Characteristic and Attribution of Runoff Variation in the Yanhe River Basin, Loess Plateau, Based on the Budyko Hypothesis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Basic Data
2.2. Data Processing and Analysis
2.2.1. Potential Evapotranspiration
2.2.2. Time-Varying Trends in Hydrological and Meteorological Elements
2.2.3. Attribution Analysis of Runoff Change
3. Results
3.1. Identification of Abrupt Change in Runoff
3.2. Inter-Annual Alteration in Hydrological and Meteorological Elements
3.3. Elasticity of Runoff to Climate and Vegetation
3.4. Composition and Transfer of Land-Use
3.5. Attribution Analysis of Runoff Change
4. Discussion
4.1. Variation of Hydrological and Meteorological Elements in the Yanhe River Basin
4.2. Attribution Analysis of Runoff Change
4.3. The Eco-Hydrological Effects of Vegetation Restoration
4.4. Uncertainty in Attribution Analysis of Runoff Change
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Piao, S.; Ciais, P.; Huang, Y.; Shen, Z.; Peng, S.; Li, J.; Zhou, L.; Liu, H.; Ma, Y.; Ding, Y.; et al. The impacts of climate change on water resources and agriculture in China. Nature 2010, 467, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Fu, B.; Piao, S.; Lü, Y.; Ciais, P.; Feng, X.; Wang, Y. Reduced sediment transport in the Yellow River due to anthropogenic changes. Nat. Geosci. 2016, 9, 38–41. [Google Scholar] [CrossRef]
- Nilsson, C.; Reidy, C.A.; Dynesius, M.; Revenga, C. Fragmentation and flow regulation of the world’s large river systems. Science 2005, 308, 405–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Liu, C.; Zhang, D.; Liang, K.; Li, X.; Dong, G. Reduced runoff due to anthropogenic intervention in the Loess Plateau, China. Water 2016, 8, 458. [Google Scholar] [CrossRef]
- Yao, W.; Xiao, P.; Shen, Z.; Wang, J.; Jiao, P. Analysis of the contribution of multiple factors to the recent decrease in load and sediment yield in the Yellow River basin, China. J. Geogr. Sci. 2016, 26, 1289–1304. [Google Scholar] [CrossRef]
- Milly, P.C.D.; Betancourt, J.; Falkenmark, M.; Hirsch, R.; Kundzewicz, Z.; Lettenmaier, D.; Stouffer, R. Stationarity is dead: Whither water management? Science 2008, 319, 573–574. [Google Scholar] [CrossRef]
- Jaramillo, F.; Destouni, G. Local flow regulation and irrigation raise global human water consumption and footprint. Science 2015, 350, 1248–1251. [Google Scholar] [CrossRef]
- Song, X.; Zhang, J.; Zhan, C.; Liu, C. Review for impacts of climate change and human activities on water cycle. J. Hydraul. Eng. 2013, 44, 779–790. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, X.; Zheng, J.; Hao, Z. Climate change assessments for the main economic zones of China during recent decades. Prog. Geogr. 2020, 39, 1609–1618. (In Chinese) [Google Scholar] [CrossRef]
- Li, M.; Sun, H.; Su, Z. Research progress in dry/wet climate variation in Northwest China. Geogr. Res. 2021, 40, 1180–1194. (In Chinese) [Google Scholar] [CrossRef]
- Liu, C.; Wang, P.; Wen, T.; Yu, D.; Bai, W. Spatio-temporal characteristics of climate change in the Yellow River source area from 1960 to 2019. Arid Zone Res. 2021, 38, 293–302. (In Chinese) [Google Scholar] [CrossRef]
- Gu, C.; Mu, X.; Gao, P.; Sun, W.; Zhao, G. Characteristics of temporal variation in precipitation and temperature in the Loess Plateau from 1961 to 2014. J. Arid Land Resour. Environ. 2017, 31, 136–143. (In Chinese) [Google Scholar] [CrossRef]
- Ding, Y.; Liu, S.; Li, J.; Shangguan, D. The retreat of glaciers in response to recent climate warming in western China. Ann. Glaciol. 2006, 43, 97–105. [Google Scholar] [CrossRef] [Green Version]
- Kingsford, R.T. Ecological impacts of dams, water diversions and river management on floodplain wetlands in Australia. Austral Ecol. 2000, 25, 109–127. [Google Scholar] [CrossRef]
- Li, Z.; Liu, X.; Niu, T.; Kejia, D.; Zhou, Q.; Ma, T.; Gao, Y. Ecological restoration and its effects on a regional climate: The source region of the Yellow River, China. Environ. Sci. Technol. 2015, 49, 5897–5904. [Google Scholar] [CrossRef]
- Jiang, W.; Yuan, L.; Wang, W.; Cao, R.; Zhang, Y.; Shen, W. Spatio-temporal analysis of vegetation variation in the Yellow River Basin. Ecol. Indic. 2015, 51, 117–126. [Google Scholar] [CrossRef]
- Gao, P.; Mu, X.; Wang, F.; Li, R. Changes in streamflow and sediment discharge and the response to human activities in the middle reaches of the Yellow River. Hydrol. Earth Syst. Sci. 2011, 15, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Mu, X.; Zhang, L.; Mcvicar, T.; Chille, B.; Gau, P. Analysis of the impact of conservation measures on stream flow regime in catchments of the Loess Plateau, China. Hydrol. Process. 2010, 21, 2124–2134. [Google Scholar] [CrossRef]
- Chen, P.; Shang, J.; Qian, B.; Jing, Q.; Liu, J. A New Regionalization Scheme for Effective Ecological Restoration on the Loess Plateau in China. Remote Sens. 2017, 9, 1323. [Google Scholar] [CrossRef] [Green Version]
- Mo, K.; Chen, Q.; Chen, C.; Zhang, J.; Wang, L.; Bao, Z. Spatiotemporal variation of correlation between vegetation cover and precipitation in an arid mountain-oasis river basin in northwest China. J. Hydrol. 2019, 574, 138–147. [Google Scholar] [CrossRef]
- Li, C.; Wang, J.; Hu, R.; Shan, Y.; Ayal, D. Relationship between vegetation change and extreme climate indices on the Inner Mongolia Plateau, China, from 1982 to 2013. Ecol. Indic. 2018, 89, 101–109. [Google Scholar] [CrossRef]
- Sun, W.; Song, X.; Mu, X.; Gao, P.; Wang, F.; Zhao, G. Spatiotemporal vegetation cover variations associated with climate change and ecological restoration in the Loess Plateau. Agric. For. Meteorol. 2015, 209–210, 87–99. [Google Scholar] [CrossRef]
- Chang, J.; Wang, Y.; Istanbulluoglu, E.; Bai, T.; Huang, Q.; Yang, D.; Huang, S. Impact of climate change and human activities on runoff in the Weihe River Basin, China. Quat. Int. 2015, 380, 169–179. [Google Scholar] [CrossRef]
- Wang, D.; Hejazi, M. Quantifying the relative contribution of the climate and direct human impacts on mean annual streamflow in the contiguous United States. Water Resour. Res. 2011, 47, W00J02. [Google Scholar] [CrossRef] [Green Version]
- Brown, A.E.; Lu, Z.; Mcmahon, T.A.; Western, A.W.; Vertessy, R.A. A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation. J. Hydrol. 2005, 310, 28–61. [Google Scholar] [CrossRef]
- Pike, J.G. The estimation of annual run-off from meteorological data in a tropical climate. J. Hydrol. 1964, 2, 116–123. [Google Scholar] [CrossRef]
- Yang, H.; Yang, D.; Lei, Z.; Sun, F. New analytical derivation of the mean annual water-energy balance equation. Water Resour. Res. 2008, 44, 893–897. [Google Scholar] [CrossRef]
- Zhou, G.; Wei, X.; Chen, X.; Zhou, P.; Liu, X.; Xiao, Y.; Sun, G.; Scott, D.; Zhou, S.; Han, L.; et al. Global pattern for the effect of climate and land cover on water yield. Nat. Commun. 2015, 6, 5918. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.; Zhang, L.; Zhu, R.; Liu, C.; Sato, Y.; Fukushima, Y. Responses of streamflow to climate and land surface change in the headwaters of the Yellow River basin. Water Resour. Res. 2009, 45, 641–648. [Google Scholar] [CrossRef]
- Liu, X.; Liu, C.; Luo, Y.; Zhang, M.; Xia, J. Dramatic decrease in streamflow from the headwater source in the central route of China’s water diversion project: Climatic variation or human influence? J. Geophys. Res. Atmos. 2012, 117, D06113. [Google Scholar] [CrossRef] [Green Version]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper 56; FAO: Roma, Italy, 1998. [Google Scholar]
- Mann, H.B. Nonparametric test against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank correlation methods. Brit. J. Psychol. 1990, 25, 86–91. [Google Scholar] [CrossRef]
- Budyko, M.I. Evaporation under Natural Conditions, Gidrometeoizdat, Leningrad 1948; English Translation byIsrael Program for Scientific Translations; IPST: Jerusalem, Israel, 1963. [Google Scholar]
- Patterson, L.A.; Lutz, B.; Doyle, M.W. Climate and direct human contributions to changes in mean annual streamflow in the South Atlantic, USA. Water Resour. Res. 2013, 49, 7278–7291. [Google Scholar] [CrossRef]
- Ren, Z.; Zhang, G.; Yang, Q. Characteristics of runoff and sediment variation in Yanhe River basin in last 50 years. J. China Hydrol. 2012, 32, 81–86. (In Chinese) [Google Scholar] [CrossRef]
- Li, C.; Wang, H.; Yu, F.; Yang, A.; Yan, D. Impact of soil and water conservation on runoff and sediment in Yanhe River Basin. Sci. Soil Water Conserv. 2011, 9, 1–8. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, L.; Zhao, J.; Rustomji, P.; Hairsine, P. Responses of streamflow to changes in climate and land use/cover in the Loess Plateau, China. Water Resour. Res. 2008, 44, W00A07. [Google Scholar] [CrossRef]
- Gao, P.; Jiang, G.; Wei, Y.; Mu, X.; Wang, F.; Zhao, G.; Sun, W. Streamflow regimes of the Yanhe River under climate and land use change, Loess Plateau, China. Hydrol. Process. 2015, 29, 2402–2413. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, Q. Characteristics of runoff and sediment transport during 1960–2010 and its response to Grain for Green Project in Yanhe River. Sci. Soil Water Conserv. 2017, 15, 1–7. (In Chinese) [Google Scholar] [CrossRef]
- Zhu, Z.; Piao, S.; Myneni, R.; Huang, M.; Zeng, Z.; Canadell, J.; Ciais, P.; Sitch, S.; Friedlingstein, P.; Arneth, A.; et al. Greening of the earth and its drivers. Nat. Clim. Change 2016, 6, 791–795. [Google Scholar] [CrossRef]
- Yang, D.; Shao, W.; Yeh, P.J.F.; Yang, H.; Kanae, S.; Oki, T. Impact of vegetation coverage on regional water balance in the nonhumid regions of China. Water Resour. Res. 2009, 45, 507–519. [Google Scholar] [CrossRef] [Green Version]
- Xia, Y.; Zhang, S.; Gao, W.; Zhang, H.; Guo, L. Influence of greening Loess Plateau on streamflow change in Yanhe River basin of the middle Yellow River, China. J. Earth Sci. Environ. 2020, 42, 849–860. (In Chinese) [Google Scholar] [CrossRef]
- Cao, S.; Chen, L.; Yu, X. Impact of China’s Grain for Green Project on the landscape of vulnerable arid and semi–arid agricultural regions: A case study in northern Shaanxi Province. J. Appl. Ecol. 2009, 46, 536–543. [Google Scholar] [CrossRef]
Period | Runoff | Precipitation | ET0 |
---|---|---|---|
1969–1979 | 0.318 | 0.217 | 0.024 |
1980–1989 | 0.250 | 0.198 | 0.032 |
1990–1999 | 0.245 | 0.184 | 0.038 |
2000–2009 | 0.300 | 0.177 | 0.038 |
2010–2019 | 0.414 | 0.253 | 0.028 |
1969–2019 | 0.340 | 0.074 | 0.222 |
Period | n | εP | εET0 | εn |
---|---|---|---|---|
Reference period (PI, 1969–2000) | 1.896 | 0.189 | –0.043 | –2.033 |
Change period (PII, 2001–2019) | 2.244 | 0.133 | –0.033 | –1.339 |
Study period (1969–2019) | 2.025 | 0.166 | –0.039 | –1.738 |
Period | Land-Use | Farmland | Construction Land | Other Land | Woodland | Grassland | Waters |
---|---|---|---|---|---|---|---|
1985–1995 | Farmland | 2513.95 | 2.72 | 0.1 | 13.04 | 33.95 | 1.33 |
Construction land | 0.1 | 22.18 | 0 | 0 | 0.1 | 0.05 | |
Other land | 0 | 0 | 2.5 | 0 | 0 | 0 | |
Woodland | 14.94 | 0.38 | 0 | 498.69 | 40.84 | 0.07 | |
Grassland | 57.83 | 0.17 | 0 | 18.93 | 2652.82 | 0.47 | |
Waters | 0.23 | 0 | 0 | 0.15 | 0.32 | 15.78 | |
1995–2000 | Farmland | 2359.47 | 4.05 | 0.53 | 42.67 | 177.91 | 2.42 |
Construction land | 2.09 | 22.08 | 0 | 0.4 | 0.79 | 0.09 | |
Other land | 0.75 | 0 | 1.75 | 0.01 | 0.09 | 0 | |
Woodland | 24.93 | 0.33 | 0.01 | 479.7 | 25.6 | 0.24 | |
Grassland | 156.96 | 1.79 | 0.04 | 47.72 | 2520.54 | 0.98 | |
Waters | 1.75 | 0.15 | 0.03 | 0.13 | 0.75 | 14.89 | |
2000–2008 | Farmland | 1023.16 | 8.13 | 0 | 75.28 | 1438.6 | 0.78 |
Construction land | 2.56 | 25.37 | 0 | 0.21 | 0.21 | 0.05 | |
Other land | 0.13 | 0.17 | 2.06 | 0 | 0 | 0 | |
Woodland | 0 | 0.26 | 0 | 570.37 | 0 | 0 | |
Grassland | 0 | 0.76 | 0 | 0 | 2724.45 | 0.47 | |
Waters | 0.8 | 0.86 | 0 | 0.03 | 0.02 | 16.91 | |
2008–2015 | Farmland | 295.23 | 51.66 | 18.44 | 85.96 | 571.98 | 3.38 |
Construction land | 0.54 | 30.7 | 0.15 | 0.43 | 3.62 | 0.11 | |
Other land | 0.01 | 0.03 | 0.04 | 0.18 | 1.8 | 0 | |
Woodland | 1.13 | 8.54 | 4.33 | 437.39 | 193.81 | 0.69 | |
Grassland | 8.95 | 68.25 | 38.08 | 753.17 | 3287.44 | 7.39 | |
Waters | 0.12 | 4 | 0.32 | 0.53 | 8.33 | 4.91 |
CP | CET0 | Cn | δ | |
---|---|---|---|---|
Variation/mm | 0.461 | –0.542 | –8.536 | –0.203 |
Contribution/% | –5.23 | 6.15 | 96.78 | 2.30 |
Period | n | εn |
---|---|---|
2001–2009 | 2.271 | –1.398 |
2010–2019 | 2.224 | –1.215 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, K.; Wang, J.; Wang, X. Characteristic and Attribution of Runoff Variation in the Yanhe River Basin, Loess Plateau, Based on the Budyko Hypothesis. Water 2022, 14, 495. https://doi.org/10.3390/w14030495
Hou K, Wang J, Wang X. Characteristic and Attribution of Runoff Variation in the Yanhe River Basin, Loess Plateau, Based on the Budyko Hypothesis. Water. 2022; 14(3):495. https://doi.org/10.3390/w14030495
Chicago/Turabian StyleHou, Kun, Jiping Wang, and Xiuru Wang. 2022. "Characteristic and Attribution of Runoff Variation in the Yanhe River Basin, Loess Plateau, Based on the Budyko Hypothesis" Water 14, no. 3: 495. https://doi.org/10.3390/w14030495
APA StyleHou, K., Wang, J., & Wang, X. (2022). Characteristic and Attribution of Runoff Variation in the Yanhe River Basin, Loess Plateau, Based on the Budyko Hypothesis. Water, 14(3), 495. https://doi.org/10.3390/w14030495