani, T.H.; Rushd, S. Prediction of arsenic removal from contaminated water using artificial neural network model. Appl. Sci. 2022, 12, 999. [Google Scholar] [CrossRef]
- Mazaheri, H.; Ghaedi, M.; Ahmadi Azqhandi, M.H.; Asfaram, A. Application of machine/statistical learning, Artificial Intelligence and statistical experimental design for the modeling and optimization of Methylene Blue and CD(II) removal from a binary aqueous solution by natural Walnut Carbon. Phys. Chem. Chem. Phys. 2017, 19, 11299–11317. [Google Scholar] [CrossRef]
- Ahmad, Z.U.; Yao, L.; Lian, Q.; Islam, F.; Zappi, M.E.; Gang, D.D. The use of Artificial Neural Network (ANN) for modeling adsorption of Sunset Yellow onto neodymium modified ordered mesoporous carbon. Chemosphere 2020, 256, 127081. [Google Scholar] [CrossRef]
- Fawzy, M.; Nasr, M.; Adel, S.; Nagy, H.; Helmi, S. Environmental Approach and artificial intelligence for ni(ii) and CD(II) biosorption from aqueous solution using Typha domingensis biomass. Ecol. Eng. 2016, 95, 743–752. [Google Scholar] [CrossRef]
- Ullah, S.; Assiri, M.A.; Bustam, M.A.; Al-Sehemi, A.G.; Abdul Kareem, F.A.; Irfan, A. Equilibrium, kinetics and artificial intelligence characteristic analysis for Zn (II) ion adsorption on rice husks digested with nitric acid. Paddy Water Environ. 2020, 18, 455–468. [Google Scholar] [CrossRef]
- Mahmoud, A.S.; Mostafa, M.K.; Nasr, M. Regression model, artificial intelligence, and cost estimation for phosphate adsorption using encapsulated nanoscale zero-valent iron. Sep. Sci. Technol. 2018, 54, 13–26. [Google Scholar] [CrossRef]
- Mesllem, Y.; Hentabli, M.; Hanini, S.; Laidi, M.; Abdallah, A.E. Artificial neural network modelling of multi-system dynamic adsorption of organic pollutants on activated carbon. Kem. Ind. 2021, 70, 1–12. [Google Scholar] [CrossRef]
- Hube, S.; Eskafi, M.; Hrafnkelsdóttir, K.F.; Bjarnadóttir, B.; Bjarnadóttir, M.Á.; Axelsdóttir, S.; Wu, B. Direct membrane filtration for wastewater treatment and resource recovery: A Review. Sci. Total. Environ. 2020, 710, 136375. [Google Scholar] [CrossRef]
- Wang, J.; Cahyadi, A.; Wu, B.; Pee, W.; Fane, A.G.; Chew, J.W. The roles of particles in enhancing membrane filtration: A Review. J. Membr. Sci. 2020, 595, 117570. [Google Scholar] [CrossRef]
- Zoubeik, M.; Salama, A.; Henni, A. A comprehensive experimental and artificial network investigation of the performance of an ultrafiltration titanium dioxide ceramic membrane: Application in produced water treatment. Water Environ. J. 2018, 33, 459–475. [Google Scholar] [CrossRef]
- Fetanat, M.; Keshtiara, M.; Low, Z.-X.; Keyikoglu, R.; Khataee, A.; Orooji, Y.; Chen, V.; Leslie, G.; Razmjou, A. Machine learning for advanced design of nanocomposite ultrafiltration membranes. Ind. Eng. Chem. Res. 2021, 60, 5236–5250. [Google Scholar] [CrossRef]
- Khan, H.; Khan, S.U.; Hussain, S.; Ullah, A. Modelling of transmembrane pressure using slot/pore blocking model, response surface and artificial intelligence approach. Chemosphere 2022, 290, 133313. [Google Scholar] [CrossRef]
- Yusof, Z.; Abdul Wahab, N.; Ibrahim, S.; Sahlan, S.; Che Razali, M. Modeling of submerged membrane filtration processes using recurrent artificial neural networks. IAES Int. J. Artif. Intell. IJ-AI 2020, 9, 155–163. [Google Scholar] [CrossRef]
- Nazif, S.; Mirashrafi, E.; Roghani, B.; Bidhendi, G.N. Artificial Intelligence–based optimization of Reverse Osmosis Systems Operation Performance. J. Environ. Eng. 2020, 146, 04019106. [Google Scholar] [CrossRef]
- Shim, J.; Park, S.; Cho, K.H. Deep learning model for simulating influence of natural organic matter in nanofiltration. Water Res. 2021, 197, 117070. [Google Scholar] [CrossRef] [PubMed]
- Ammi, Y.; Hanini, S.; Khaouane, L. An artificial intelligence approach for modeling the rejection of anti-inflammatory drugs by nanofiltration and reverse osmosis membranes using kernel support vector machine and Neural Networks. C. R. Chim. 2021, 24, 243–254. [Google Scholar] [CrossRef]
- Egbert, J.; Plonsky, L. Bootstrapping techniques. In A Practical Handbook of Corpus Linguistics; Springer: Cham, Switzerland, 2020; pp. 593–610. [Google Scholar] [CrossRef]
- Breitburg, D.; Levin, L.A.; Oschlies, A.; Grégoire, M.; Chavez, F.P.; Conley, D.J.; Garçon, V.; Gilbert, D.; Gutiérrez, D.; Isensee, K.; et al. Declining oxygen in the global ocean and Coastal Waters. Science 2018, 359, eaam7240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collins, M.; Tills, O.; Turner, L.M.; Clark, M.S.; Spicer, J.I.; Truebano, M. Moderate reductions in dissolved oxygen may compromise performance in an ecologically-important estuarine invertebrate. Sci. Total Environ. 2019, 693, 133444. [Google Scholar] [CrossRef]
- Wei, Y.; Jiao, Y.; An, D.; Li, D.; Li, W.; Wei, Q. Review of Dissolved Oxygen Detection Technology: From Laboratory Analysis to online intelligent detection. Sensors 2019, 19, 3995. [Google Scholar] [CrossRef] [Green Version]
- Elkiran, G.; Nourani, V.; Abba, S.; Abdullahi, J. Artificial intelligence-based approaches for multi-station modelling of dissolve oxygen in river. Glob. J. Environ. Sci. Manag. 2018, 4, 439–450. [Google Scholar] [CrossRef]
- Kisi, O.; Alizamir, M.; Docheshmeh Gorgij, A.R. Dissolved oxygen prediction using a new ensemble method. Environ. Sci. Pollut. Res. 2020, 27, 9589–9603. [Google Scholar] [CrossRef]
- Abba, S.I.; Linh, N.T.; Abdullahi, J.; Ali, S.I.; Pham, Q.B.; Abdulkadir, R.A.; Costache, R.; Nam, V.T.; Anh, D.T. Hybrid machine learning ensemble techniques for modeling dissolved Oxygen Concentration. IEEE Access 2020, 8, 157218–157237. [Google Scholar] [CrossRef]
- Nourani, V.; Asghari, P.; Sharghi, E. Artificial Intelligence based ensemble modeling of Wastewater Treatment Plant using jittered data. J. Clean. Prod. 2021, 291, 125772. [Google Scholar] [CrossRef]
- Nur Adli Zakaria, M.; Abdul Malek, M.; Zolkepli, M.; Najah Ahmed, A. Application of artificial intelligence algorithms for Hourly River Level Forecast: A case study of Muda River, Malaysia. Alex. Eng. J. 2021, 60, 4015–4028. [Google Scholar] [CrossRef]
- Gaya, M.S.; Abba, S.I.; Abdu, A.M.; Tukur, A.I.; Saleh, M.A.; Esmaili, P.; Wahab, N.A. Estimation of water quality index using artificial intelligence approaches and multi-linear regression. IAES Int. J. Artif. Intell. IJ-AI 2020, 9, 126. [Google Scholar] [CrossRef] [Green Version]
- Elkiran, G.; Nourani, V.; Abba, S.I. Multi-step ahead modelling of river water quality parameters using ensemble artificial intelligence-based approach. J. Hydrol. 2019, 577, 123962. [Google Scholar] [CrossRef]
- Hayder, G.; Mustafa, H.M.; Kurniawan, I. Implementation of machine learning methods for monitoring and predicting water quality parameters. Biointerface Res. Appl. Chem. 2020, 11, 9285–9295. [Google Scholar] [CrossRef]
- Alizadeh, M.J.; Kavianpour, M.R.; Danesh, M.; Adolf, J.; Shamshirband, S.; Chau, K.-W. Effect of river flow on the quality of estuarine and coastal waters using machine learning models. Eng. Appl. Comput. Fluid Mech. 2018, 12, 810–823. [Google Scholar] [CrossRef] [Green Version]
- Saboe, D.; Ghasemi, H.; Gao, M.M.; Samardzic, M.; Hristovski, K.D.; Boscovic, D.; Burge, S.R.; Burge, R.G.; Hoffman, D.A. Real-time monitoring and prediction of water quality parameters and algae concentrations using microbial potentiometric sensor signals and Machine Learning Tools. Sci. Total. Environ. 2021, 764, 142876. [Google Scholar] [CrossRef] [PubMed]
- Sillberg, C.; Kullavanijaya, P.; Chavalparit, O. Water quality classification by integration of attribute-realization and support vector machine for the Chao Phraya River. J. Ecol. Eng. 2021, 22, 70–86. [Google Scholar] [CrossRef]
- Najah Ahmed, A.; Binti Othman, F.; Abdulmohsin Afan, H.; Khaleel Ibrahim, R.; Ming Fai, C.; Shabbir Hossain, M.; Ehteram, M.; Elshafie, A. Machine learning methods for better water quality prediction. J. Hydrol. 2019, 578, 124084. [Google Scholar] [CrossRef]
- Vidhya, R.; Valarmathi, K. Survey on automatic monitoring of Hydroponics Farms using IOT. In Proceedings of the 2018 3rd International Conference on Communication and Electronics Systems (ICCES), Coimbatore, India, 15–16 October 2018. [Google Scholar] [CrossRef]
- Sharma, N.; Acharya, S.; Kumar, K.; Singh, N.; Chaurasia, O.P. Hydroponics as an advanced technique for vegetable production: An overview. J. Soil Water Conserv. 2018, 17, 364. [Google Scholar] [CrossRef]
- Lennard, W.; Goddek, S. Aquaponics: The basics. In Aquaponics Food Production Systems; Springer: Cham, Switzerland, 2019; pp. 113–143. [Google Scholar] [CrossRef] [Green Version]
- Palm, H.W.; Knaus, U.; Appelbaum, S.; Strauch, S.M.; Kotzen, B. Coupled aquaponics systems. In Aquaponics Food Production Systems; Springer: Cham, Switzerland, 2019; pp. 163–199. [Google Scholar] [CrossRef] [Green Version]
- Lauguico, S.C.; Concepcion, R.S., II; Alejandrino, J.D.; Tobias, R.R.; Macasaet, D.D.; Dadios, E.P. A comparative analysis of machine learning algorithms modeled from machine vision-based lettuce growth stage classification in Smart Aquaponics. Int. J. Environ. Sci. Dev. 2020, 11, 442–449. [Google Scholar] [CrossRef]
- Jie Ong, Z.; Keong Ng, A.; Ya Kyaw, T. Intelligent outdoor aquaponics with automated grow lights and internet of things. In Proceedings of the 2019 IEEE International Conference on Mechatronics and Automation (ICMA), Tianjin, China, 4–7 August 2019. [Google Scholar] [CrossRef]
- Ghandar, A.; Ahmed, A.; Zulfiqar, S.; Hua, Z.; Hanai, M.; Theodoropoulos, G. A decision support system for urban agriculture using Digital Twin: A Case Study with Aquaponics. IEEE Access 2021, 9, 35691–35708. [Google Scholar] [CrossRef]
- Rozie, F.; Syarif, I.; Al Rasyid, M.U. Design and implementation of Intelligent Aquaponics Monitoring System based on IOT. In Proceedings of the 2020 International Electronics Symposium (IES), Surabaya, Indonesia, 29–30 September 2020. [Google Scholar] [CrossRef]
- Mehra, M.; Saxena, S.; Sankaranarayanan, S.; Tom, R.J.; Veeramanikandan, M. IOT based hydroponics system using Deep Neural Networks. Comput. Electron. Agric. 2018, 155, 473–486. [Google Scholar] [CrossRef]
- Vanipriya, C.H.; Maruyi, M.S.; Gupta, G. Artificial intelligence enabled plant emotion xpresser in the development hydroponics system. Mater. Today Proc. 2021, 45, 5034–5040. [Google Scholar] [CrossRef]
- Fakhrurroja, H.; Mardhotillah, S.A.; Mahendra, O.; Munandar, A.; Rizqyawan, M.I.; Pratama, R.P. Automatic ph and humidity control system for hydroponics using Fuzzy Logic. In Proceedings of the 2019 International Conference on Computer, Control, Informatics and Its Applications (IC3INA), Tangerang, Indonesia, 23–24 October 2019. [Google Scholar] [CrossRef]
- Silva, A.F.; Löfkvist, K.; Gilbertsson, M.; Os, E.V.; Franken, G.; Balendonck, J.; Pinho, T.M.; Boaventura-Cunha, J.; Coelho, L.; Jorge, P.; et al. Hydroponics monitoring through UV-VIS spectroscopy and artificial intelligence: Quantification of nitrogen, phosphorous and potassium. Chem. Proc. 2021, 5, 88. [Google Scholar] [CrossRef]
- Lakshmanan, R.; Djama, M.; Perumal, S.; Abdulla, R. Automated smart hydroponics system using internet of things. Int. J. Electr. Comput. Eng. IJECE 2020, 10, 6389. [Google Scholar] [CrossRef]
- Hutson, M. Artificial intelligence faces reproducibility crisis. Science 2018, 359, 725–726. [Google Scholar] [CrossRef]
- Doherty, E.; McNamara, G.; Fitzsimons, L.; Clifford, E. Design and implementation of a performance assessment methodology cognisant of data accuracy for Irish Wastewater Treatment Plants. J. Clean. Prod. 2017, 165, 1529–1541. [Google Scholar] [CrossRef] [Green Version]
- Perc, M.; Ozer, M.; Hojnik, J. Social and juristic challenges of artificial intelligence. Palgrave Commun. 2019, 5, 61. [Google Scholar] [CrossRef]
- Smit, R.; van de Loo, J.; van den Boomen, M.; Khakzad, N.; van Heck, G.J.; Wolfert, A.R.M.R. Long-term availability modeling of water treatment plants. J. Water Process Eng. 2019, 28, 203–213. [Google Scholar] [CrossRef]
- Weiss, K.; Khoshgoftaar, T.M.; Wang, D.D. A survey of Transfer Learning. J. Big Data 2016, 3, 9. [Google Scholar] [CrossRef] [Green Version]
- Pan, S.J.; Yang, Q. A survey on Transfer Learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 1345–1359. [Google Scholar] [CrossRef]
- Zhu, J.; Liapis, A.; Risi, S.; Bidarra, R.; Youngblood, G.M. Explainable AI for designers: A human-centered perspective on mixed-initiative co-creation. In Proceedings of the 2018 IEEE Conference on Computational Intelligence and Games (CIG), Maastricht, The Netherlands, 14–17 August 2018. [Google Scholar] [CrossRef] [Green Version]
- Liao, Q.V.; Singh, M.; Zhang, Y.; Bellamy, R.K.E. Introduction to explainable AI; Extended Abstracts. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, Honolulu, HI, USA, 25–30 April 2020. [Google Scholar] [CrossRef]
- Barredo Arrieta, A.; Díaz-Rodríguez, N.; Del Ser, J.; Bennetot, A.; Tabik, S.; Barbado, A.; Garcia, S.; Gil-Lopez, S.; Molina, D.; Benjamins, R.; et al. Explainable artificial intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion 2020, 58, 82–115. [Google Scholar] [CrossRef] [Green Version]
- Shen, Z.; Cui, P.; Liu, J.; Zhang, T.; Li, B.; Chen, Z. Stable learning via differentiated variable decorrelation. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Virtual, 6–10 July 2020. [Google Scholar] [CrossRef]
- Zhou, K.; Liu, Z.; Qiao, Y.; Xiang, T.; Loy, C.C. Domain Generalization in Vision: A Survey. arXiv 2021, arXiv:2103.02503. [Google Scholar] [CrossRef]
- Wang, J.; Lan, C.; Liu, C.; Ouyang, Y.; Qin, T. Generalizing to unseen domains: A survey on domain generalization. In Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, Virtual, 19–26 August 2021. [Google Scholar] [CrossRef]
- Kuang, K.; Xiong, R.; Cui, P.; Athey, S.; Li, B. Stable prediction with model misspecification and agnostic distribution shift. Proc. AAAI Conf. Artif. Intell. 2020, 34, 4485–4492. [Google Scholar] [CrossRef]
Leaning and Modeling Technique | General Applications * | Reviewed Water Treatment and Monitoring Applications | Advantages | Disadvantages |
---|---|---|---|---|
Random Forest (RF) | • Supervised machine learning • Regression, Classification [13,14,15,16,17,18] | • Adsorption process percent removal modeling • Simple and hybrid dissolved-oxygen modeling | • Intuitive model architecture • Capable of handling continuous and categorical inputs-even with missing values/data • Relatively stable with less impact due to noise and outliers • Bagging algorithm reduces overfitting and variance | • Accuracy and robustness determined by the “density” of decision trees • Increases in density result in significant increases in model complexity, model training period, and required computational power |
Support Vector Machines/Regressions (SVM/SVR) | • Supervised machine learning • Regression, Classification/ Pattern Analysis [19,20,21,22,23] | • Disinfection by-product (DBP) modeling • Membrane-process parameter modeling • Biological oxygen demand (BOD) and chemical oxygen demand (COD) modeling • Dissolved-oxygen modeling of rivers • Aquaponics growth rate modeling • Aquaponics growth stage classification | • Capable of handling high dimensional datasets (i.e., high number of inputs vs. lower number of outputs) • Capable of handling small dataset changes • Functional with both linear and non-linear data | • Kernel selection is initially difficult and time consuming • Modeling requires high computational power making SVM/SVR mostly not suitable for larger datasets • Susceptible to noise in datasets • Relatively long training times |
Fuzzy Inference System (FIS) | • Artificial intelligence • Decision making, system control [24,25,26,27,28] | • Chlorine dosage set-point control • Hydroponics system and environmental control | • Utilization of fuzzy logic rather than binary logic better models the human experience of decision making • Outputs and decisions are easily interpretable with a well-defined system | • Terminology can be interpreted as confusing without knowledge of fuzzy logic • Applicability dependent on operator-defined parameters and experience-prone to human error |
Genetic Algorithm/Genetic Programming (GA/GEP) | • Evolutionary, stochastic algorithm • Regression, Classification [29,30,31,32] | • DBP formation modeling | • Basic concept easy to understand for most • Multi-objective optimization is possible • Robust to both noisy datasets and local maxima/minima • Functional on discrete, continuous, and mixed datasets | • Implementation is often difficult and time consuming • Requires high computational power • Fitness/objective function and operators difficult to derive |
Artificial Neural Network (ANN)-General | • (Typically) Supervised machine learning • Regression, Classification [23,33,34] (Figure 1A) | • Chlorine dosage/set-point • DBP formation modeling • Adsorption process parameter modeling • Membrane-process parameter modeling • Dissolved-oxygen-concentration modeling • Hydroponics system control and classification | • Capable of handling high dimensional datasets • Modeling/prediction results obtained in a reasonable amount of time • Forward propagation capable of cheap and fast computation • See below for specific ANN model advantages | • High computational power associated with backward propagation stage • Some models and architecture themselves are difficult to understand • See below for specific ANN model disadvantages |
k-Nearest Neighbor (k-NN) | • Supervised machine learning • Classification [23,35,36] | • Aquaponics growth stage classification | • Easy to implement with little to no training period • Capable of handling new data additions | • Poor performance with large datasets and datasets with high dimensionality • Susceptible to noise, missing data, and outliers |
Hammerstein-Wiener (HW) | • Machine-learning model • Regression [37,38,39,40,41] | • Dissolved-oxygen-concentration modeling | • Capable of modeling dynamic datasets that display static non-linearity • Static non-linearity can be canceled to apply linear algorithms | • Particularly complex model that is difficult to understand and implement |
Radial Basis Function (RBF) Kernel | • Machine-learning function • Regression, Classification [23,42,43,44] | • DBP formation modeling • Adsorption process removal efficiency • Membrane-process parameter modeling | • Performs faster with less computational power than traditional ANN models • Less susceptible to local minima/maxima issues • Capable of handling noisy datasets • Simple three-layer (input, hidden, output) architecture | • Complexity greatly increases with increasing neurons in the model’s one hidden layer • Difficulty handling increasingly non-linear datasets |
Recurrent Neural Network (RNN)/Long Short-Term Memory (LSTM) | • Supervised machine learning • Regression, Classification [23,45,46,47,48] (Figure 1B) | • Membrane-process parameter modeling • Dissolve oxygen concentration modeling | • Suitable for time-series datasets and modeling • Suitable for sequential datasets and modeling • No limit to the length of dataset inputs | • Requires high computational power • Requires large and diverse datasets making training difficult |
Convolutional Neural Network (CNN) | • Supervised machine learning • Regression, Classification, Segmentation [23,49,50,51,52] (Figure 1D) | • DBP formation modeling | • Results are typically regarded as highly accurate • As the model runs in parallel, results are obtained quickly • Excel at solving with image-based inputs | • Model and architecture themselves are extensive and complicated • Requires high computational power |
Adaptive Neuro-Fuzzy Inference Systems (ANFIS) | • Supervised machine learning • Regression, Classification [53,54,55](Figure 1C) | • DBP formation modeling • Adsorption process removal efficiency modeling • Membrane-process parameters modeling • Dissolved-oxygen-concentration modeling • BOD/COD modeling | • Combined important advantages of ANN models with the FIS including: • No need to rely solely on the human experience as a FIS does • Relatively fast learning • Uses both numerical and linguistic language during modeling • Capable of handling non-linear datasets • Able to classify and recognize patterns as an ANN model does | • Requires high computational power that increases with the number of rules implemented • Highly susceptible to performance issues with smaller datasets; more so than other ANN models • Membership function type and number are vital and can be difficult to implement to create acceptable accuracy |
Extreme Learning Machine (ELM) | • Supervised machine learning • Regression, Classification [56,57,58] | • Dissolved-oxygen-concentration modeling | • Relatively short training times • Suitable for pattern classifications | • Often faces over-fitting or under-fitting if too many/few hidden nodes are utilized |
Target Compound (s) | Water Source | Disinfectant | AI/ML Technique Used | Input Variables | Output | Reference |
---|---|---|---|---|---|---|
Chlorine dose and free residual chlorine (FRC) set point | Surface water | Chlorine | ANN | Reservoir set-point output, FRC of treated water tank, FRC output of WTP (mg/L), WTP production flow rate, compensating system flow rate, dosage error | Chlorine dosage, WTP FRC set point | [68] |
Chlorine dose | Surface water | Chlorine (ClO) | FIS | Raw water total organic carbon (TOC), pH, contact time, temperature | Chlorine dosage recommendation, FRC | [69] |
Total trihalomethanes (TTHMs) | Surface water | Chlorine | SVM, ANN, GEP | pH, temperature, contact time, Cl2/DOC, bromine concentration | TTHM effluent concentration | [70] |
TTHM | Surface water | Chlorine (Cl2) | SVM, ANN | pH, temperature, residual chlorine, TOC, UV254 | TTHM effluent concentration pre-monsoon season (PrM) and post-monsoon season (PoM) | [71] |
TTHM | Surface water | Chlorine | ANN | Temperature, pH, TOC, algae concentration, chlorophyll-a concentration, pre, middle, and post chlorine concentration, total chlorine concentration | TTHM effluent concentration | [72] |
DCAA, TCAA, BCAA, HAA5, HAA9 | Tap water | Chlorine | RBF-ANN | Dissolved organic carbon (DOC), UVA254, bromine concentration, temperature, pH, Cl2 concentration, NO2-N concentration, NH4+-N concentration | DBP tap concentration | [73] |
TTHM, TCM, BDCM | Tap water | Chlorine | RBF-ANN | pH, temperature, UVA254, Cl2 concentration | DBP tap concentration | [74] |
TTHM, TCM, BDCM, THAA, DCAA, TCAA | Surface water | Peroxide/Ozone, Chlorine | ANN, CNN | Fluorescence spectra | DBP effluent concentration | [75] |
TTHMs, TCM, BDCM, DBCM | Surface water | Chlorine | ANFIS | Temperature, pH, UVA254, Cl2 concentration, dissolved-organic-carbon concentration | DBP effluent concentration | [76] |
DCAA, TCAA | Lab-created | Chlorine | ANN, RF, SVM | Number of aromatic bonds, hydrophilicity, electrotopological descriptors related to electrostatic interactions, and atomic distribution of electronegativity | DBP effluent concentration | [77] |
Adsorbate | Adsorbent | ML Technique Used | Input Variables | Output | Reference |
---|---|---|---|---|---|
Copper ions | Attapulgite clay | RF, ANN, SVM | Initial copper concentration, adsorbent dose, pH, contact time, addition of NaNO3 | Adsorbate percent removal | [80] |
Asphaltenes | Nickle(II) Oxide Nanocomposites | RBF-ANN, ANN, SVM, | Type of nanocomposite, pH, amount of adsorbent over adsorbate concentration, temperature | Adsorbate percent removal | [81] |
Various organic pollutants | Activated carbon | ANN, SVM, ANFIS | Molar mass of target contaminant, initial concentration, flow rate, bed height, specific surface area, contact time | Non-dimensional effluent concentration | [82] |
As (III) | Various | ANFIS | Initial concentration, adsorbent dose, pH, contact time, agitation speed, temperature, solution volume, inoculum size, flow rate | Adsorbate percent removal | [83] |
Methylene blue (MB), Cd(II) | Natural walnut activated carbon | ANN | pH, adsorbent mass, MB concentration, Cd(II) concentration, contact time | Adsorbate percent removal | [84] |
Sunset yellow (SY) | Neodymium modified carbon | ANN | Adsorbent dose, initial concentration, contact time | Adsorbate percent removal | [85] |
Ni(II), Cd(II) | Typha domingensis (Cattail) biomass | ANFIS | pH, adsorbent dosage, metal-ions concentration, contact, biosorbent particle size | Input parameters influence on removal efficiency | [86] |
Zn(II) | Rice husk | ANN | Initial concentration, contact time, temperature | Adsorption capacity | [87] |
Phosphate | Encapsulated nanoscale zero-valent iron | ANN | pH, phosphate concentration, adsorbent dose, stirring rate, reaction time | Adsorbate percent removal | [88] |
Various organic pollutants | Activated carbon | ANN | Molar mass of target contaminant, initial concentration, flow rate, bed height, particle diameter, BET surface area, average pore diameter | Non-dimensional effluent concentration | [89] |
Membrane Type | Water Source | ML Technique Used | Input Variables | Output | Reference |
---|---|---|---|---|---|
Titanium-based ceramic ultrafiltration | Petroleum production wastewater | ANN, ANFIS, RBF-ANN | pH, temperature, time, transmembrane pressure, crossflow velocity | Permeate flux | [92] |
Nanocomposite ultrafiltration | Various | ANN | Polymer type, polymer concentration, filler concentration, filler concentration, average filler size, solvent type, solvent concentration, contact angle | Solute rejection (SR), pure water flux (PWF), flux recovery (FR) | [93] |
Microfiltration | Dilute suspension mixture of crude oil, dilute suspension mixture of tween-20 | ANN | Flux rate, filtration time, shear rate | Transmembrane pressure (TMP) | [94] |
Submerged membrane bioreactor | Palm oil mill effluent | RNN | Pump voltage, airflow, transmembrane pressure OR flux | TMP, permeate flux (PF) | [95] |
Reverse osmosis | Saltwater | ANN | Membrane operating period, the time between cleanings, water temperature, input concentration, inflow, inlet pressure, recovery percent | Pressure drop (PD), salt passage (SP) | [96] |
Nanofiltration | Surface water w/ natural organic matter | RNN (LSTM) | Fluorescence regional integration, pressure, initial flux, DOC concentration, fouling layer thickness | Permeate flux (PF), fouling layer thickness (FLT) | [97] |
Nanofiltration/reverse osmosis | Pharmaceutical wastewater | ANN, SVM | Effective diameter of the target compound, logD, dipole moment, molecular length, molecular equivalent width, molecular weight cutoff, sodium chloride salt rejection, zeta potential, contact angle, pH, pressure, temperature, recovery | Rejection percentage of the target compound | [98] |
Location | ML Technique Used | Input Variables | Output | Ref |
---|---|---|---|---|
Mathura, India (Yamuna River) | ANN, ANFIS | pH, BOD, water temperature, dissolved oxygen (DO) (all inputs have independent variables taken at stations upstream, midstream, and downstream) | Upstream, midstream, and downstream DO concentration | [103] |
Oregon, USA (Link & Klamath Rivers) | ELM, ANN, ANFIS, RF | Hourly temperature, pH, specific conductivity | DO concentration | [104] |
Malaysia (Kinta River) | ANN, RNN (LSTM), ELM, HW, ANN-RF, RNN (LSTM)-RF, ELM-RF, HW-RF | BOD, COD, pH, NH3, temperature, chlorine, calcium, sodium, and total solids concentrations | DO concentration | [105] |
Tabriz, Iran (Tabriz WWTP) | ANN, ANFIS, SVM | Daily influent BOD/COD, TSS, pH, previous BOD/COD effluent | BOD, COD effluent | [106] |
Kedah, Malaysia (Muda River) | ANN, ANFIS | Water level for (t−1),(t−2), and (t−3), where t−1 is the water level 1 h ago, and so on | Future water level (in one hour) | [107] |
Palla, India (Yamuna River) | ANN, ANFIS | DO, pH, BOD, NH4, water temperature | Water-quality index | [108] |
Nizamuddin, India (Yamuna River) | ANN, ANFIS, SVM | pH, BOD, COD, flow rate, NH3 concentration, water temperature | DO concentration | [109] |
Udi, India (Yamuna River) | ANN, ANFIS, SVM | pH, BOD, COD, flow rate, NH3 concentration, water temperature | DO concentration | [109] |
Kelantan, Malaysia (Kelantan River) | ANN | DO concentration, BOD, COD, pH, ammonia nitrogen concentration, suspended solids | DO concentration, BOD, COD, pH, ammonia nitrogen concentration (NH3-NL), suspended solids (SS) | [110] |
Hilo, Hawaii (Wailuku River) | ANN, ELM, SVR | Hourly turbidity, hourly salinity, hourly water temperature, hourly river flow | Turbidity w/ river flow at t | [111] |
Mesa, Arizona (algae cultivation pond) | RNN (LSTM) | Microbial potentiometric sensor measured open-circuit potentials | Blue-green algae conc., conductivity, chlorophyll conc., DO, pH, turbidity | [112] |
Johor State, Malaysia (Johor River) | ANFIS | Temperature, conductivity, salinity, nitrate, turbidity, phosphate, chloride, potassium, sodium, magnesium, iron, and E-coli concentrations | Suspended solids, pH, ammoniacal nitrogen | [113] |
Thailand (Chao Phraya River) | SVM with varying kernel functions | BOD, DO, fecal coliform bacteria, total coliform bacteria, ammonia concentration, salinity | ammonia concentration, total coliform bacteria, fecal coliform bacteria, BOD, DO, salinity | [114] |
Type of Water-Based Agriculture | Intelligent Models, Methods, and Technology Utilized | Input Variables | Output | Reference |
---|---|---|---|---|
Aquaponics | k-NN, SVM | Images of crops | Growth stage classification (vegetative, head development, and harvestable) | [119] |
Aquaponics | IoT | Digital light, water level/plant height (ultrasonic), air temperature and humidity, water temperature (in a fish tank), electrical conductivity, pH | System health notifications, activation/deactivation of actuators for fish feeding, water heating, and grow lights | [120] |
Aquaponics | Smart Sensing and Control | Humidity, water temperature, pH, light intensity, total dissolved solids, room temperature, flow between systems | Water pump (for circulation), air pump (for water oxygenation), grow light, fish feeder | [121] |
Aquaponics | SVR | Water temperature, ambient temperature, pH, amount of fish feed used, TDS, ΔpH, Δwater temperature, Δambient temperature, Δfish weight, Δplant height | Fish growth rate, plant growth rate | [121] |
Aquaponics | IoT, FIS | Temperature, turbidity, pH, dissolved oxygen, TDS, ammonia concentration, water level | System health notifications, temperature, and ammonia control using FIS | [122] |
Hydroponics | IoT, ANN | pH, temperature, light intensity, humidity, water level | Water pump (for nutrient or pH control), light control, humidity control. | [123] |
Hydroponics | Novel AI monitoring system, Smart Sensing and Control | Humidity, temperature, pH, water level | System health notifications | [124] |
Hydroponics | FIS | pH, humidity | pH control, humidity control | [125] |
Hydroponics | Self-Learning AI | UV-vis spectroscopy | Total nitrogen, total phosphorus, total potassium, pH | [126] |
Hydroponics | IoT | Room temperature, room humidity, water temperature, water pH, horticultural lighting, fertilizer level | System health notifications | [127] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lowe, M.; Qin, R.; Mao, X. A Review on Machine Learning, Artificial Intelligence, and Smart Technology in Water Treatment and Monitoring. Water 2022, 14, 1384. https://doi.org/10.3390/w14091384
Lowe M, Qin R, Mao X. A Review on Machine Learning, Artificial Intelligence, and Smart Technology in Water Treatment and Monitoring. Water. 2022; 14(9):1384. https://doi.org/10.3390/w14091384
Chicago/Turabian StyleLowe, Matthew, Ruwen Qin, and Xinwei Mao. 2022. "A Review on Machine Learning, Artificial Intelligence, and Smart Technology in Water Treatment and Monitoring" Water 14, no. 9: 1384. https://doi.org/10.3390/w14091384
APA StyleLowe, M., Qin, R., & Mao, X. (2022). A Review on Machine Learning, Artificial Intelligence, and Smart Technology in Water Treatment and Monitoring. Water, 14(9), 1384. https://doi.org/10.3390/w14091384