Simulating Discharge in a Non-Dammed River of Southeastern South America Using SWAT Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. The SWAT Model
2.2.1. Model Setup
2.2.2. Meteorological Input Data
2.2.3. Parameterization and Sensitivity Analysis
2.2.4. Model Calibration
2.2.5. Model Evaluation
2.3. Flow Duration Analysis
3. Results
3.1. Model Assessment
3.2. Flow Duration Curve Assessment
3.2.1. Tereza Cristina
3.2.2. Ubá do Sul
3.2.3. Vila Rica
3.2.4. Porto Paraíso do Norte
3.2.5. Novo Porto Taquara
3.3. Model Validation
4. Discussion
5. Conclusions
- The calibrated SWAT model was suitable for use in addressing a range of questions, including infrastructure projects, land cover substitution, transport of sediment, nutrients, and assessment of water quality, as well as shifts in meteorological and hydrological conditions due to climate variability or change.
- Calibrated parameters were not able to capture the effects of the fractures in the basalt that added water to the streams around the Middle Ivaí River. This effect was observed mainly in the form of maximum peaks of streamflow.
- Under the operational use perspective, the performance of the calibrated model presented in this study, proven by several statistical indexes, suggested that SWAT predictions could be broadly adopted by Ivaí River managers with minimum reservation, albeit only under extreme streamflow conditions.
- The Ivaí River is a non-dammed course—but several projects involving hydroelectric plants have been planned are advancing into their implementation phases at the time of this study. Good calibration in the current configuration could build up a broad range of opportunities to investigate future scenarios and avoid unintended consequences.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Agência Nacional das Águas e Saneamento Básico. Conjuntura dos Recursos Hídricos no Brasil 2020—Informe Anual; Agência Nacional das Águas e Saneamento Básico: Brasília, Brazil, 2020; p. 118. [Google Scholar]
- Coelho, C.A.S.; de Oliveira, C.P.; Ambrizzi, T.; Reboita, M.S.; Carpenedo, C.B.; Campos, J.L.P.S.; Tomaziello, A.C.N.; Pampuch, L.A.; Custódio, M.S.; Dutra, L.M.M.; et al. The 2014 southeast Brazil austral summer drought: Regional scale mechanisms and teleconnections. Clim. Dyn. 2016, 46, 3737–3752. [Google Scholar] [CrossRef]
- Nobre, C.A.; Marengo, J.A.; Seluchi, M.E.; Cuartas, L.A.; Alves, L.M. Some Characteristics and Impacts of the Drought and Water Crisis in Southeastern Brazil during 2014 and 2015. J. Water Resour. Prot. 2016, 8, 252–262. [Google Scholar] [CrossRef] [Green Version]
- Oki, T.; Kanae, S. Global hydrological cycles and world water resources. Science 2016, 313, 1068–1072. [Google Scholar] [CrossRef] [Green Version]
- Steduto, P.; Faurès, J.M.; Hoogeveen, J.; Winpenny, J.; Burke, J. Coping with Water Scarcity: An Action Framework for Agricultural and Food Security; FAO Water Reports; FAO: Rome, Italy, 2012; Volume 16, p. 78. ISSN 1020-1203. [Google Scholar]
- Vörösmarty, C.J.; McIntyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S.E.; Sullivan, C.A.; Liermann, C.R. Global threats to human water security and river biodiversity. Nature 2010, 467, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Norman, E.; Bakker, K.; Cook, C.; Dunn, G.; Allen, D. Water Security: A Primer. Developing a Canadian Water Security Framework as a Tool for Improved Water Governance for Watersheds (2008–2012); Program on Water Governance: Vancouver, BC, Canada, 2010; p. 56. ISBN 978-0-88865-698-8. [Google Scholar]
- Garcia, G.J.; Gamero, H.G.; Garcia, L.B.R.; Vettorazzi, C.A.; Kroenert, R.; Volk, M.; Lausch, A.; Meyer, B. Impacto do Uso da Terra na Erosão do Solo e no Balanço e Qualidade de Água na Bacia do Rio Corumbataí-SP. Holos Environ. 2007, 6, 118–136. [Google Scholar] [CrossRef]
- Strauch, M.; Volk, M. SWAT plant growth modification for improved modeling of perennial vegetation in the tropics. Ecol. Model. 2013, 269, 98–112. [Google Scholar] [CrossRef]
- Melo, D.D.C.D.; Scanlon, B.R.; Zhang, Z.; Wendland, E.; Yin, L. Reservoir storage and hydrologic responses to droughts in the Paraná River basin, south-eastern Brazil. Hydrol. Earth Syst. Sci. 2016, 20, 4673–4688. [Google Scholar] [CrossRef] [Green Version]
- Getirana, A. Extreme Water Deficit in Brazil Detected from Space. J. Hydrometeorol. 2016, 17, 591–599. [Google Scholar] [CrossRef]
- Lee, E.; Livino, A.; Han, S.C.; Zhang, K.; Briscoe, J.; Kelman, J.; Moorcroft, P. Land cover change explains the increasing discharge of the Paraná River. Reg. Environ. Change 2018, 18, 1871–1881. [Google Scholar] [CrossRef] [Green Version]
- Cunha, A.P.; Zeri, M.; Deusdará Leal, K.; Costa, L.; Cuartas, L.A.; Marengo, J.A.; Tomasella, J.; Vieira, R.M.; Barbosa, A.A.; Cunningham, C.; et al. Extreme drought events over Brazil from 2011 to 2019. Atmosphere 2019, 10, 642. [Google Scholar] [CrossRef] [Green Version]
- Siqueira, V.A.; Paiva, R.C.; Fleischmann, A.S.; Fan, F.M.; Ruhoff, A.L.; Pontes, P.R.; Paris, A.; Calmant, S.; Collischonn, W. Toward continental hydrologic–hydrodynamic modeling in South America. Hydrol. Earth Syst. Sci. 2018, 22, 4815–4842. [Google Scholar] [CrossRef] [Green Version]
- Abou Rafee, S.A.; Uvo, C.B.; Martins, J.A.; Domingues, L.M.; Rudke, A.P.; Fujita, T.; Freitas, E.D. Large-scale hydrological modelling of the Upper Paraná River Basin. Water 2019, 11, 882. [Google Scholar] [CrossRef] [Green Version]
- Fleischmann, A.S.; Al Bitar, A.; Oliveira, A.M.; Siqueira, V.A.; Colossi, B.R.; Paiva, R.C.D.D.; Kerr, Y.; Ruhoff, A.; Fan, F.M.; Pontes, P.R.M.; et al. Synergistic Calibration of a Hydrological Model Using Discharge and Remotely Sensed Soil Moisture in the Paraná River Basin. Remote Sens. 2021, 13, 3256. [Google Scholar] [CrossRef]
- Naumann, G.; Podesta, G.; Marengo, J.; Luterbacher, J.; Bavera, D.; Arias-Muñoz, C.; Marinho Ferreira Barbosa, P.; Cammalleri, C.; Chamorro, L.; Cuartas, L.A.; et al. The 2019–2021 Extreme Drought Episode in La Plata Basin; JRC126508; Publications Office of the European Union: Luxembourg, 2021; ISBN 978-92-76-41898-6. [Google Scholar] [CrossRef]
- Instituto Brasileiro de Geografia e Estatística. Relatórios Metodológicos—Bacias e Divisões Hidrográficas do Brasil; Coordenação de Recursos Naturais e Estudos Ambientais: Rio de Janeiro, Brazil, 2021; Volume 48, p. 160. ISBN 978-65-87201-80-1. [Google Scholar]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; De Moraes Gonçalves, J.L.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef]
- Caramori, P.H.; Caviglione, J.H.; Wrege, M.S.; Gonçalves, S.L.; Faria, R.T.; Androcioli Filho, A.; Sera, T.; Chaves, J.C.D.; Koguishi, M.S. Zoneamento de riscos climáticos para a cultura de café (Coffea arabica L.) no estado do Paraná. Rev. Bras. De Agrometeorol. 2001, 9, 486–494. [Google Scholar] [CrossRef] [Green Version]
- Secretaria do Meio Ambiente e Recursos Hídricos. Plano Estadual de Recursos Hídricos do Paraná—Resumo Executivo; Instituto de Água e Terra: Curitiba, Brazil, 2010. [Google Scholar]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J. Large area hydrologic modeling and assessment part I: Model development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Theoretical Documentation Soil and Water Assessment Tool Version 2009; Texas Water Resources Institute: College Station, TX, USA, 2011. [Google Scholar]
- Mannschatz, T.; Wolf, T.; Hülsmann, S. Nexus Tools Platform: Web-based comparison of modelling tools for analysis of water-soil-waste nexus. Environ. Model. Softw. 2016, 76, 137–153. [Google Scholar] [CrossRef]
- Casper, A.F.; Dixon, B.; Earls, J.; Gore, J.A. Linking a spatially explicit watershed model (SWAT) with an in-stream fish habitat model (PHABSIM): A case study of setting minimum flows and levels in a low gradient, sub-tropical river. River Res. Appl. 2011, 27, 269–282. [Google Scholar] [CrossRef]
- Strauch, M.; Schürz, C.; Schweppe, R. topHRU: Threshold optimization for HRUs in SWAT. Zenodo 2017. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The shuttle radar topography mission. Rev. Geophys. 2007, 45. [Google Scholar] [CrossRef] [Green Version]
- Solos, E. Sistema Brasileiro de Classificação de Solos; Centro Nacional de Pesquisa de Solos: Rio de Janeiro, Brazil, 2013. [Google Scholar]
- Fauconnier, Y. Evaluation de La Ressource Dans Le Bassin Versant de L’ibicuí Grâce à La Modélisation Hydrologique: Application de L’outil SWAT. Master´s Thesis, University of Le Mans, Le Mans, France, 2017. [Google Scholar]
- Saha, S.; Moorthi, S.; Pan, H.-L.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Kistler, R.; Woollen, J.; Behringer, D.; et al. The NCEP Climate Forecast System Reanalysis. Bull. Am. Meteorol. Soc. 2010, 91, 1015–1058. [Google Scholar] [CrossRef]
- EMATER. Projeto Irrigação. Instituto Paranaense de Assitência Técnica e Extensão Rural; Instituto de Desenvolvimento Rural do Paraná: Curitiba, Brazil, 2018. [Google Scholar]
- Franchini, J.C.; da Costa, J.M.; Debiasi, H.; Torres, E. Importância Da Rotação de Culturas Para Produção Agrícola Sustentável No Paraná; Documentos 327; Empresa Brasileira de Pesquisa Agropecuária: Brasília, Brazil, 2011. [Google Scholar]
- Szcześniak, M.; Piniewski, M. Improvement of Hydrological Simulations by Applying Daily Precipitation Interpolation Schemes in Meso-Scale Catchments. Water 2015, 7, 747–779. [Google Scholar] [CrossRef] [Green Version]
- Shepard, D. Two- dimensional interpolation function for irregularly- spaced data. In Proceedings of the 23rd ACM National Conference, New York, NY, USA, 27–29 August 1968; pp. 517–524. [Google Scholar] [CrossRef]
- Jarraud, M. Guide to Meteorological Instruments and Methods of Observation (WMO-No. 8); World Meteorological Organization: Geneva, Switzerland, 2008; p. 29. ISBN 978-92-63-100085. [Google Scholar]
- Martins, J.A.; Brand, V.S.; Capucim, M.N.; Machado, C.B.; Piccilli, D.G.A.; Martins, L.D. The Impact of Rainfall and Land Cover Changes on the Flow of a Medium-sized River in the South of Brazil. Energy Procedia 2016, 95, 272–278. [Google Scholar] [CrossRef] [Green Version]
- Abbaspour, K.C. SWAT-CUP: SWAT Calibration and Uncertainty Programs–A User Manual; Eawag: Swiss Federal Institute of Aquatic Science and Technology: Duebendorf, Switzerland, 2015. [Google Scholar]
- Abbaspour, K.; Yang, J.; Maximov, I.; Siber, R.; Bogner, K.; Mieleitner, J.; Zobrist, J.; Srinivasan, R. Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. J. Hydrol. 2007, 333, 413–430. [Google Scholar] [CrossRef]
- Destefani, V.E. Regime Hidrológico Do Rio Ivaí–Pr. Master’s Thesis, Universidade Estadual de Maringá, Maringá, Brazil, 2005. [Google Scholar]
- Abbaspour, K.; Johnson, C.A.; van Genuchten, M.T. Estimating uncertain flow and transport parameters using a sequential uncertainty fitting procedure. Vadose Zone J. 2004, 3, 1340–1352. [Google Scholar] [CrossRef]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; Van Griensven, A.; Van Liew, M.W.; et al. SWAT: Model Use, Calibration, and Validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- De Almeida Bressiani, D.; Gassman, P.W.; Fernandes, J.G.; Garbossa, L.H.P.; Srinivasan, R.; Bonumá, N.B.; Mendiondo, E.M. A review of soil and water assessment tool (SWAT) applications in Brazil: Challenges and prospects. Int. J. Agric. Biol. Eng. 2015, 8, 1–27. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Krause, P.; Boyle, D.P.; Bäse, F. Comparison of different efficiency criteria for hydrological model assessment. Adv. Geosci. 2005, 5, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Gupta, H.V.; Sorooshian, S.; Yapo, P.O. Status of Automatic Calibration for Hydrologic Models: Comparison with Multilevel Expert Calibration. J. Hydrol. Eng. 1999, 4, 135–143. [Google Scholar] [CrossRef]
- Pyrce, R. Hydrological Low Flow Indices and Their Uses; Watershed Science Centre (WSC) Report, (04-2004); Watershed Science Centre: Peterborough, ON, Canada, 2004; p. 33. [Google Scholar]
- Vogel, R.M.; Fennessey, N.M. Flow-Duration Curves. I: New Interpretation and Confidence Intervals. J. Water Resour. Plan. Manag. 1994, 120, 485–504. [Google Scholar] [CrossRef]
- Burt, T.P.; Heathwaite, A.L. The hydrology of the Slapton catchments. Field Stud. 1996, 8, 543–557. [Google Scholar]
- Gordon, N.D.; McMahon, T.A.; Finlayson, B.L.; Gippel, C.J.; Nathan, R.J. Stream Hydrology: An Introduction for Ecologists; John Wiley & Sons: Chichester, UK, 2004. [Google Scholar]
- Caissie, D.; Robichaud, S. Towards a Better Understanding of the Natural Flow Regimes and Streamflow Characteristics of Rivers of the Maritime Provinces; Fisheries and Oceans: Ottawa, ON, Canada, 2009; pp. viii–53. [Google Scholar]
- Hauer, F.R.; Lamberti, G.A. Methods in Stream Ecology. Methods in Stream Ecology: Third Edition (Vol. 1); Academic Press: London, UK, 2017. [Google Scholar] [CrossRef]
- Richards, R. P Measures of flow variability for great lakes tributaries. Environ. Monit. Assess. 1989, 13, 361–377. [Google Scholar] [CrossRef] [PubMed]
- Eletrobrás. Manual de Microcentrais Hidrelétricas; Centrais Elétricas Brasileiras: Rio de Janeiro, Brazil, 1985. [Google Scholar]
- Petts, G.E.; Bickerton, M.A.; Crawford, C.; Lerner, D.N.; Evans, D. Flow management to sustain groundwater-dominated stream ecosystems. Hydrol. Processes 1999, 13, 497–513. [Google Scholar] [CrossRef]
- Grimm, A.M.; Ferraz, S.E.T.; Gomes, J. Precipitation anomalies in southern Brazil associated with El Nino and La Nina events. J. Clim. 1998, 11, 2863–2880. [Google Scholar] [CrossRef] [Green Version]
- Grimm, A.M.; Barros, V.R.; Doyle, M.E. Climate variability in southern South America associated with El Nino and La Nina events. J. Clim. 2000, 13, 35–58. [Google Scholar] [CrossRef]
- Grimm, A.M.; Tedeschi, R.G. ENSO and extreme rainfall events in South America. J. Clim. 2009, 22, 1589–1609. [Google Scholar] [CrossRef]
- Villela, S.M.; Mattos, A. Hidrologia Aplicada; Macgraw-Hill do Brasil: São Paulo, Brazil, 1975. [Google Scholar]
- Abbaspour, K.; Vaghefi, S.A.; Srinivasan, R. A guideline for successful calibration and uncertainty analysis for soil and water assessment: A review of papers from the 2016 international SWAT Conference. Water 2017, 10, 6. [Google Scholar] [CrossRef] [Green Version]
- Lastoria, G.; Gastmans, D.; Chang, K.H.; Sinelli, O.; Hutcheon, I. Evidências Da Conectividade Hidráulica Entre Os Sistemas Aqüíferos Serra Geral E Guarani No Estado De Mato Grosso Do Sul E Aspectos Ambientais. I Simp. Hidrogeol. Sul-Sudeste 2010, 1–20. Available online: https://aguassubterraneas.abas.org/asubterraneas/article/view/22203 (accessed on 29 November 2021).
- Leli, I.T.; Stevaux, J.C.; Cremon, É.H.; Da Nóbrega, M.T. River functioning analysis from suspended sediment and water discharge study: The case of the Ivaí river, southern Brazil. Rev. Bras. e Geomorfol. 2017, 18, 125–141. [Google Scholar] [CrossRef] [Green Version]
- Paiva, D.G. Análise do índice de relação entre o fluxo de base e Desflorestamento por meio de Imagens Orbitais e Análise Hidrológica: Baixo Curso do rio Ivaí. Master’s Thesis, Universidade Estadual de Maringá, Maringá, Brazil, 2008. [Google Scholar]
- Bittencourt, A.V.L.; Da Rosa Filho, E.F.; Hindi, E.C.; Buchmann Filho, A.C. A Influência Dos Basaltos E De Misturas Com Águas De Aqüíferos Sotopostos Nas Águas Subterrâneas Do Sistema Aqüífero Serra- Geral Na Bacia Do Rio Piquiri, Paraná—Br. Águas Subterrâneas 2003, 17, 67–75. [Google Scholar] [CrossRef] [Green Version]
- Mineropar. Atlas Geomorfológico Do Estado Do Paraná—Escala Base 1:250.000, Modelos Reduzidos 1:500.000; Minerais do Paraná: Curitiba, Brazil, 2006. [Google Scholar]
- Dos Santos, M.L.; Stevaux, J.C.; Gasparetto, N.V.L.; de Souza Filho, E.E. Geologia e Geomorfologia da Planície Aluvial do Rio Ivaí em seu Curso Inferior. Rev. Bras. Geomorfol. 2008, 9, 1–16. [Google Scholar] [CrossRef]
- Fujita, R.H.; Gon, P.P.; Stevaux, J.C.; Dos Santos, M.L.; Etchebehere, M.L. Perfil longitudinal e a aplicação do índice de gradiente (RDE) no rio dos Patos, bacia hidrográfica do rio Ivaí, PR. Rev. Bras. Geocienc. 2011, 41, 597–603. [Google Scholar] [CrossRef] [Green Version]
- NOAA National Centers for Environmental Information. State of the Climate: El Niño/Southern Oscillation for Annual 2006. Available online: https://www.ncdc.noaa.gov/sotc/enso/200613 (accessed on 24 November 2021).
- Chatterjee, S.; Daniels, M.D.; Sheshukov, A.Y.; Gao, J. Projected climate change impacts on hydrologic flow regimes in the Great Plains of Kansas. River Res. Appl. 2018, 34, 195–206. [Google Scholar] [CrossRef]
- Donigian, A.S.; Imhoff, J.C.; Bicknell, B.R. Predicting water quality resulting from agricultural nonpoint source pollution via simulation: HSPF [Hydrologic Simulation Program-Fortran]. Agric. Manag. Water Qual. 1983, 200–249. [Google Scholar]
- Singh, J.; Knapp, H.V.; Arnold, J.G.; Demissie, M. Hydrological modeling of the Iroquois River watershed using HSPF and SWAT. J. Am. Water Resour. Assoc. 2005, 41, 343–360. [Google Scholar] [CrossRef]
Type | Source | Description |
---|---|---|
DEM 1 | SRTM 2 [27] | 90 m resolution |
Land Use | MODIS 3 | Land use map MCD12Q1 product—500 m resolution, temporal coverage: 2001. Identified Classes: 10. |
Soil | EMBRAPA [28] and Fauconnier [29] | Soil map 1:50,000 and soil properties. Soil classes identified: 6. |
Slope | EMBRAPA [28] | Five stratifications: 0–3; 3–8; 8–20; 20–45 and 45–9999 |
Water use | SEMA [21] | Average hourly water extraction of granted wells and irrigation of large consumers per municipality |
Climate | CFSR 4 [30]; Global Weather Data for SWAT) | Daily temperature (maximum and minimum; °C), solar radiation (MJ/m²/day), wind speed (m/s) and relative humidity (%). Horizontal resolution ~38 km. Sample points used: 18. |
Rainfall | ANA–Hidroweb | Daily precipitation derived from interpolation generated from 151 rainfall stations within each subbasin (mm). |
Streamflow | ANA | Daily readings from five streamflow stations (m3/s) |
Parameter | Description | Modification Range | Regionalized Modification Range | |
---|---|---|---|---|
1 | r_ALPHA_BF.gw | Baseflow alpha factor (day−1) | 0–1 | ±20% |
2 | v_GW_DELAY.gw | Groundwater delay time (days) | 0–500 | 0–120 |
3 | v_GW_REVAP.gw | Groundwater “revap” coefficient | 0.02–0.2 | 0.02–0.1 |
4 | a_REVAPMN.gw | Threshold depth of water in the shallow aquifer for “revap” or percolation to the deeper aquifer (mm) | 0–5000 | −1000–1000 |
5 | v_RCHRG_DP.gw | Deep aquifer percolation fraction | 0–1 | 0–1 |
6 | a_GWQMN.gw | Threshold depth of water in the shallow aquifer required for return flow to occur (mm) | 0–5000 | −1000–2000 |
7 | v_SURLAG.hru | Surface runoff lag coefficient | 0.05–24 | 0.05–24 |
8 | v_ESCO.hru | Soil evaporation compensation factor | 0–1 | 0.65–0.85 |
9 | v_EPCO.hru | Plant uptake compensation factor | 0–1 | 0–1 |
10 | r_CH_K2.rte | Effective hydraulic conductivity in main channel alluvium (mm/h) | −0.01–500 | ±40% |
11 | r_CH_N2.rte | Manning’s “n” value for the main channel | −0.01–0.3 | ±20% |
12 | r_CN2.mgt | Initial SCS runoff curve for moisture condition II | 35–98 | ±20% |
13 | v_CANMX.hru (AGRL/FRSE/RNGE/PAST) | Maximum canopy water storage (mm—discretized for: Agriculture, Forest Evergreen, Range-Grasses and Pasture) | 0–100 | 0–15 |
14 | r_OV_N.hru | Manning’s “n” value for overland flow | 0.01–30 | ±30% |
15 | r_SOL_AWC().sol | Available water capacity of the soil layer (mm H2O/mm soil) | 0–1 | ±20% |
Parameter | Rank | Segment | Subbasin | Default Value | Final Modification Range | RMI * (%) | Best Modification Factor | |
---|---|---|---|---|---|---|---|---|
1 | r_ALPHA_BF.gw | 13 | Upper | 24 | 0.093 | −0.027–0.317 | 86.0 | 0.288 |
16, 17, 19–23 | 0.0670 | −0.027–0.317 | 86.0 | 0.288 | ||||
2 | v_GW_DELAY.gw | 22 | Lower | 1–5, 8 | 31 | −31.751–69.431 | 84.3 | −8.783 |
17 | Middle | 6, 7, 9–15,18 | 31 | 3.167–81.072 | 64.9 | 55.909 | ||
1 | Upper | 16, 17, 19–24 | 31 | −55.514–61.514 | 97.5 | −22.160 | ||
3 | v_GW_REVAP.gw | 24 | Lower | 1–5, 8 | 0.020 | 0.011–0.070 | 32.7 | 0.067 |
20 | Middle | 6, 7, 9–15, 18 | 0.020 | 0.010–0.067 | 36.6 | 0.010 | ||
11 | Upper | 16, 17, 19–24 | 0.020 | 0.041–0.083 | 23.3 | 0.045 | ||
4 | v_RCHRG_DP.gw | 26 | Lower | 1–5, 8 | 0.050 | −0.195–0.601 | 79.6 | 0.004 |
14 | Middle | 6, 7, 9–15, 18 | 0.050 | 0.294–0.883 | 58.9 | 0.303 | ||
3 | Upper | 16, 17, 19–24 | 0.050 | −0.369–0.543 | 91.2 | −0.200 | ||
5 | a_GWQMN.gw | 19 | Lower | 1–5, 8 | 1000 | −140.800–1578.800 | 57.3 | 562.516 |
21 | Middle | 6, 7, 9–15, 18 | 1000 | −2405.806–531.806 | 97.9 | −1803.595 | ||
5 | Upper | 16, 17, 19–24 | 1000 | −89.810–1731.810 | 60.7 | 1764.520 | ||
6 | v_SURLAG.hru | 7 | Middle | 6, 7, 9–15, 18 | 2 | −4.347–14.554 | 78.9 | −0.434 |
7 | v_ESCO.hru | 9 | Lower | 1–5, 8 | −0.095 | 0.553–0.751 | 99.0 | 0.640 |
8 | Middle | 6, 7, 9–15, 18 | 0.095 | 0.707–0.823 | 58.0 | 0.774 | ||
6 | Upper | 16, 17, 19–24 | 0.095 | 0.594–0.764 | 85.0 | 0.745 | ||
8 | v_EPCO.hru | 23 | Lower | 1–5, 8 | 1 | 0.441–1.324 | 88.3 | 1.056 |
25 | Middle | 6, 7, 9–15, 18 | 1 | 0.412–1.237 | 82.5 | 1.230 | ||
28 | Upper | 16, 17, 19–24 | 1 | −0.123–0.625 | 74.8 | 0.400 | ||
9 | r_CN2.mgt | 27 | Lower | 1–5, 8 | Variable | −0.139–0.087 | 56.5 | −0.069 |
2 | Middle | 6, 7, 9–15, 18 | Variable | −0.003–0.389 | 98.0 | 0.267 | ||
4 | Upper | 16, 17, 19–24 | Variable | −0.197–0.067 | 66.0 | −0.023 | ||
10 | v_CANMX.hru (AGRL) | 29 | Middle | 6, 7, 9–15, 18 | 0 | 3.500–11.169 | 51.1 | 8.968 |
15 | Upper | 16, 17, 19–24 | 0 | 5.930–17.799 | 79.1 | 16.125 | ||
v_CANMX.hru (FRSE) | 16 | Upper | 16, 17, 19–24 | 0 | 6.021–18.068 | 80.3 | 11.045 | |
11 | r_SOL_AWC().sol | 18 | Lower | 1–5, 8 | Variable | −0.033–0.301 | 83.5 | −0.028 |
12 | Middle | 6, 7, 9–15, 18 | Variable | −0.221–0.059 | 70.0 | −0.184 | ||
10 | Upper | 16, 17, 19–24 | Variable | −0.237–0.054 | 72.7 | −0.184 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fujita, T.; de Morais, M.V.B.; Dos Santos, V.C.; Rudke, A.P.; de Eiras, M.M.; Xavier, A.C.F.; Abou Rafee, S.A.; Santos, E.B.; Martins, L.D.; Uvo, C.B.; et al. Simulating Discharge in a Non-Dammed River of Southeastern South America Using SWAT Model. Water 2022, 14, 488. https://doi.org/10.3390/w14030488
Fujita T, de Morais MVB, Dos Santos VC, Rudke AP, de Eiras MM, Xavier ACF, Abou Rafee SA, Santos EB, Martins LD, Uvo CB, et al. Simulating Discharge in a Non-Dammed River of Southeastern South America Using SWAT Model. Water. 2022; 14(3):488. https://doi.org/10.3390/w14030488
Chicago/Turabian StyleFujita, Thais, Marcos Vinicius Bueno de Morais, Vanessa Cristina Dos Santos, Anderson Paulo Rudke, Marilia Moreira de Eiras, Ana Carolina Freitas Xavier, Sameh Adib Abou Rafee, Eliane Barbosa Santos, Leila Droprinchinski Martins, Cintia Bertacchi Uvo, and et al. 2022. "Simulating Discharge in a Non-Dammed River of Southeastern South America Using SWAT Model" Water 14, no. 3: 488. https://doi.org/10.3390/w14030488
APA StyleFujita, T., de Morais, M. V. B., Dos Santos, V. C., Rudke, A. P., de Eiras, M. M., Xavier, A. C. F., Abou Rafee, S. A., Santos, E. B., Martins, L. D., Uvo, C. B., de Souza, R. A. F., de Freitas, E. D., & Martins, J. A. (2022). Simulating Discharge in a Non-Dammed River of Southeastern South America Using SWAT Model. Water, 14(3), 488. https://doi.org/10.3390/w14030488