Quantifying Evapotranspiration and Drainage Losses in a Semi-Arid Nectarine (Prunus persica var. nucipersica) Field with a Dynamic Crop Coefficient (Kc) Derived from Leaf Area Index Measurements
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Water Balance and LAI Monitoring
2.3. Water Balance Computations
3. Results and Discussion
4. Conclusions
- The use of a dynamic crop coefficient (Kc) approach, based on in situ leaf area index measurements, soil moisture and meteorological observations, resulted in Kc estimates with a bias (∑e_ΔSM < 0) of 17 mm and an MAE_ΔSM < 0 of 0.8 mm, over a three-year observation period in a terraced nectarine orchard in Cyprus.
- The fraction of rain and irrigation that returned to the atmosphere as evapotranspiration was lower in the wet year 2019 than in the dry years. It was 41% of (P + I) in 2019, 49% in 2020 and 57% in 2021.
- Drainage of precipitation from the 80 cm rootzone was 42% of the total rainfall (1574 mm) during the three years. These losses are higher than what would be expected from rainfed agricultural fields and natural ecosystem in this environment, because of the wet conditions of the irrigated field.
- Drainage losses from irrigation were 44% of the total irrigation (1923 mm) for the three irrigation seasons. The irrigation efficiency in the nectarine field could be improved by reducing irrigation amounts and increasing the irrigation frequency, based on the continuous soil moisture observations.
- The ground cover was not explicitly modeled in the Kc computations in this study. However, soil moisture observations indicated that it had an effect on evapotranspiration, as shown by the differences between ETa_wb in April 2020 and in April 2021.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- The World Bank Water in Agriculture. Available online: https://www.worldbank.org/en/topic/water-in-agriculture#1 (accessed on 24 January 2022).
- Lelieveld, J.; Proestos, Y.; Hadjinicolaou, P.; Tanarhte, M.; Tyrlis, E.; Zittis, G. Strongly Increasing Heat Extremes in the Middle East and North Africa (MENA) in the 21st Century. Clim. Change 2016, 137, 245–260. [Google Scholar] [CrossRef][Green Version]
- Zittis, G.; Hadjinicolaou, P.; Fnais, M.; Lelieveld, J. Projected Changes in Heat Wave Characteristics in the Eastern Mediterranean and the Middle East. Reg. Environ. Chang. 2016, 16, 1863–1876. [Google Scholar] [CrossRef]
- Zittis, G.; Bruggeman, A.; Lelieveld, J. Revisiting Future Extreme Precipitation Trends in the Mediterranean. Weather Clim. Extrem. 2021, 34, 100380. [Google Scholar] [CrossRef] [PubMed]
- Lelieveld, J.; Hadjinicolaou, P.; Kostopoulou, E.; Chenoweth, J.; El Maayar, M.; Giannakopoulos, C.; Hannides, C.; Lange, M.A.; Tanarhte, M.; Tyrlis, E.; et al. Climate Change and Impacts in the Eastern Mediterranean and the Middle East. Clim. Change 2012, 114, 667–687. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Constantinidou, K.; Hadjinicolaou, P.; Zittis, G.; Lelieveld, J. Effects of Climate Change on the Yield of Winter Wheat in the Eastern Mediterranean and Middle East. Clim. Res. 2016, 69, 129–141. [Google Scholar] [CrossRef][Green Version]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. FAO Irrigation and Drainage Paper No. 56 Crop Evapotranspiration; Food and Agriculture Organization of the United Nations: Rome, Italy, 1998; Volume 300. [Google Scholar]
- González-Altozano, P.; Pavel, E.W.; Oncins, J.A.; Doltra, J.; Cohen, M.; Paço, T.; Massai, R.; Castel, J.R. Comparative Assessment of Five Methods of Determining Sap Flow in Peach Trees. Agric. Water Manag. 2008, 95, 503–515. [Google Scholar] [CrossRef]
- Gautam, D.; Ostendorf, B.; Pagay, V. Estimation of Grapevine Crop Coefficient Using a Multispectral Camera on an Unmanned Aerial Vehicle. Remote Sens. 2021, 13, 2639. [Google Scholar] [CrossRef]
- Bellvert, J.; Marsal, J.; Girona, J.; Gonzalez-Dugo, V.; Fereres, E.; Ustin, S.L.; Zarco-Tejada, P.J. Airborne Thermal Imagery to Detect the Seasonal Evolution of Crop Water Status in Peach, Nectarine and Saturn Peach Orchards. Remote Sens. 2016, 8, 39. [Google Scholar] [CrossRef][Green Version]
- Ding, J.; Li, S.; Wang, H.; Wang, C.; Zhang, Y.; Yang, D. Estimation of Evapotranspiration and Crop Coefficient of Chinese Cabbage Using Eddy Covariance in Northwest China. Water 2021, 13, 2781. [Google Scholar] [CrossRef]
- Carpintero, E.; Mateos, L.; Andreu, A.; González-Dugo, M.P. Effect of the Differences in Spectral Response of Mediterranean Tree Canopies on the Estimation of Evapotranspiration Using Vegetation Index-Based Crop Coefficients. Agric. Water Manag. 2020, 238, 106201. [Google Scholar] [CrossRef]
- Zheng, S.; Ni, K.; Ji, L.; Zhao, C.; Chai, H.; Yi, X.; He, W.; Ruan, J. Estimation of Evapotranspiration and Crop Coefficient of Rain-Fed Tea Plants under a Subtropical Climate. Agronomy 2021, 11, 2332. [Google Scholar] [CrossRef]
- Pereira, L.S.; Paredes, P.; Hunsaker, D.J.; López-Urrea, R.; Mohammadi Shad, Z. Standard Single and Basal Crop Coefficients for Field Crops. Updates and Advances to the FAO56 Crop Water Requirements Method. Agric. Water Manag. 2021, 243, 106466. [Google Scholar] [CrossRef]
- Pereira, L.S.; Paredes, P.; Melton, F.; Johnson, L.; Wang, T.; López-Urrea, R.; Cancela, J.J.; Allen, R.G. Prediction of Crop Coefficients from Fraction of Ground Cover and Height. Background and Validation Using Ground and Remote Sensing Data. Agric. Water Manag. 2020, 241, 106697. [Google Scholar] [CrossRef]
- Scott, R.L.; Biederman, J.A. Partitioning Evapotranspiration Using Long-Term Carbon Dioxide and Water Vapor Fluxes. Geophys. Res. Lett. 2017, 44, 6833–6840. [Google Scholar] [CrossRef]
- Wei, Z.; Yoshimura, K.; Wang, L.; Miralles, D.G.; Jasechko, S.; Lee, X. Revisiting the Contribution of Transpiration to Global Terrestrial Evapotranspiration. Geophys. Res. Lett. 2017, 44, 2792–2801. [Google Scholar] [CrossRef][Green Version]
- Yan, G.; Hu, R.; Luo, J.; Weiss, M.; Jiang, H.; Mu, X.; Xie, D.; Zhang, W. Review of Indirect Optical Measurements of Leaf Area Index: Recent Advances, Challenges, and Perspectives. Agric. For. Meteorol. 2019, 265, 390–411. [Google Scholar] [CrossRef]
- Breda, N.J.J. Ground-Based Measurements of Leaf Area Index: A Review of Methods, Instruments and Current Controversies. J. Exp. Bot. 2003, 54, 2403–2417. [Google Scholar] [CrossRef]
- Parker, G.G. Tamm Review: Leaf Area Index (LAI) Is Both a Determinant and a Consequence of Important Processes in Vegetation Canopies. For. Ecol. Manage. 2020, 477, 118496. [Google Scholar] [CrossRef]
- Iio, A.; Hikosaka, K.; Anten, N.P.R.; Nakagawa, Y.; Ito, A. Global Dependence of Field-Observed Leaf Area Index in Woody Species on Climate: A Systematic Review. Glob. Ecol. Biogeogr. 2014, 23, 274–285. [Google Scholar] [CrossRef]
- Beeri, O.; Netzer, Y.; Munitz, S.; Mintz, D.F.; Pelta, R.; Shilo, T.; Horesh, A.; Mey-tal, S. Kc and LAI Estimations Using Optical and SAR Remote Sensing Imagery for Vineyards Plots. Remote Sens. 2020, 12, 3478. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S. Estimating Crop Coefficients from Fraction of Ground Cover and Height. Irrig. Sci. 2009, 28, 17–34. [Google Scholar] [CrossRef][Green Version]
- Netzer, Y.; Yao, C.; Shenker, M.; Bravdo, B.A.; Schwartz, A. Water Use and the Development of Seasonal Crop Coefficients for Superior Seedless Grapevines Trained to an Open-Gable Trellis System. Irrig. Sci. 2009, 27, 109–120. [Google Scholar] [CrossRef]
- Ayars, J.E.; Johnson, R.S.; Phene, C.J.; Trout, T.J.; Clark, D.A.; Mead, R.M. Water Use by Drip-Irrigated Late-Season Peaches. Irrig. Sci. 2003, 22, 187–194. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, H.; Gartung, J. Long-Term Productivity of Early Season Peach Trees under Different Irrigation Methods and Postharvest Deficit Irrigation. Agric. Water Manag. 2020, 230, 105940. [Google Scholar] [CrossRef]
- Johnson, R.S.; Williams, L.E.; Ayars, J.E.; Trout, T.J. Weighing Lysimeters Aid Study of Water Relations in Tree and Vine Crops. Calif. Agric. 2005, 59, 133–136. [Google Scholar] [CrossRef][Green Version]
- Zambrano-Vaca, C.; Zotarelli, L.; Beeson, R.C.; Morgan, K.T.; Migliaccio, K.W.; Chaparro, J.X.; Olmstead, M.A. Determining Water Requirements for Young Peach Trees in a Humid Subtropical Climate. Agric. Water Manag. 2020, 233, 106102. [Google Scholar] [CrossRef]
- Girona, J.; Mata, M.; Fereres, E.; Goldhamer, D.A.; Cohen, M. Evapotranspiration and Soil Water Dynamics of Peach Trees under Water Deficits. Agric. Water Manag. 2002, 54, 107–122. [Google Scholar] [CrossRef]
- Camera, C.; Bruggeman, A.; Hadjinicolaou, P.; Pashiardis, S.; Lange, M.A. Evaluation of Interpolation Techniques for the Creation of Gridded Daily Precipitation (1 × 1 km2); Cyprus, 1980–2010. J. Geophys. Res. Atmos. 2014, 119, 693–712. [Google Scholar] [CrossRef]
- Geological Survey Department of Cyprus. Geological Map of Cyprus. Available online: https://gsd.maps.arcgis.com/apps/View/index.html?appid=e6f54157fe8640cc853df09bf2e75dd72022 (accessed on 1 February 2022).
- LI-COR Inc. LAI-2200C Plant Canopy Analyzer: Instruction Manual. Available online: https://www.licor.com/env/support/LAI-2200C/manuals.html (accessed on 1 June 2017).
- Park, S.; Ryu, D.; Fuentes, S.; Chung, H.; Hernández-Montes, E.; O’Connell, M. Adaptive Estimation of Crop Water Stress in Nectarine and Peach Orchards Using High-Resolution Imagery from an Unmanned Aerial Vehicle (UAV). Remote Sens. 2017, 9, 828. [Google Scholar] [CrossRef][Green Version]
- Sadeghi, S.M.M.; Gordon, D.A.; Van Stan, J.T. A Global Synthesis of Throughfall and Stemflow Hydrometeorology. In Precipitation Partitioning by Vegetation; Springer: Cham, Switzerland, 2020; pp. 49–70. [Google Scholar] [CrossRef]
- Eliades, M.; Bruggeman, A.; Djuma, H.; Christou, A.; Rovanias, K.; Lubczynski, M.W. Testing Three Rainfall Interception Models and Different Parameterization Methods with Data from an Open Mediterranean Pine Forest. Agric. For. Meteorol. 2022, 313, 108755. [Google Scholar] [CrossRef]
- Hakimi, L.; Sadeghi, S.M.M.; Van Stan, J.T.; Pypker, T.G.; Khosropour, E. Management of Pomegranate (Punica granatum) Orchards Alters the Supply and Pathway of Rain Water Reaching Soils in an Arid Agricultural Landscape. Agric. Ecosyst. Environ. 2018, 259, 77–85. [Google Scholar] [CrossRef]
Water Balance Components (mm) | 2019 * | 2020 | 2021 ^ | Total |
---|---|---|---|---|
Rainfall (P) | 696 | 485 | 392 | 1574 |
Irrigation (I) | 512 | 796 | 615 | 1923 |
Drainage from rainfall (DR_P) | 328 | 198 | 127 | 654 |
Drainage from irrigation (DR_I) | 248 | 372 | 218 | 838 |
Soil moisture change (ΔSM) | 11 | −11 | −47 | −48 |
Reference evapotranspiration (ETo) | 793 | 988 | 973 | 2754 |
Evapotranspiration estimated from Kc approach (ETa_Kc) | 498 | 628 | 571 | 1698 |
Evapotranspiration estimated from water balance (ETa_wb) | 486 | 715 | 653 | 1853 |
Sum of Errors (∑e) | −13 | 86 | 82 | 155 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eliades, M.; Bruggeman, A.; Djuma, H.; Christofi, C.; Kuells, C. Quantifying Evapotranspiration and Drainage Losses in a Semi-Arid Nectarine (Prunus persica var. nucipersica) Field with a Dynamic Crop Coefficient (Kc) Derived from Leaf Area Index Measurements. Water 2022, 14, 734. https://doi.org/10.3390/w14050734
Eliades M, Bruggeman A, Djuma H, Christofi C, Kuells C. Quantifying Evapotranspiration and Drainage Losses in a Semi-Arid Nectarine (Prunus persica var. nucipersica) Field with a Dynamic Crop Coefficient (Kc) Derived from Leaf Area Index Measurements. Water. 2022; 14(5):734. https://doi.org/10.3390/w14050734
Chicago/Turabian StyleEliades, Marinos, Adriana Bruggeman, Hakan Djuma, Christos Christofi, and Christoph Kuells. 2022. "Quantifying Evapotranspiration and Drainage Losses in a Semi-Arid Nectarine (Prunus persica var. nucipersica) Field with a Dynamic Crop Coefficient (Kc) Derived from Leaf Area Index Measurements" Water 14, no. 5: 734. https://doi.org/10.3390/w14050734