Potential Sea Level Rise Inundation in the Mediterranean: From Susceptibility Assessment to Risk Scenarios for Policy Action
Abstract
:1. Introduction
2. Study Area
2.1. Physical Setting
2.2. Natural and Anthropic Exposed Elements and Tourist Setting
3. Maltese Policies with Respect to Sea Level Rise and Its Impacts
4. Material and Methods
4.1. General Risk Assessment Procedure
4.2. Susceptibility Assessment and Data Availability
4.2.1. Available Topographic Data
4.2.2. Available Sea Level Projections
- Present day;
- Medium-term scenarios (2050) by accounting for the local sea level projections under the best (SSP1-2.6) and the worst (SSP5-8.5) climate scenarios (0.19 m, 0.23 m);
- Long-term scenarios (2100) by accounting for the local sea level projections under the best (SSP1-2.6) and the worst (SSP5-8.5) climate scenarios (0.40 m, 0.73 m);
- Long-term scenarios (2100) by accounting for global sea level projections under different worst-case scenarios (0.77 m and 0.84 m).
4.3. Exposure and Vulnerability Evaluation and Data Availability
4.4. Risk Assessment
5. Results
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UN Climate Change Conference, COP26. Available online: https://ukcop26.org/cop26-goals/ (accessed on 23 December 2021).
- UN. 2021. Available online: https://www.un.org/en/global-issues/climate-change (accessed on 23 December 2021).
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.I.; et al. Intergovernmental Panel on Climate Change. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press: Cambridge, UK, 2021; in press.
- Cramer, W.; Guiot, J.; Marini, K. (Eds.) MedECC. Climate and Environmental Change in the Mediterranean Basin—Current Situation and Risks for the Future; First Mediterranean Assessment Report; Union for the Mediterranean, Plan Bleu, UNEP/MAP: Marseille, France, 2020; p. 632. [Google Scholar]
- Giorgi, F. Climate changes hot-spots. Geophys. Res. Lett. 2006, 33, L08707. [Google Scholar] [CrossRef]
- Giorgi, F.; Lionello, P. Climate change projections for the Mediterranean region. Glob. Planet. Change 2008, 63, 90–104. [Google Scholar] [CrossRef]
- Cazenave, A.; Hamlington, B.; Horwath, M.; Barletta, V.R.; Benveniste, J.; Chambers, D.; Thompson, P. Observational requirements for long-term monitoring of the global mean sea level and its components over the altimetry era. Front. Mar. Sci. 2019, 6, 582. [Google Scholar] [CrossRef]
- Bonaduce, A.; Pinardi, N.; Oddo, P.; Spada, G.; Larnicol, G. Sea-level variability in the Mediterranean Sea from altimetry and tide gauges. Clim. Dyn. 2016, 47, 2851–2866. [Google Scholar] [CrossRef] [Green Version]
- Metz, B.; Davidson, O.R.; Bosch, P.R.; Dave, R.; Meyer, L.A. (Eds.) Intergovernmental Panel on Climate Change (2007). Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Stocker, T.F.; Qin, D.; Plattner, G.-K.; Tignor, M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. (Eds.) Intergovernmental Panel on Climate Change (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013; p. 1535. [Google Scholar]
- O’Neill, B.C.; Kriegler, E.; Riahi, K.; Ebi, K.L.; Hallegatte, S.; Carter, T.R.; van Vuuren, D.P. A new scenario framework for climate change research: The concept of shared socioeconomic pathways. Clim. Change 2014, 122, 387–400. [Google Scholar] [CrossRef] [Green Version]
- Pörtner, H.-O.; Roberts, D.C.; Masson-Delmotte, V.; Zhai, P.; Tignor, M.; Poloczanska, E.; Mintenbeck, K.; Alegría, A.; Nicolai, M.; Okem, A.; et al. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, IPCC Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2019; in press.
- IPCC AR6 Sea Level Projection Tool. Available online: https://sealevel.nasa.gov/data_tools/17 (accessed on 10 October 2021).
- Woodworth, P.L.; Melet, A.; Marcos, M.; Ray, R.D.; Wöppelmann, G.; Sasaki, Y.N.; Merrifield, M.A. Forcing factors affecting sea level changes at the coast. Surv. Geophys. 2019, 40, 1351–1397. [Google Scholar] [CrossRef] [Green Version]
- Lambeck, K.; Antonioli, F.; Anzidei, M.; Ferranti, L.; Leoni, G.; Scicchitano, G.; Silenzi, S. Sea level change along the Italian coast during the Holocene and projections for the future. Quatern. Int. 2011, 232, 250–257. [Google Scholar] [CrossRef]
- Pappone, G.; Aucelli, P.P.C.; Alberico, I.; Amato, V.; Antonioli, F.; Cesarano, M.; Pelosi, N. Relative sea-level rise and marine erosion and inundation in the Sele River coastal plain (Southern Italy): Scenarios for the next century. Rend. Lincei 2012, 23, 121–129. [Google Scholar] [CrossRef]
- Antonioli, F.; Anzidei, M.; Amorosi, A.; Presti, V.L.; Mastronuzzi, G.; Deiana, G.; Vecchio, A. Sea-level rise and potential drowning of the Italian coastal plains: Flooding risk scenarios for 2100. Quat. Sci. Rev. 2017, 158, 29–43. [Google Scholar] [CrossRef] [Green Version]
- Marsico, A.; Lisco, S.; Lo Presti, V.; Antonioli, F.; Amorosi, A.; Anzidei, M.; Mastronuzzi, G. Flooding scenario for four Italian coastal plains using three relative sea level rise models. J. Maps 2017, 13, 961–967. [Google Scholar] [CrossRef] [Green Version]
- Perini, L.; Calabrese, L.; Luciani, P.; Olivieri, M.; Galassi, G.; Spada, G. Sea-level rise along the Emilia-Romagna coast (Northern Italy) in 2100: Scenarios and impacts. Nat. Hazards Earth Syst. Sci. 2017, 17, 2271–2287. [Google Scholar] [CrossRef] [Green Version]
- Scardino, G.; Sabatier, F.; Scicchitano, G.; Piscitelli, A.; Milella, M.; Vecchio, A.; Mastronuzzi, G. Sea-level rise and shoreline changes along an open sandy coast: Case study of gulf of taranto, Italy. Water 2020, 12, 1414. [Google Scholar] [CrossRef]
- Azidane, H.; Benmohammadi, A.; Hakkou, M.; Magrane, B.; Haddout, S.A. Geospatial approach for assessing the impacts of sea-level rise and flooding on the! Kenitra coast (Morocco). J. Mater. Environ. Sci. 2018, 9, 1480–1488. [Google Scholar]
- Anzidei, M.; Bosman, A.; Carluccio, R.; Casalbore, D.; D’Ajello Caracciolo, F.; Esposito, A.; Sepe, V. Flooding scenarios due to land subsidence and sea-level rise: A case study for Lipari Island (Italy). Terra Nova 2017, 29, 44–51. [Google Scholar] [CrossRef]
- Anzidei, M.; Scicchitano, G.; Tarascio, S.; de Guidi, G.; Monaco, C.; Barreca, G.; Vecchio, A. Coastal retreat and marine flooding scenario for 2100: A case study along the coast of Maddalena Peninsula (southeastern Sicily). Geogr. Fis. Din. Quat. 2019, 41, 5–16. [Google Scholar]
- Anzidei, M.; Scicchitano, G.; Scardino, G.; Bignami, C.; Tolomei, C.; Vecchio, A.; Mastronuzzi, G. Relative Sea-Level Rise Scenario for 2100 along the Coast of Southeastern Sicily (Italy) by InSAR Data, Satellite Images and High-Resolution Topography. Remote Sens. 2021, 13, 1108. [Google Scholar] [CrossRef]
- Aucelli, P.P.C.; Di Paola, G.; Incontri, P.; Rizzo, A.; Vilardo, G.; Benassai, G.; Pappone, G. Coastal inundation risk assessment due to subsidence and sea level rise in a Mediterranean alluvial plain (Volturno coastal plain–southern Italy). Estuar. Coast. Shelf Sci. 2017, 198, 597–609. [Google Scholar] [CrossRef]
- Di Paola, G.; Alberico, I.; Aucelli, P.P.C.; Matano, F.; Rizzo, A.; Vilardo, G. Coastal subsidence detected by Synthetic Aperture Radar interferometry and its effects coupled with future sea-level rise: The case of the Sele Plain (Southern Italy). J. Flood Risk Manag. 2018, 11, 191–206. [Google Scholar] [CrossRef] [Green Version]
- Di Paola, G.; Rizzo, A.; Benassai, G.; Corrado, G.; Matano, F.; Aucelli, P.P.C. Sea-level rise impact and future scenarios of inundation risk along the coastal plains in Campania (Italy). Environ. Earth Sci. 2021, 80, 608. [Google Scholar] [CrossRef]
- Anzidei, M.; Doumaz, F.; Vecchio, A.; Serpelloni, E.; Pizzimenti, L.; Civico, R.; Enei, F. Sea Level Rise Scenario for 2100 A.D. in the Heritage Site of Pyrgi (Santa Severa, Italy). J. Mar. Sci. Eng. 2020, 8, 64. [Google Scholar] [CrossRef] [Green Version]
- Antonioli, F.; De Falco, G.; Lo Presti, V.; Moretti, L.; Scardino, G.; Anzidei, M.; Mastronuzzi, G. Relative Sea-Level Rise and Potential Submersion Risk for 2100 on 16 Coastal Plains of the Mediterranean Sea. Water 2020, 12, 2173. [Google Scholar] [CrossRef]
- Frihy, O.E.; El-Sayed, M.K. Vulnerability risk assessment and adaptation to climate change induced sea level rise along the Mediterranean coast of Egypt. Mitig. Adapt. Strateg. Glob. Change 2013, 18, 1215–1237. [Google Scholar] [CrossRef]
- Reimann, L.; Vafeidis, A.T.; Brown, S.; Hinkel, J.; Tol, R.S. Mediterranean UNESCO World Heritage at risk from coastal flooding and erosion due to sea-level rise. Nat. Commun. 2018, 9, 4161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Project EUROSION. Living with Coastal Erosion in Europe: Sediment and Space for Sustainability. Eurosion Project Reports. 2004. Available online: http://www.eurosion.org/ (accessed on 23 December 2021).
- Bruno, M.F.; Saponieri, A.; Molfetta, M.G.; Damiani, L. The DPSIR approach for coastal risk assessment under climate change at regional scale: The case of apulian coast (Italy). J. Mar. Sci. Eng. 2020, 8, 531. [Google Scholar] [CrossRef]
- Van Dongeren, A.; Ciavola, P.; Martinez, G.; Viavattene, C.; Bogaard, T.; Ferreira, O.; McCall, R. Introduction to RISC-KIT: Resilience-increasing strategies for coasts. Coastal Eng. 2018, 134, 2–9. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, O.; Viavattene, C.; Jiménez, J.A.; Bolle, A.; Das Neves, L.; Plomaritis, T.A.; Van Dongeren, A.R. Storm-induced risk assessment: Evaluation of two tools at the regional and hotspot scale. Coast. Eng. 2018, 134, 241–253. [Google Scholar] [CrossRef] [Green Version]
- Viavattene, C.; Jiménez, J.A.; Ferreira, O.; Priest, S.; Owen, D.; McCall, R. Selecting coastal hotspots to storm impacts at the regional scale: A Coastal Risk Assessment Framework. Coast. Eng. 2018, 134, 33–47. [Google Scholar] [CrossRef]
- Aucelli, P.P.C.; Di Paola, G.; Rizzo, A.; Rosskopf, C.M. Present day and future scenarios of coastal erosion and flooding processes along the Italian Adriatic coast: The case of Molise region. Environ. Earth Sci. 2018, 77, 371. [Google Scholar] [CrossRef]
- Rizzo, A.; Vandelli, V.; Buhagiar, G.; Micallef, A.S.; Soldati, M. Coastal Vulnerability Assessment along the North-Eastern Sector of Gozo Island (Malta, Mediterranean Sea). Water 2020, 12, 1405. [Google Scholar] [CrossRef]
- Formosa, S. Rising waters: Integrating national datasets for the visualisation of diminishing spatial entities. Xjenza 2015, 3, 105–117. [Google Scholar]
- Bonaldo, D.; Antonioli, F.; Archetti, R.; Bezzi, A.; Correggiari, A.; Davolio, S.; Carniel, S. Integrating multidisciplinary instruments for assessing coastal vulnerability to erosion and sea level rise: Lessons and challenges from the Adriatic Sea, Italy. J. Coast. Conserv. 2019, 23, 19–37. [Google Scholar] [CrossRef]
- Anfuso, G.; Postacchini, M.; Di Luccio, D.; Benassai, G. Coastal sensitivity/vulnerability characterization and adaptation strategies: A review. J. Mar. Sci. Eng. 2021, 9, 72. [Google Scholar] [CrossRef]
- Wolff, C.; Vafeidis, A.T.; Muis, S.; Lincke, D.; Satta, A.; Lionello, P.; Hinkel, J. A Mediterranean coastal database for assessing the impacts of sea-level rise and associated hazards. Sci. Data 2018, 5, 180044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- SAVEMEDCOASTS. Available online: https://www.savemedcoasts.eu/ (accessed on 23 December 2021).
- Christodoulou, A.; Christidis, P.; Demirel, H. Sea-level rise in ports: A wider focus on impacts. Marit. Econ. Logist. 2019, 21, 482–496. [Google Scholar] [CrossRef]
- De Vivo, C.; Ellena, M.; Capozzi, V.; Budillon, G.; Mercogliano, P. Risk assessment framework for Mediterranean airports: A focus on extreme temperatures and precipitations and sea level rise. Nat. Hazards 2021, 1–20. [Google Scholar] [CrossRef]
- Eurocontrol Study on Climate Change Risks for European Aviation. Available online: https://www.eurocontrol.int/publication/eurocontrol-study-climate-change-risks-european-aviation (accessed on 1 December 2021).
- Schembri, J.A. The geographical context of the Maltese islands. In Landscapes and Landforms of the Maltese Islands. World Geomorphological Landscapes; Gauci, R., Schembri, J.A., Eds.; Springer: Cham, Switzerland, 2019; pp. 9–17. [Google Scholar]
- Foglini, F.; Prampolini, M.; Micallef, A.; Angeletti, L.; Vandelli, V.; Deidun, A.; Taviani, M. Late Quaternary Coastal Landscape Morphology and Evolution of the Maltese Islands (Mediterranean Sea) Reconstructed from High–Resolution Seafloor Data. In Geology and Archaeology: Submerged Landscapes of the Continental Shelf; Har, J., Bailey, G., Lüth, L., Eds.; Geological Society, Special Publication: London, UK, 2016; Volume 411, pp. 77–95. [Google Scholar]
- Baldassini, N.; Di Stefano, A. Stratigraphic features of the Maltese Archipelago: A synthesis. Nat. Hazards 2017, 86, 203–231. [Google Scholar] [CrossRef]
- Galea, P. Central Mediterranean Tectonics—A Key player in the Geomorphology of the Maltese islands. In Landscapes and Landforms of the Maltese Islands. World Geomorphological Landscapes; Gauci, R., Schembri, J.A., Eds.; Springer: Cham, Switzerland, 2019; pp. 19–30. [Google Scholar]
- Gauci, R.; Schembri, J.A. (Eds.) Landscapes and Landforms of the Maltese Islands; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Prampolini, M.; Foglini, F.; Biolchi, S.; Devoto, S.; Angelini, S.; Soldati, M. Geomorphological mapping of terrestrial and marine areas, northern Malta and Comino (central Mediterranean Sea). J. Maps 2017, 13, 457–469. [Google Scholar] [CrossRef]
- Scerri, S. Sedimentary evolution and resultant geological landscapes. In Landscapes and Landforms of the Maltese Islands. World Geomorphological Landscapes; Gauci, R., Schembri, J.A., Eds.; Springer: Cham, Switzerland, 2019; pp. 31–47. [Google Scholar]
- Soldati, M.; Barrows, T.T.; Prampolini, M.; Fifield, K.L. Cosmogenic exposure dating constraints for coastal landslide evolution on the Island of Malta (Mediterranean Sea). J. Coast. Conserv. 2018, 22, 831–844. [Google Scholar] [CrossRef] [Green Version]
- Soldati, M.; Devoto, S.; Prampolini, M.; Pasuto, A. The spectacular landslide-controlled landscape of the northwestern coast of Malta. In Landscapes and Landforms of the Maltese Islands. World Geomorphological Landscapes; Gauci, R., Schembri, J.A., Eds.; Springer: Cham, Switzerland, 2019; pp. 167–178. [Google Scholar]
- Prampolini, M.; Gauci, C.; Micallef, A.S.; Selmi, L.; Vandelli, V.; Soldati, M. Geomorphology of the north-eastern coast of Gozo (Malta, Mediterranean Sea). J. Maps 2018, 14, 402–410. [Google Scholar] [CrossRef]
- Mantovani, M.; Devoto, S.; Forte, E.; Mocnik, A.; Pasuto, A.; Piacentini, D.; Soldati, M. A multidisciplinary approach for rock spreading and block sliding investigation in the north-western coast of Malta. Landslides 2013, 10, 611–622. [Google Scholar] [CrossRef]
- Mantovani, M.; Devoto, S.; Piacentini, D.; Prampolini, M.; Soldati, M.; Pasuto, A. Advanced SAR interferometric analysis to support geomorphological interpretation of slow–moving coastal landslides (Malta Mediterranean Sea). Remote Sens. 2016, 8, 443. [Google Scholar] [CrossRef] [Green Version]
- Devoto, S.; Macovaz, V.; Mantovani, M.; Soldati, M.; Furlani, S. Advantages of using UAV digital photogrammetry in the study of slow-moving coastal landslides. Remote Sens. 2020, 12, 3566. [Google Scholar] [CrossRef]
- Scerri, S. Geological Report Study of the Fragile Terrain in an Area Known as Calypso Cave, Limits of Xaghra, Gozo; Wirt Ghawdex, Gozo: Ir-Rabat Għawdex, Malta, 2019. [Google Scholar]
- Times of Malta. 2021. Available online: https://timesofmalta.com/articles/view/marsalforn-gets-a-3m-upgrade.888193 (accessed on 14 October 2021).
- Coratza, P.; Gauci, R.; Schembri, J.A.; Soldati, M.; Tonelli, C. Bridging Natural and Cultural Values of Sites with Outstanding Scenery: Evidence from Gozo, Maltese Islands. Geoheritage 2016, 8, 91–103. [Google Scholar] [CrossRef]
- Selmi, L.; Coratza, P.; Gauci, R.; Soldati, M. Geoheritage as a Tool for Environmental Management: A Case Study in Northern Malta (Central Mediterranean Sea). Resources 2019, 8, 168. [Google Scholar] [CrossRef] [Green Version]
- NSO. National Statistics Office Newsbook. 2021. Available online: https://newsbook.com.mt/en/2-million-les-s-tourists-in-2020-nso/ (accessed on 16 October 2021).
- NSO. National Statistics Office: Collective Accommodation Establishments: Q2/2021. 2021. Available online: https://nso.gov.mt/en/News_Releases/Documents/2021/08/News2021_151.pdf (accessed on 19 October 2021).
- NSO. National Statistics Office: Regional Tourism: 2018–2020. 2021. Available online: https://nso.gov.mt/en/News_Releases/Documents/2021/07/News2021_133.pdf (accessed on 19 October 2021).
- Ministry for Tourism. The Contribution of the Tourism Industry to the Maltese Economy. Report Prepared for the Ministry for Tourism by EU-Cubed Consultants. 2015. Available online: https://tourism.gov.mt/en/Documents/The%20Contribution%20Of%20The%20Tourism%20Industry%20To%20The%20Maltese%20Economy%20-%202014.pdf (accessed on 21 October 2021).
- EU Adaptation Strategy. Available online: https://ec.europa.eu/clima/eu-action/adaptation-climate-change/eu-adaptation-strategy_en (accessed on 1 December 2021).
- Protocol on Integrated Coastal Zone Management (ICZM) in the Mediterranean. Available online: Unenvironment.org/unepmap/who-we-are/contracting-parties/8-iczm-protocol (accessed on 1 December 2021).
- ERDF 156 Data. Developing National Environmental Monitoring Infrastructure and Capacity; Malta Environment and Planning Authority: Floriana, Malta, 2013. [Google Scholar]
- Armaroli, C.; Duo, E. Validation of the coastal storm risk assessment framework along the Emilia-Romagna coast. Coast. Eng. 2018, 134, 159–167. [Google Scholar] [CrossRef] [Green Version]
- Climate Change Post. Available online: https://www.climatechangepost.com/malta/coastal-floods/ (accessed on 1 December 2021).
- Tosi, L.; Carbognin, L.; Teatini, P.; Strozzi, T.; Wegmüller, U. Evidence of the present relative land stability of Venice Italy, from land, sea, and space observations. Geophys. Res. Lett. 2002, 29, 3-1–3-4. [Google Scholar] [CrossRef] [Green Version]
- Tosi, L.; Da Lio, C.; Strozzi, T.; Teatini, P. Combining L-and X-band SAR interferometry to assess ground displacements in heterogeneous coastal environments: The Po River Delta and Venice Lagoon, Italy. Remote Sens. 2016, 8, 308. [Google Scholar] [CrossRef] [Green Version]
- Da Lio, C.; Tosi, L. Land subsidence in the Friuli Venezia Giulia coastal plain, Italy: 1992–2010 results from SAR-based interferometry. Sci. Total Environ. 2018, 633, 752–764. [Google Scholar] [CrossRef]
- Matano, F.; Sacchi, M.; Vigliotti, M.; Ruberti, D. Subsidence trends of Volturno river coastal plain (northern Campania, southern Italy) inferred by SAR interferometry data. Geosciences 2018, 8, 8. [Google Scholar] [CrossRef] [Green Version]
- Amato, V.; Aucelli, P.P.C.; Corrado, G.; Di Paola, G.; Matano, F.; Pappone, G.; Schiattarella, M. Comparing geological and Persistent Scatterer Interferometry data of the Sele River coastal plain, southern Italy: Implications for recent subsidence trends. Geomorphology 2020, 351, 106953. [Google Scholar] [CrossRef]
- Sayol, J.M.; Marcos, M. Assessing flood risk under sea level rise and extreme sea levels scenarios: Application to the Ebro delta (Spain). J. Geophys. Res. Ocean. 2018, 123, 794–811. [Google Scholar] [CrossRef] [Green Version]
- Paprotny, D.; Terefenko, P. New estimates of potential impacts of sea level rise and coastal floods in Poland. Nat. Hazards 2017, 85, 1249–1277. [Google Scholar] [CrossRef] [Green Version]
- Prampolini, M.; Savini, A.; Foglini, F.; Soldati, M. Seven Good Reasons for Integrating Terrestrial and Marine Spatial Datasets in Changing Environments. Water 2020, 12, 2221. [Google Scholar] [CrossRef]
- Prampolini, M.; Coratza, P.; Rossi, S.; Parenti, C.; Galea, C.; Caruana, A.; Soldati, M. Geomorphology of the seafloor northeast of the Maltese Islands, Central Mediterranean. J. Maps 2021, 17, 465–475. [Google Scholar] [CrossRef]
- Soldati, M.; Prampolini, M.; Foglini, F.; Savini, A. Landscapes and Landforms of Terrestrial and Marine Areas: A. Way Forward. Water 2020, 13, 1201. [Google Scholar] [CrossRef]
- Gallina, V.; Torresan, S.; Critto, A.; Sperotto, A.; Glade, T.; Marcomini, A. A review of multi-risk methodologies for natural hazards: Consequences and challenges for a climate change impact assessment. J. Environ. Manag. 2016, 168, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Gallina, V.; Torresan, S.; Zabeo, A.; Critto, A.; Glade, T.; Marcomini, A. A Multi-Risk Methodology for the Assessment of Climate Change Impacts in Coastal Zones. Sustainability 2020, 12, 3697. [Google Scholar] [CrossRef]
- Nicholls, R.J.; Cazenave, A. Sea-level rise and its impact on coastal zones. Science 2010, 328, 1517–1520. [Google Scholar] [CrossRef] [PubMed]
- Torresan, S.; Critto, A.; Rizzi, J.; Marcomini, A. Assessment of coastal vulnerability to climate change hazards at the regional scale: The case study of the North Adriatic Sea. Nat. Hazards Earth Syst. Sci. 2012, 12, 2347–2368. [Google Scholar] [CrossRef]
- McEvoy, S.; Haasnoot, M.; Biesbroek, R. How are European countries planning for sea level rise? Ocean Coast. Manag. 2021, 203, 105512. [Google Scholar] [CrossRef]
IPCC Sea Level Projections | Baseline | Scenario | Scenario |
---|---|---|---|
1985–2006 | RCP2.6 | RCP8.5 | |
Global (AR5, 2013) | 2100 | 0.44 (0.28–0.61) | 0.74 (0.52–0.98) |
Global (SROCC, 2019) | 2100 | 0.43 (0.29–0.59) | 0.84 (0.61–1.10) |
1995–2014 | SSP1-2.6 (m) | SSP5-8.5 (m) | |
Global (AR6, 2021) | 2050 | 0.19 (0.16–0.25) | 0.23 (0.20–0.29) |
Global (AR6, 2021) | 2100 | 0.44 (0.32–0.61) | 0.77 (0.63–1.01) |
1995–2014 | SSP1-2.6 (m) | SSP5-8.5 (m) | |
Local (AR6, 2021) | 2050 | 0.19 (0.11–0.28) | 0.23 (0.14–0.33) |
Local (AR6, 2021) | 2100 | 0.40 (0.22–0.62) | 0.73 (0.52–1.03) |
Risk Class | CRI Range | Risk Value |
---|---|---|
R0 | 0 | No risk |
R1 | CI ≤ 1.5 | Low risk |
R2 | 1.5 < CI ≤ 2.5 | Medium risk |
R3 | 2.5 < CI ≤ 3.5 | High risk |
R4 | 3.5 < CIR ≤ 4.5 | Very high risk |
Scenarios in 2050 | Scenarios in 2100 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Present Day (DTM 2012) | SSP1-2.6 (AR6) 0.19 m | SSP5-8.5 (AR6) 0.23 m | SSP5-2.6 (AR6) 0.40 m | SSP5-8.5 (AR6) 0.73 m | |||||||
Susceptibility Class | Elevation Range (h) | km2 | % | km2 | % | km2 | % | km2 | % | km2 | % |
S0 | h > 5 m | 9.01 | 95.53 | 9.00 | 95.40 | 9.00 | 95.38 | 8.99 | 95.26 | 8.97 | 95.04 |
S1 | 1 < h ≤ 5 m | 0.29 | 3.12 | 0.29 | 3.08 | 0.29 | 3.07 | 0.29 | 3.06 | 0.29 | 3.06 |
S2 | 0.5 < h ≤ 1 m | 0.04 | 0.47 | 0.04 | 0.45 | 0.04 | 0.45 | 0.04 | 0.42 | 0.03 | 0.35 |
S3 | 0 < h ≤ 0.5 m | 0.08 | 0.83 | 0.06 | 0.61 | 0.05 | 0.57 | 0.05 | 0.49 | 0.04 | 0.45 |
S4 | h ≤ 0 m | 0.00 | 0.05 | 0.04 | 0.46 | 0.05 | 0.53 | 0.07 | 0.77 | 0.10 | 1.10 |
Scenarios in 2100 | |||||
---|---|---|---|---|---|
SSP5-8.5 (AR6) 0.77 m | RCP-8.5 (SROCC) 0.84 m | ||||
Susceptibility Class | Elevation Range (h) | km2 | % | km2 | % |
S0 | h > 5 m | 8.97 | 95.01 | 8.96 | 94.96 |
S1 | 1 < h ≤ 5 m | 0.29 | 3.05 | 0.29 | 3.06 |
S2 | 0.5 < h ≤ 1 m | 0.03 | 0.35 | 0.03 | 0.35 |
S3 | 0 < h ≤ 0.5 m | 0.04 | 0.45 | 0.04 | 0.44 |
S4 | h ≤ 0 m | 0.11 | 1.14 | 0.11 | 1.20 |
Scenarios in 2050 | Scenarios in 2100 | |||||||
---|---|---|---|---|---|---|---|---|
SSP1-2.6 (AR6) | SSP5-8.5 (AR6) | SSP5-2.6 (AR6) | SSP5-8.5 (AR6) | |||||
Risk Class | km2 | % | km2 | % | km2 | % | km2 | % |
R1 | 0.08 | 20.7 | 0.08 | 20.5 | 0.08 | 19.6 | 0.08 | 18.1 |
R2 | 0.25 | 65.6 | 0.25 | 64.8 | 0.25 | 62.0 | 0.24 | 57.9 |
R3 | 0.03 | 8.5 | 0.04 | 9.2 | 0.05 | 11.9 | 0.07 | 15.9 |
R4 | 0.02 | 5.2 | 0.02 | 5.5 | 0.03 | 6.4 | 0.03 | 8.1 |
Scenarios in 2100 | ||||
---|---|---|---|---|
SSP5-8.5 (AR6) | RCP-8.5 (SROCC) | |||
Risk Class | km2 | % | km2 | % |
R1 | 0.08 | 17.9 | 0.08 | 18.1 |
R2 | 0.24 | 57.6 | 0.24 | 57.9 |
R3 | 0.07 | 16.3 | 0.07 | 16.3 |
R4 | 0.03 | 8.2 | 0.03 | 7.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rizzo, A.; Vandelli, V.; Gauci, C.; Buhagiar, G.; Micallef, A.S.; Soldati, M. Potential Sea Level Rise Inundation in the Mediterranean: From Susceptibility Assessment to Risk Scenarios for Policy Action. Water 2022, 14, 416. https://doi.org/10.3390/w14030416
Rizzo A, Vandelli V, Gauci C, Buhagiar G, Micallef AS, Soldati M. Potential Sea Level Rise Inundation in the Mediterranean: From Susceptibility Assessment to Risk Scenarios for Policy Action. Water. 2022; 14(3):416. https://doi.org/10.3390/w14030416
Chicago/Turabian StyleRizzo, Angela, Vittoria Vandelli, Christopher Gauci, George Buhagiar, Anton S. Micallef, and Mauro Soldati. 2022. "Potential Sea Level Rise Inundation in the Mediterranean: From Susceptibility Assessment to Risk Scenarios for Policy Action" Water 14, no. 3: 416. https://doi.org/10.3390/w14030416
APA StyleRizzo, A., Vandelli, V., Gauci, C., Buhagiar, G., Micallef, A. S., & Soldati, M. (2022). Potential Sea Level Rise Inundation in the Mediterranean: From Susceptibility Assessment to Risk Scenarios for Policy Action. Water, 14(3), 416. https://doi.org/10.3390/w14030416