A Rapid Method to Estimate the Different Components of the Water Balance in Mediterranean Watersheds
Abstract
:1. Introduction
1.1. Background
1.2. Recent Developments
1.3. Objectives of the Work
2. Materials and Methods
2.1. Data Used for the Diagnostic Method
2.2. Interpretation of the Cumulative Curves
- The reactivity of the watershed to intense rainfall events. Let us remember that the Mediterranean climatic context prevailing in the studied region is characterized by very important and violent rainy events. In such a climate, a “staircase” curve indicates a very reactive watershed where runoff dominates. Conversely, a smooth curve is characteristic of a regularly watered watershed (little impacted by Mediterranean rainfall events) or of a watershed dominated by groundwater flow (base flow in hydrological terminology).
- The relative importance of water abstractions by pumping and diversion in comparison to the effective precipitation volumes. This importance is assessed using the respective heights of the red and blue curves. If these two curves are close, or even merged, it means that the water abstractions are low with regard to the available water. If the distance between the two curves is large, this means that the water abstractions are significant. In such situations, natural water uses may be compromised (sustainability of rivers, support of low-water flows, recharge of wetlands, feeding of riparian vegetation, recharge of aquifers, etc.).
- Representativeness/reliability of the gauging station. If the red and black curves are close, it means that the hydrological functioning of the watershed is in accordance with its extension and rainfall, and that the gauging station measures the entirety of the flows generated by net inputs (rainfall–evapotranspiration–water abstraction).
- The relative importance of external exchanges to the benefit or detriment of the watershed. If the red and black curves are distant, it means that an unknown component of flow exists, i.e., that all flow components are not included within the boundaries. Upstream or lateral inputs may be contributed by neighboring aquifers. Similarly, part of the downstream flows may be subsurface and thus not quantified at the gauging station.
2.3. Studied Watersheds
3. Results
3.1. Cumulative Curves
3.2. Double-Mass Curves
3.3. Comparison of Decadal Increases in Cumulative Curves
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- European Commission. Guidance Document on the Application of Water Balances for Supporting the Implementation of the WFD; Technical Report—2015—090, Final—Version 6.1—18/05/2015; European Commission, Directorate-General for Environment, Publications Office: Brussel, Belgium, 2016. [Google Scholar] [CrossRef]
- Kampf, S.K.; Burges, S.J.; Hammond, J.; Bhaskar, A.; Covino, T.P.; Eurich, A.; Harrison, H.; Lefsky, M.; Martin, C.; McGrath, D.; et al. The Case for an Open Water Balance: Re-envisioning Network Design and Data Analysis for a Complex, Uncertain World. Water Resour. Res. 2020, 56, e2019WR026699. [Google Scholar] [CrossRef]
- Bassi, N.; Harish Kumara, B.K.; Sahasranaman, M.; Ganguly, A. Comment: Getting the Methodology Wrong for Analysing the Hydrological Changes in Watersheds. Hydrol. Earth Syst. Sci. Discuss. 2018, 187, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y. Are catchments leaky? Wiley Interdiscip. Rev. Water 2019, 6, e1386. [Google Scholar] [CrossRef]
- Le Mesnil, M.; Moussa, R.; Charlier, J.-B.; Caballero, Y. Impact of karst areas on runoff generation, lateral flow and interbasin groundwater flow at the storm-event timescale. Hydrol. Earth Syst. Sci. 2021, 25, 1259–1282. [Google Scholar] [CrossRef]
- Fan, Y.; Toran, L.; Schlische, R.W. Groundwater flow and groundwater-stream interaction in fractured and dipping sedimentary rocks: Insights from numerical models. Water Resour. Res. 2007, 43. [Google Scholar] [CrossRef]
- Rivera, A. Transboundary aquifers along the Canada–USA border: Science, policy and social issues. J. Hydrol. Reg. Stud. 2015, 4, 623–643. [Google Scholar] [CrossRef] [Green Version]
- Neilson, B.T.; Tennant, H.; Stout, T.L.; Miller, M.P.; Gabor, R.S.; Jameel, Y.; Millington, M.; Gelderloos, A.; Bowen, G.J.; Brooks, P.D. Stream Centric Methods for Determining Groundwater Contributions in Karst Mountain Watersheds. Water Resour. Res. 2018, 54, 6708–6724. [Google Scholar] [CrossRef]
- Kačaroğlu, F. Review of Groundwater Pollution and Protection in Karst Areas. Water, Air, Soil Pollut. 1999, 113, 337–356. [Google Scholar] [CrossRef]
- Longenecker, J.; Bechtel, T.; Chen, Z.; Goldscheider, N.; Liesch, T.; Walter, R. Correlating Global Precipitation Measurement satellite data with karst spring hydrographs for rapid catchment delineation. Geophys. Res. Lett. 2017, 44, 4926–4932. [Google Scholar] [CrossRef]
- Hartmann, A.; Goldscheider, N.; Wagener, T.; Lange, J.; Weiler, M. Karst water resources in a changing world: Review of hydrological modeling approaches. Rev. Geophys. 2014, 52, 218–242. [Google Scholar] [CrossRef]
- Dhungel, R.; Fiedler, F. Water balance to recharge calculation: Implications for watershed management using systems dynamics approach. Hydrology 2016, 3, 13. [Google Scholar] [CrossRef] [Green Version]
- Gonzales, A.L.; Nonner, J.; Heijkers, J.; Uhlenbrook, S. Comparison of different base flow separation methods in a lowland catchment. Hydrol. Earth Syst. Sci. 2009, 13, 2055–2068. [Google Scholar] [CrossRef] [Green Version]
- Jakada, H.; Chen, Z.; Luo, M.; Zhou, H.; Wang, Z.; Habib, M. Watershed Characterization and Hydrograph Recession Analysis: A Comparative Look at a Karst vs. Non-Karst Watershed and Implications for Groundwater Resources in Gaolan River Basin, Southern China. Water 2019, 11, 743. [Google Scholar] [CrossRef] [Green Version]
- Bayou, W.; Wohnlich, S.; Mohammed, M.; Ayenew, T. Application of Hydrograph Analysis Techniques for Estimating Groundwater Contribution in the Sor and Gebba Streams of the Baro-Akobo River Basin, Southwestern Ethiopia. Water 2021, 13, 2006. [Google Scholar] [CrossRef]
- McCallum, A.M.; Andersen, M.S.; Kelly, B.F.; Giambastiani, B.M.; Acworth, R. Hydrological Investigations of Surface Water-Groundwater Interactions in a Sub-Catchment in the Namoi Valley, NSW, Australia; Presented at Cotton Catchment Communities CRC, 2009 Science Forum, Narrabri, NSW, 17–19 August 2009; IAHS-AISH Publication: Narrabri, Australia, 2009; pp. 157–166. [Google Scholar]
- Andersen, M.S.; Acworth, R.I. Stream-aquifer interactions in the Maules Creek catchment, Namoi Valley, New South Wales, Australia. Appl. Hydrogeol. 2009, 17, 2005–2021. [Google Scholar] [CrossRef]
- Triana, J.S.A.; Chu, M.L.; Guzman, J.A.; Moriasi, D.N.; Steiner, J.L. Beyond model metrics: The perils of calibrating hydrologic models. J. Hydrol. 2019, 578, 124032. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, N. Recent progress in coupled surface–ground water models and their potential in watershed hydro-biogeochemical studies: A review. Watershed Ecol. Environ. 2021, 3, 17–29. [Google Scholar] [CrossRef]
- Gayathri, K.D.; Ganasri, B.P.; Dwarakish, G.S. A Review on Hydrological Models. International Conference on Water Resources, Coastal and Ocean Engineering (ICWRCOE 2015). Aquatic Procedia. 2015, 4, 1001–1007. [Google Scholar] [CrossRef]
- Kannan, N.; Santhi, C.; White, M.J.; Mehan, S.; Arnold, J.G.; Gassman, P.W. Some Challenges in Hydrologic Model Calibration for Large-Scale Studies: A Case Study of SWAT Model Application to Mississippi-Atchafalaya River Basin. Hydrology 2019, 6, 17. [Google Scholar] [CrossRef] [Green Version]
- Bailey, R.T.; Wible, T.C.; Arabi, M.; Records, R.M.; Ditty, J. Assessing regional-scale spatio-temporal patterns of groundwater-surface water interactions using a coupled SWAT-MODFLOW model. Hydrol. Processes 2016, 30, 4420–4433. [Google Scholar] [CrossRef]
- Dudai, Y.; Evers, K. To Simulate or Not to Simulate: What Are the Questions? Neuron 2014, 84, 254–261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahiablame, L.; Chaubey, I.; Engel, B.; Cherkauer, K.; Merwade, V. Estimation of annual baseflow at ungauged sites in Indiana USA. J. Hydrol. 2013, 476, 13–27. [Google Scholar] [CrossRef]
- Lee, H.; Choi, H.-S.; Chae, M.-S.; Park, Y.-S. A Study to Suggest Monthly Baseflow Estimation Approach for the Long-Term Hydrologic Impact Analysis Models: A Case Study in South Korea. Water 2021, 13, 2043. [Google Scholar] [CrossRef]
- Magyar, N.; Hatvani, I.; Arató, M.; Trásy, B.; Blaschke, A.; Kovács, J. A New Approach in Determining the Decadal Common Trends in the Groundwater Table of the Watershed of Lake “Neusiedlersee”. Water 2021, 13, 290. [Google Scholar] [CrossRef]
- Online Etymology Dictionary. Available online: https://www.etymonline.com/word/watershed (accessed on 4 February 2022).
- Available online: https://a4ws.org/wp-content/uploads/2018/09/AWS_Guidance_Catchments_20180831.pdf (accessed on 4 February 2022).
- Raynaud, F.; Mathieu-Subias, H.; Borrell-Estupina, V.; Pistre, S.; Seidel, J.-L.; Van-Exter, S.; de Montety, V.; Hernandez, F. Influence of Karstic System on Surface Flooding in Mediterranean Climate. In Engineering Geology for Society and Territory—Volume 3; Lollino, G., Arattano, M., Rinaldi, M., Giustolisi, O., Marechal, J.C., Grant, G., Eds.; Springer: Cham, Switzerland, 2014. [Google Scholar] [CrossRef]
- Vakanjac, V.R.; Prohaska, S.; Polomčić, D.; Blagojevic, B.; Vakanjac, B. Karst aquifer average catchment area assessment through monthly water balance equation with limited meteorological data set: Application to Grza spring in Eastern Serbia. Acta Carsologica/Karsoslovni Zb. 2013, 42. [Google Scholar] [CrossRef] [Green Version]
- Geng, X.; Zhang, C.; Zhang, F.; Chen, Z.; Nie, Z.; Liu, M. Hydrological Modeling of Karst Watershed Containing Subterranean River Using a Modified SWAT Model: A Case Study of the Daotian River Basin, Southwest China. Water 2021, 13, 3552. [Google Scholar] [CrossRef]
- French Water Abstraction Data. Available online: https://bnpe.eaufrance.fr (accessed on 15 December 2021).
- French Meteorological Data. Available online: https://publitheque.meteo.fr (accessed on 15 December 2021).
- French Soil Data in Cartographic Format. Available online: https://agroenvgeo.data.inra.fr (accessed on 15 December 2021).
- French Hydrologic Data. Available online: https://hydro.eaufrance.fr (accessed on 15 December 2021).
- Hailegeorgis, T.T.; Alfredsen, K.; Killingtveit, A. Appraisal of a Comprehensive Framework of Decision Support System (DSS) for Hydropower in Africa: The Influential Roles of Hydrology for Optimal and Sustainable Planning-Management and Potential Conflict Resolution among Water Uses/Users and Case Studies for Catchments in Ethiopia and Norway. November 2019. In Proceedings of the DSS for Hydropower in Africa. Project: Hydrology and Hydropower in Africa. Available online: https://www.researchgate.net/publication/336995275 (accessed on 4 February 2022).
- Merriam, C.F. A comprehensive study of the rainfall on the Susquehanna Valley. Trans. Am. Geophys. Union 1937, 18, 471–476. [Google Scholar] [CrossRef]
- Searcy, J.K.; Hardison, C.H.; Langein, W.B. Double-mass curves, with a section fitting curves to cyclic data. Gen. Surf.-Water Tech. 1960, 1541, 31–66. [Google Scholar] [CrossRef]
- Li, R.; Huang, H.; Yu, G.; Yu, H.; Bridhikitti, A.; Su, T. Trends of Runoff Variation and Effects of Main Causal Factors in Mun River, Thailand During 1980–2018. Water 2020, 12, 831. [Google Scholar] [CrossRef] [Green Version]
- Krijgsman, W.; Hilgen, F.J.; Raffi, I.; Sierro, F.; Wilson, D.S. Chronology, causes and progression of the Messinian salinity crisis. Nature 1999, 400, 652–655. [Google Scholar] [CrossRef] [Green Version]
- Rouchy, J.M.; Caruso, A. The Messinian salinity crisis in the Mediterranean basin: A reassessment of the data and an integrated scenario. Sediment. Geol. 2006, 188, 35–67. [Google Scholar] [CrossRef]
- Gargani, J. Modelling of the erosion in the Rhone valley during the Messinian crisis (France). Quat. Int. 2004, 121, 13–22. [Google Scholar] [CrossRef]
- Audra, P.; Mocochain, L.; Camus, H.; Gilli, E.; Clauzon, G.; Bigot, J.-Y. The effect of the Messinian Deep Stage on karst development around the Mediterranean Sea. Examples from Southern France. Geodin. Acta 2004, 17, 389–400. [Google Scholar] [CrossRef] [Green Version]
- Mocochain, L.; Clauzon, G.; Bigot, J.-Y.; Brunet, P. Geodynamic evolution of the peri-Mediterranean karst during the Messinian and the Pliocene: Evidence from the Ardèche and Rhône Valley systems canyons, Southern France. Sediment. Geol. 2006, 188, 219–233. [Google Scholar] [CrossRef]
- Fleury, P.; Bakalowicz, M.; de Marsily, G. Submarine springs and coastal karst aquifers: A review. J. Hydrol. 2007, 339, 79–92. [Google Scholar] [CrossRef]
- Lionello, P.; Malanotte-Rizzoli, P.; Boscolo, R.; Alpert, P.; Artale, V.; Li, L.; Luterbacher, J.; May, W.; Trigo, W.; Tsimplis, M.; et al. The Mediterranean Climate: An Overview of the Main Characteristics and Issues. Developments in Earth and Environmental. Sciences 2006, 4, 1–26. [Google Scholar] [CrossRef]
- Gil-Guirado, S.; Pérez-Morales, A.; Pino, D.; Peña, J.C.; Martínez, F.L. Flood impact on the Spanish Mediterranean coast since 1960 based on the prevailing synoptic patterns. Sci. Total Environ. 2021, 807, 150777. [Google Scholar] [CrossRef]
- Kutiel, H. Climatic Uncertainty in the Mediterranean Basin and Its Possible Relevance to Important Economic Sectors. Atmosphere 2019, 10, 10. [Google Scholar] [CrossRef] [Green Version]
- SIIVU Haute Siagne. Vers un Schéma d’Aménagement et de Gestion des Eaux sur le Bassin Versant de la Siagne. Dossier Préliminaire; SIIVU Haute Siagne: Saint-Cézaire-sur-Siagne, France, 2011; pp. 26–27. Available online: https://www.gesteau.fr/document/dossier-preliminaire-du-sage-siagne (accessed on 4 February 2022).
- Glintzboeckel, C.; Durozoy, G.; Theillier, P. Etude des Ressources Hydrologiques et Hydrogéologiques du Sud-Est. Bassins de L’arc et de L’huveaune—Report BRGM/68-SGL-166-PRC. 1968. Available online: http://infoterre.brgm.fr/rapports/68-SGN-166-PRC.pdf (accessed on 4 February 2022).
- DREAL PACA & Agence de l’eau RMC. Diagnostic Gestion Quantitative de la Ressource en Eau de la Région PACA; DREAL PAC: Marseille, France, 2008; pp. 113–114. Available online: http://www.paca.developpement-durable.gouv.fr/IMG/pdf/RAPPORT_etude_ressource_en_eau_cle7cb176-1.pdf (accessed on 4 February 2022).
- Gilli, E. Etude Préalable sur le Drainage des Karsts Littoraux; Agence de l’Eau RMC: Lyon, France, 2002; p. 23. Available online: https://doc-oai.eaurmc.fr/cindocoai/download/DOC/9000/1/MRS%20D%201552.pdf_5554Ko (accessed on 4 February 2022).
- Sassine, L.; Khaska, M.; Ressouche, S.; Simler, R.; Lancelot, J.; Verdoux, P.; Salle, C.L.G.L. Coupling geochemical tracers and pesticides to determine recharge origins of a shallow alluvial aquifer: Case study of the Vistrenque hydrogeosystem (SE France). Appl. Geochem. 2015, 56, 11–22. [Google Scholar] [CrossRef] [Green Version]
- Établissement Public Vistre Vistrenque. SAGE Vistre, Nappes Vistrenque et Costières. Plan d’Aménagement et de Gestion Durable (PAGD) des Ressources en eau et des Milieux Aquatiques; EPTB Vistre-Vistrenque: Aimargues, France, 2020; p. 20. Available online: https://www.gesteau.fr/sites/default/files/gesteau/content_files/document/SAGE-VNVC-PAGD-REGLEMENT-approuvé.pdf (accessed on 4 February 2022).
- Bailly-Comte, V. Interactions Hydrodynamiques Surface/Souterrain en Milieu Karstique. Approche Descriptive, Analyse Fonctionnelle et Modélisation Hydrologique Appliquées au Bassin Versant Expérimental du Coulazou, Causse d’Aumelas, France. Doctorat de l’Université Montpellier II; Université de Montpellier: Montpellier, France, 2008; p. 124. Available online: https://tel.archives-ouvertes.fr/tel-00319965v2 (accessed on 4 February 2022).
- Doerfliger, N.; Ladouche, B.; Bakalovicz, B.; Pinault, J.-L.; Chemin, P. Etude du Pourtour Est de l’Etang de Thau—Phase II—Synthèse Générale; Report BRGM/RP-50789-FR; BRGM: Orleans, France, 2001; Available online: http://infoterre.brgm.fr/rapports/RP-50789-FR.pdf (accessed on 4 February 2022).
- SYBLE. Plan de Gestion de la Ressource en Eau. Cours D’eau Lez et Mosson et Entité Mosson de L’aquifère des Calcaires Jurassiques du pli Ouest de Montpellier; Syndicat du Bassin du Lez: Prades-le-Lez, France, 2018; p. 15. Available online: http://www.syble.fr/uploads/pages_privees/acces%20reserve/PGRE%20SYBLE.pdf (accessed on 4 February 2022).
- CEREG Ingénierie. Elaboration du Schéma Directeur de la Ressource en Eau Sur le Bassin de l’Hérault. Détermination des Volumes Maximums Prélevables. Reconstitution de L’hydrologie Influencée et Naturelle (Phase 2); CEREG Ingénierie: Montpellier, France, 2015; p. 85. Available online: https://www.rhone-mediterranee.eaufrance.fr/sites/sierm/files/content/migrate_documents/EVP-Herault_rapport-phase2_sept2015.pdf (accessed on 4 February 2022).
- Parc Naturel Régional de la Narbonnaise en Méditerranée. Étang de La Palme. État des Lieux & Objectifs. Document d’objectifs Natura; Parc Naturel Régional de la Narbonnaise en Méditerranée: Sigean, France, 2000; Volume 1, p. 99. Available online: www.occitanie.developpement-durable.gouv.fr/IMG/pdf/DOCOB_LaPalme_vol1_cle511552.pdf (accessed on 4 February 2022).
N° | River | Area km2 |
---|---|---|
1 | Tech | 729 |
2 | Têt | 1300 |
3 | Agly | 1053 |
4 | Berre | 225 |
5 | Orb | 1330 |
6 | Hérault | 2550 |
7 | Mosson | 306 |
8 | Lez | 170 |
9 | Salaison | 50.8 |
10 | Vidourle | 770 |
11 | Vistre | 490 |
12 | Touloubre | 400 |
13 | Arc | 728 |
14 | Huveaune | 245 |
15 | Gapeau | 517 |
16 | Giscle | 65.8 |
17 | Argens | 2530 |
18 | Siagne | 515 |
19 | Loup | 279 |
20 | Var | 2820 |
N° | River | Calculated Flow Increase | Measured Flow Increase | Ratio (for Meas./Calc.) | |||
---|---|---|---|---|---|---|---|
Average | STD | Average | STD | of Average | of CV | ||
1 | Tech | 0.0067 | 0.0197 | 0.0084 | 0.0165 | 1.25 | 0.67 |
2 | Têt | 0.0054 | 0.0185 | 0.0068 | 0.0132 | 1.26 | 0.57 |
3 | Agly | 0.0046 | 0.0208 | 0.0050 | 0.0138 | 1.09 | 0.61 |
4 | Berre | 0.0069 | 0.0287 | 0.0027 | 0.0107 | 0.39 | 0.95 |
5 | Orb | 0.0149 | 0.0338 | 0.0160 | 0.0203 | 1.07 | 0.56 |
6 | Hérault-2 | 0.0148 | 0.0353 | 0.0130 | 0.0193 | 0.88 | 0.62 |
7 | Mosson | 0.0057 | 0.0129 | 0.0033 | 0.0063 | 0.58 | 0.84 |
8 | Lez-2 | 0.0099 | 0.0265 | 0.0144 | 0.0277 | 1.45 | 0.72 |
9 | Salaison | 0.0080 | 0.0256 | 0.0074 | 0.0142 | 0.93 | 0.60 |
10 | Vidourle | 0.0082 | 0.0220 | 0.0078 | 0.0138 | 0.95 | 0.66 |
11 | Vistre | 0.0043 | 0.0159 | 0.0055 | 0.0064 | 1.28 | 0.31 |
12 | Touloubre-2 | 0.0038 | 0.0133 | 0.0018 | 0.0025 | 0.47 | 0.40 |
13 | Arc | 0.0037 | 0.0127 | 0.0036 | 0.0045 | 0.97 | 0.36 |
14 | Huveaune | 0.0056 | 0.0170 | 0.0041 | 0.0050 | 0.73 | 0.40 |
15 | Gapeau | 0.0082 | 0.0294 | 0.0085 | 0.0175 | 1.04 | 0.57 |
16 | Giscle | 0.0108 | 0.0336 | 0.0105 | 0.0249 | 0.97 | 0.76 |
17 | Argens | 0.0085 | 0.0297 | 0.0078 | 0.0124 | 0.92 | 0.45 |
18 | Siagne | 0.0090 | 0.0285 | 0.0156 | 0.0246 | 1.73 | 0.50 |
19 | Loup | 0.0145 | 0.0400 | 0.0170 | 0.0310 | 1.17 | 0.66 |
20 | Var | 0.0150 | 0.0270 | 0.0149 | 0.0188 | 0.99 | 0.70 |
N° | River | Watershed Area (km2) | Cumulated Volume (M·m3/Year) | Measured-Calculated | |||
---|---|---|---|---|---|---|---|
Measured Flow | Effective Precipitations | Eff. Prec.—Water Abstraction | M·m3/y | % | |||
1 | Tech | 729 | 221 | 210 | 176 | 45 | 26% |
2 | Têt | 1300 | 318 | 300 | 252 | 66 | 26% |
3 | Agly | 1053 | 188 | 188 | 173 | 15 | 9% |
4 | Berre | 225 | 22 | 56 | 56 | −34 | −61% |
5 | Orb | 1330 | 765 | 754 | 710 | 55 | 8% |
6 | Hérault-2 | 2180 | 1017 | 1256 | 1158 | −141 | −12% |
7 | Mosson | 306 | 36 | 97 | 63 | 127 | −43% |
8 | Lez-2 | 150 | 78 | 58 | 54 | 24 | 45% |
9 | Salaison | 50.8 | 14 | 20 | 15 | −1 | −7% |
10 | Vidourle | 770 | 216 | 240 | 226 | −10 | −5% |
11 | Vistre | 490 | 96 | 91 | 75 | 22 | 29% |
12 | Touloubre-2 | 234 | 15 | 35 | 32 | −17 | −53% |
13 | Arc | 728 | 93 | 119 | 98 | −4 | −4% |
14 | Huveaune | 245 | 36 | 60 | 49 | −13 | −27% |
15 | Gapeau | 517 | 157 | 155 | 151 | 5 | 4% |
16 | Giscle | 65.8 | 25 | 33 | 26 | −1 | −3% |
17 | Argens | 2530 | 710 | 854 | 775 | −64 | −8% |
18 | Siagne | 515 | 289 | 203 | 167 | 122 | 73% |
19 | Loup | 279 | 171 | 186 | 145 | 25 | 17% |
20 | Var | 2820 | 1505 | 1589 | 1521 | −16 | −1% |
N° | River | Estimated Unknown Component (M·m3/y) | Observed Flows (M·m3/y) | Nature of Flows and References |
---|---|---|---|---|
3 | Agly | 15 | 19 | Karst springs emerging near La Palme lagoon [59]. |
6 | Hérault-2 | 141 | 57 | Flow contributed to the Lez karst spring [57]. |
95 | Downstream losses in the coastal plain of Hérault [58] | |||
7 | Mosson | 127 | 95–125 | Karst springs feeding the Thau lagoon [55,56]. |
8 | Lez-2 | 24 | 27 | Flow not taken from the Lez karst spring for drinking water [57]. |
11 | Vistre | 22 | 10–17 | Estimation of the contribution of karstic limestones located upstream of the watershed [54]. |
12 | Touloubre-2 | 17 | 17 | Downstream karst springs [52]. |
14 | Huveaune | 13 | 16–32 | Stream losses estimated but connection demonstrated by tracing to the downstream submarine karst springs of Port-Miou [50]. |
18 | Siagne | 122 | 117 | Upstream karst springs flowing into the topographic watershed [49] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banton, O.; St-Pierre, S.; Giraud, A.; Stroffek, S. A Rapid Method to Estimate the Different Components of the Water Balance in Mediterranean Watersheds. Water 2022, 14, 677. https://doi.org/10.3390/w14040677
Banton O, St-Pierre S, Giraud A, Stroffek S. A Rapid Method to Estimate the Different Components of the Water Balance in Mediterranean Watersheds. Water. 2022; 14(4):677. https://doi.org/10.3390/w14040677
Chicago/Turabian StyleBanton, Olivier, Sylvie St-Pierre, Anaïs Giraud, and Stéphane Stroffek. 2022. "A Rapid Method to Estimate the Different Components of the Water Balance in Mediterranean Watersheds" Water 14, no. 4: 677. https://doi.org/10.3390/w14040677
APA StyleBanton, O., St-Pierre, S., Giraud, A., & Stroffek, S. (2022). A Rapid Method to Estimate the Different Components of the Water Balance in Mediterranean Watersheds. Water, 14(4), 677. https://doi.org/10.3390/w14040677