Supporting a Resilience Observatory to Climate Risks in French Polynesia: From Valorization of Preexisting Data to Low-Cost Data Acquisition
Abstract
:1. Introduction
- Tsunamis are one of the major hazards in the Pacific Ocean, because of the “Pacific Ring of Fire” [9]. French Polynesia, and especially the Marquesas Archipelago [9,20,21] may be strongly impacted by this hazard. For instance, some tsunami run-ups have reached 10 m in Nuku Hiva (1946) or Hiva Oa (1946) [22].
- Cyclones are the second major coastal hazard in French Polynesia. For instance, in the Austral Archipelago [21] the cyclone frequency is roughly one event every 7 years [23]. Even if the cyclones are mostly contained west of the 150° meridian, because of the El Nino oscillations, they may occur in the Society and Tuamotu archipelagos [21]. A general average of about ten hurricanes per season can be proposed [14]. Although it is difficult to establish a trend, the major projections present an overall stability in the intensity of hurricanes but an increase in their frequency [13,24]. The impacts include stronger winds and rainfall, sea-level rise, coastal inundations, and storm surges, all of which are accompanied by damages related to these risks.
- Finally, the risk of fluvial flooding is increasingly present and has consequences that are all the more important within this territory wedged between a lagoon and a mountain. The 2017 floods in Tahiti are a relevant illustration of this. Within 6 h, 200 mm of water fell, impacting between 800 and 900 homes, i.e., 4000 people affected. The material damage was considerable, destroying critical infrastructure such as bridges connecting the two parts of the island. Unfortunately, the trends show that these floods are increasing in intensity and recurrence due to climate change, with floods occurring again in 2018 and 2020.
2. A Resilience Observatory to Address the Challenges of Resilience Implementation in French Polynesia
3. Impacts and Issues of Climate Risks in Tahiti: Increasing the Knowledge on Sea Level Rise (Observatory Task 1)
3.1. Pre-Existing Data in Tahiti
3.2. Data and Methods
3.2.1. Sea Level Rise Scenarios and Antarctica Factor
Year | Pessimistic (RCP 8.5) | Optimistic (RCP 2.6) |
---|---|---|
2050 | 0.31 (m) | 0.23 (m) |
2100 | 1.46 (m) | 0.56 (m) |
2300 | 11.69 (m) | 1.42 (m) |
3.2.2. Data, Methods, and Tools
3.3. Results
3.3.1. Simulations for Flooded Areas
3.3.2. Simulations for Impacted Infrastructure
4. Perspectives on Acquiring New Data, a Key to Developing More Precise and Localized Knowledge on Climate Risks in French Polynesia (Observatory Task 2)
4.1. UAVs for Coastal Management
4.2. Examples of UAVs for Coastal Management and Application in French Polynesia
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Oppenheimer, M.; Glavovic, B.C.; Hinkel, J.; Van de Wal, R.; Magnan, A.K.; Abd-Elgawad, A.; Cai, R.; Cifuentes-Jara, M.; DeConto, R.M.; Ghosh, T.; et al. Sea level rise and implications for low-lying islands, coasts and communities. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; World Meteorological Organization: Geneva, Switzerland, 2019; p. 169. [Google Scholar]
- Giardino, A.; Nederhoff, K.; Vousdoukas, M. Coastal hazard risk assessment for small islands: Assessing the impact of climate change and disaster reduction measures on Ebeye (Marshall Islands). Reg. Environ. Chang. 2018, 18, 2237–2248. [Google Scholar] [CrossRef] [Green Version]
- Hay, J.; Mimura, N. The changing nature of extreme weather and climate events: Risks to sustainable development. Geomat. Nat. Hazards Risk 2010, 1, 3–18. [Google Scholar] [CrossRef]
- Guha-Sapir, D.; Vos, F.; Below, R.; Ponserre, S. Annual Disaster Statistical Review 2011: The Numbers and Trends; CRED: Brussels, Belgium, 2012. [Google Scholar]
- Edmonds, C.; Noy, I. The economics of disaster risks and impacts in the Pacific. Disaster Prev. Manag. Int. J. 2018, 27. [Google Scholar] [CrossRef]
- Howe, K.R. (Ed.) Vaka Moana: Voyages of the Ancestors: The Discovery and Settlement of the Pacific; University of Hawaii Press: Honolulu, HI, USA, 2007. [Google Scholar]
- Magnan, A.K.; Schipper, E.l.f.; Burkett, M.; Bharwani, S.; Burton, I.; Eriksen, S.; Gemenne, F.; Schaar, J.; Ziervogel, G. Addressing the risk of maladaptation to climate change. WIREs Clim. Chang. 2016, 7, 646–665. [Google Scholar] [CrossRef]
- Kuruppu, N.; Willie, R. Barriers to reducing climate enhanced disaster risks in Least Developed Country-Small Islands through anticipatory adaptation. Weather Clim. Extrem. 2015, 7, 72–83. [Google Scholar] [CrossRef] [Green Version]
- Dominey-Howes, D.; Goff, J. Tsunami Risk Management in Pacific Island Countries.and Territories (PICTs): Some Issues, Challenges and Ways Forward. Pure Appl. Geophys. 2013, 170, 1397–1413. [Google Scholar] [CrossRef]
- Dutheil, C.; Lengaigne, M.; Bador, M.; Vialard, J.; Lefèvre, J.; Jourdain, N.C.; Jullien, S.; Peltier, A.; Sultan, B.; Menkès, C. Impact of projected sea surface temperature biases on tropical cyclones projections in the South Pacific. Sci. Rep. 2020, 10, 4838. [Google Scholar] [CrossRef] [Green Version]
- Nunn, P. Responding to the challenges of climate change in the Pacific Islands: Management and technological imperatives. Clim. Res. 2009, 40, 211–231. [Google Scholar] [CrossRef]
- Duvat, V.K.E. A global assessment of atoll island planform changes over the past decades. Wiley Interdiscip. Rev. Clim. Chang. 2019, 10, e557. [Google Scholar] [CrossRef] [Green Version]
- Nurse, L.; MacLean, R.; Agard, J.; Briguglio, L.; Duvat-Magnan, V.; Pelesikoti, N.; Tompkins, E.; Webb, A. Small islands. In Climate Change 2014: Impacts, Adaptation and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014; pp. 1613–1654. [Google Scholar]
- Gemenne, F.; Alex, B.; Baillat, A. Implications of Climate Change on Defence and Security in the South Pacific by 2030 May 2019. In Special Report by the Observatoire Defense & Climat; 2019; Available online: https://www.semanticscholar.org/paper/Implications-of-Climate-Change-on-Defence-and-in-by/8a9349d9c5d6529e891e47a679383055e4dc821c (accessed on 7 November 2021).
- IPCC. Climate Change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. In Proceedings of the Intergovernmental Panel on Climate Change AR6, 26 July–7 August 2021; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Cozannet, G.L.; Rohmer, J.; Manceau, J.-C.; Durand, G.; Ritz, C.; Melet, A.; Meyssignac, B.; Salas y Mélia, D.; Carson, M.; Slangen, A.; et al. Quantifying ambiguity in sea-level projections. In Proceedings of the EGU General Assembly 2021, Online, 19–30 April 2021; p. EGU21-2779. [Google Scholar] [CrossRef]
- Hinkel, J.; Feyen, L.; Hemer, M.; Le Cozannet, G.; Lincke, D.; Marcos, M.; Mentaschi, L.; Merkens, J.L.; de Moel, H.; Muis, S.; et al. Uncertainty and Bias in Global to Regional Scale Assessments of Current and Future Coastal Flood Risk. Earths Future 2021, 9, e2020EF001882. [Google Scholar] [CrossRef] [PubMed]
- Heinzlef, C.; Serre, D. Urban resilience: From a limited urban engineering vision to a more global comprehensive and long-term implementation. Water Secur. 2020, 11, 100075. [Google Scholar] [CrossRef]
- Serre, D.; Heinzlef, C. Long term resilience to climate change risks in French Polynesian community: An observatory design. In The Palgrave Handbook of Climate Resilient Societies; Palgrave Macmillan: London, UK, 2021. [Google Scholar]
- Allgeyer, S.; Hébert, H.; Madariaga, R. Modelling the tsunami free oscillations in the Marquesas (French Polynesia). Geophys. J. Int. 2013, 193, 1447–1459. [Google Scholar] [CrossRef] [Green Version]
- Etienne, S. Marine inundation hazards in French Polynesia: Geomorphic impacts of Tropical Cyclone Oli in February 2010. Geol. Soc. Lond. Spec. Publ. 2012, 361, 21–39. [Google Scholar] [CrossRef]
- Schindelé, F.; Hébert, H.; Reymond, D.; Sladen, A. L’aléa tsunami en Polynésie Française: Synthèse des observations et des mesures. Comptes Rendus Geosci. 2006, 338, 1133–1140. [Google Scholar] [CrossRef]
- Larrue, S.; Chiron, T. Les îles de Polynésie française face à l’aléa cyclonique. VertigO 2011, 10, 3–5. [Google Scholar] [CrossRef]
- Campbell, J. OBSOLETE: Climate change impacts on atolls and island nations in the south pacific. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2018; p. B9780124095489098000. [Google Scholar] [CrossRef]
- Colten, C.E.; Kates, R.W.; Laska, S.B. Three Years after Katrina: Lessons for Community Resilience. Environ. Sci. Policy Sustain. Dev. 2008, 50, 36–47. [Google Scholar] [CrossRef]
- Heinzlef, C.; Becue, V.; Serre, D. Operationalizing urban resilience to floods in embanked territories-Application in Avignon, Provence Alpes Côte d’azur region. Saf. Sci. 2019, 118, 181–193. [Google Scholar] [CrossRef]
- Campanella, T.J. Urban Resilience and the Recovery of New Orleans. J. Am. Plann. Assoc. 2006, 72, 141–146. [Google Scholar] [CrossRef]
- Vale, L.J.; Campanella, T.J. (Eds.) The Resilient City: How Modern Cities Recover from Disaster; Oxford University Press: New York, NY, USA, 2005. [Google Scholar]
- Zevenbergen, C. Flood resilience. In Resource Guide on Resilience; IRGC: Delft, The Netherlands, 2016. [Google Scholar]
- Whitney, C.K.; Bennett, N.J.; Ban, N.C.; Allison, E.H.; Armitage, D.; Blythe, J.L.; Burt, J.M.; Cheung, W.; Finkbeiner, E.M.; Kaplan-Hallam, M.; et al. Adaptive capacity: From assessment to action in coastal social-ecological systems. Ecol. Soc. 2017, 22, art22. [Google Scholar] [CrossRef] [Green Version]
- Heinzlef, C. La résilience urbaine en question: Enjeux, contexte et propositions d’opérationnalisation. Risques Urbains 2020, 4, 4–5. [Google Scholar] [CrossRef]
- Heinzlef, C.; Robert, B.; Hémond, Y.; Serre, D. Operating urban resilience strategies to face climate change and associated risks: Some advances from theory to application in Canada and France. Cities 2020, 104, 102762. [Google Scholar] [CrossRef]
- Lamaury, Y.; Jessin, J.; Heinzlef, C.; Serre, D. Operationalizing Urban Resilience to Floods in Island Territories—Application in Punaauia, French Polynesia. Water 2021, 13, 337. [Google Scholar] [CrossRef]
- Alexander, D.E. 2013. Resilience and disaster risk reduction: An etymological journey. Nat. Hazards Earth Syst. Sci. Discuss. 2018, 1, 1257–1284. [Google Scholar] [CrossRef]
- Meerow, S.; Newell, J.P.; Stults, M. Defining urban resilience: A review. Landsc. Urban Plan. 2016, 147, 38–49. [Google Scholar] [CrossRef]
- Cardona, O. The Need for Rethinking the Concepts of Vulnerability and Risk from a Holistic Perspective: A Necessary Review and Criticism for Effective Risk Management1. In Mapping Vulnerability; Routledge: London, UK, 2016; pp. 56–70. [Google Scholar]
- Klein, R.J.T.; Nicholls, R.J.; Thomalla, F. Resilience to natural hazards: How useful is this concept? Environ. Hazards 2003, 5, 35–45. [Google Scholar] [CrossRef]
- Saunders, W.S.A.; Becker, J.S. A discussion of resilience and sustainability: Land use planning recovery from the Canterbury earthquake sequence, New Zealand. Int. J. Disaster Risk Reduct. 2015, 14, 73–81. [Google Scholar] [CrossRef] [Green Version]
- Disse, M.; Johnson, T.G.; Leandro, J.; Hartmann, T. Exploring the relation between flood risk management and flood resilience. Water Secur. 2020, 9, 100059. [Google Scholar] [CrossRef]
- Balsells, M.; Barroca, B.; Becue, V.; Serre, D. Making urban flood resilience more operational: Current practice. Proc. Inst. Civ. Eng. Water Manag. 2015, 168, 57–65. [Google Scholar] [CrossRef]
- Heinzlef, C.; Becue, V.; Serre, D. A spatial decision support system for enhancing resilience to floods: Bridging resilience modelling and geovisualization techniques. Nat. Hazards Earth Syst. Sci. 2020, 20, 1049–1068. [Google Scholar] [CrossRef] [Green Version]
- Barroca, B.; Serre, D. Behind The Barriers: A Resilience Conceptual Model. SAPIENS Surv. Perspect. Integr. Environ. Soc. 2013, 6, 6–7. [Google Scholar]
- Serre, D. DS3 model testing: Assessing critical infrastructure network flood resilience at the neighbourhood scale. In Urban Disaster Resilience and Security; Fekete, A., Fiedrich, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 207–220. [Google Scholar] [CrossRef]
- Birkmann, J. Indicators and criteria for measuring vulnerability: Theorical bases and requirements. In Measuring Vulnerability to Natural Hazards: Towards Disaster Resilient Societies; UNU-Press: Tokyo, Japan, 2006. [Google Scholar]
- Cutter, S.L.; Ash, K.D.; Emrich, C.T. The geographies of community disaster resilience. Glob. Environ. Chang. 2014, 29, 65–77. [Google Scholar] [CrossRef]
- Fatemi, F.; Ardalan, A.; Aguirre, B.; Mansouri, N.; Mohammadfam, I. Social vulnerability indicators in disasters: Findings from a systematic review. Int. J. Disaster Risk Reduct. 2017, 22, 219–227. [Google Scholar] [CrossRef]
- Serre, D.; Heinzlef, C. Assessing and mapping urban resilience to floods with respect to cascading effects through critical infrastructure networks. Int. J. Disaster Risk Reduct. 2018, 30, 235–243. [Google Scholar] [CrossRef]
- Heinzlef, C.; Serre, D. Dérèglement climatique et gestion des risques en Polynésie française: Conception d’un Observatoire de la résilience. Cah. D’Outre Mer Rev. Géogr. Bordx 2019, 280, 531–563. [Google Scholar] [CrossRef]
- Jessin, J. Potential of Aerial Geo-Referenced Data to Supply a Resilience Observatory in Tahiti and Moorea (Mémoire de Master 2); Université de Polynésie Française: Pune’auia, French Polynesia, 2020. [Google Scholar]
- Becker, M.; Meyssignac, B.; Letetrel, C.; Llovel, W.; Cazenave, A.; Delcroix, T. Sea level variations at tropical Pacific islands since 1950. Glob. Planet. Chang. 2012, 80, 85–98. [Google Scholar] [CrossRef]
- Walsh, K.J.E.; McInnes, K.L.; McBride, J.L. Climate change impacts on tropical cyclones and extreme sea levels in the South Pacific—A regional assessment. Glob. Planet. Chang. 2012, 80, 149–164. [Google Scholar] [CrossRef]
- Beetham, E.; Kench, P.S.; Popinet, S. Future Reef Growth Can Mitigate Physical Impacts of Sea-Level Rise on Atoll Islands: Sea-level rise impacts on atoll islands. Earths Future 2017, 5, 1002–1014. [Google Scholar] [CrossRef] [Green Version]
- Canavesio, R. Distant swells and their impacts on atolls and tropical coastlines. The example of submersions produced by lagoon water filling and flushing currents in French Polynesia during 1996 and 2011 mega swells. Glob. Planet. Chang. 2019, 177, 116–126. [Google Scholar] [CrossRef]
- Costa, M.B.; Macedo, E.C.; Siegle, E. Wave refraction and reef island stability under rising sea level. Glob. Planet. Chang. 2019, 172, 256–267. [Google Scholar] [CrossRef]
- Tuck, M.E.; Ford, M.R.; Masselink, G.; Kench, P.S. Physical modelling of reef island topographic response to rising sea levels. Geomorphology 2019, 345, 106833. [Google Scholar] [CrossRef]
- Weber, F. Essai Après Inventaire et Typologie D’une Méthode de Cartographie SIG Systématique des Trois aléas Inondation-Submersion-Mouvements de Terrain Pour L’élaboration D’un Atlas des Risques «Naturels» à Tahiti Nui et sa Presqu’île (Iti) (Mémoire de Master 2); Université de Polynésie Française: Puna’auia, French Polynesia, 2020. [Google Scholar]
- Bon, O. L’insoutenable développement urbain de l’île de Tahiti: Politique du «tout automobile» et congestion des déplacements urbains. Cah. D’outre-Mer. Rev. Géographie Bordx. 2005, 58, 121–152. [Google Scholar] [CrossRef] [Green Version]
- Pescaroli, G.; Nones, M. Cascading Events, Technology and the Floods Directive: Future challenges. E3S Web Conf. 2016, 7, 07003. [Google Scholar] [CrossRef] [Green Version]
- Croteau, R. Utilisation des Systèmes d’Informations Géographiques Pour Mesurer les Impacts de L’élévation du Niveau Marin sur les Littoraux et les Infrastructures de la Zone Urbaine de Tahiti, Polynésie Française (Mémoire de Master 2); Université de Montréal: Montreal, QC, Canada; Université de Polynésie Française: Puna’auia, French Polynesia, 2020. [Google Scholar]
- Long, N.; Millescamps, B.; Guillot, B.; Pouget, F.; Bertin, X. Monitoring the Topography of a Dynamic Tidal Inlet Using UAV Imagery. Remote Sens. 2016, 8, 387. [Google Scholar] [CrossRef] [Green Version]
- Murfitt, S.L.; Allan, B.M.; Bellgrove, A.; Rattray, A.; Young, M.A.; Ierodiaconou, D. Applications of unmanned aerial vehicles in intertidal reef monitoring. Sci. Rep. 2017, 7, 10259. [Google Scholar] [CrossRef] [Green Version]
- Appeaning Addo, K.; Jayson-Quashigah, P.-N.; Codjoe, S.N.A.; Martey, F. Drone as a tool for coastal flood monitoring in the Volta Delta, Ghana. Geoenviron. Disasters 2018, 5, 17. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, J.A.; Henriques, R. UAV photogrammetry for topographic monitoring of coastal areas. ISPRS J. Photogramm. Remote Sens. 2015, 104, 101–111. [Google Scholar] [CrossRef]
- Anselme, B.; Bessat, F. Coastal Vulnerability to Sea Level Rise on Tahiti Island, French Polynesia. In Solutions to Coastal Disasters; American Society of Civil Engineers: Reston, VA, USA, 2012; pp. 38–49. [Google Scholar] [CrossRef]
- Horton, B.P.; Kopp, R.E.; Garner, A.J.; Hay, C.C.; Khan, N.S.; Roy, K.; Shaw, T.A. Mapping Sea-Level Change in Time, Space, and Probability. Annu. Rev. Environ. Resour. 2018, 43, 481–521. [Google Scholar] [CrossRef] [Green Version]
- van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.-F.; et al. The representative concentration pathways: An overview. Clim. Chang. 2011, 109, 5–31. [Google Scholar] [CrossRef]
- Cazenave, A.; Cozannet, G.L. Sea level rise and its coastal impacts. Earths Future 2014, 2, 15–34. [Google Scholar] [CrossRef]
- Kopp, R.E.; DeConto, R.M.; Bader, D.A.; Hay, C.C.; Horton, R.M.; Kulp, S.; Oppenheimer, M.; Pollard, D.; Strauss, B.H. Evolving Understanding of Antarctic Ice-Sheet Physics and Ambiguity in Probabilistic Sea-Level Projections. Earths Future 2017, 5, 1217–1233. [Google Scholar] [CrossRef] [Green Version]
- DeConto, R.M.; Pollard, D. Contribution of Antarctica to past and future sea-level rise. Nature 2016, 531, 591–597. [Google Scholar] [CrossRef]
- Golledge, N.R.; Kowalewski, D.E.; Naish, T.R.; Levy, R.H.; Fogwill, C.J.; Gasson, E.G.W. The multi-millennial Antarctic commitment to future sea-level rise. Nature 2015, 526, 421–425. [Google Scholar] [CrossRef]
- SHOM Service Hydrographique Et Océanographique De La Marine, 2015. Lidar Polynésie française 2015 Tahiti v.20160630. [CrossRef]
- Kerle, N.; Heuel, S.; Pfeiffer, N. Real-Time Data Collection and Information Generation Using Airborne Sensors. CRC Press: Boca Raton, FL, USA, 2008; pp. 43–74. [Google Scholar]
- Kislik, C.; Dronova, I.; Kelly, M. UAVs in Support of Algal Bloom Research: A Review of Current Applications and Future Opportunities. Drones 2018, 2, 35. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.-C.; Cheng, Y.-T.; Zhou, T.; Ravi, R.; Hasheminasab, S.; Flatt, J.; Troy, C.; Habib, A. Evaluation of UAV LiDAR for Mapping Coastal Environments. Remote Sens. 2019, 11, 2893. [Google Scholar] [CrossRef] [Green Version]
- Devoto, S.; Macovaz, V.; Mantovani, M.; Soldati, M.; Furlani, S. Advantages of Using UAV Digital Photogrammetry in the Study of Slow-Moving Coastal Landslides. Remote Sens. 2020, 12, 3566. [Google Scholar] [CrossRef]
- Albuquerque, M.D.G.; Leal Alves, D.C.; Espinoza, J.M.D.A.; Oliveira, U.R.; Simões, R.S. Determining Shoreline Response to Meteo-oceanographic Events Using Remote Sensing and Unmanned Aerial Vehicle (UAV): Case Study in Southern Brazil. J. Coast. Res. 2018, 85, 766–770. [Google Scholar] [CrossRef]
- Collin, A.; Ramambason, C.; Pastol, Y.; Casella, E.; Rovere, A.; Thiault, L.; Espiau, B.; Siu, G.; Lerouvreur, F.; Nakamura, N.; et al. Very high resolution mapping of coral reef state using airborne bathymetric LiDAR surface-intensity and drone imagery. Int. J. Remote Sens. 2018, 39, 5676–5688. [Google Scholar] [CrossRef] [Green Version]
- Guillot, B.; Pouget, F. Uav application in coastal environment, example of the oleron island for dunes and dikes survey. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, 3, 321–326. [Google Scholar] [CrossRef] [Green Version]
- Krenz, J.; Kuhn, N.J. Assessing badland sediment sources using unmanned aerial vehicles. In Badlands Dynamics in a Context of Global Change; Elsevier: Amsterdam, The Netherlands, 2018; pp. 255–276. [Google Scholar] [CrossRef]
- Rieucau, G.; Kiszka, J.J.; Castillo, J.C.; Mourier, J.; Boswell, K.M.; Heithaus, M.R. Using unmanned aerial vehicle (UAV) surveys and image analysis in the study of large surface-associated marine species: A case study on reef sharks Carcharhinus melanopterus shoaling behaviour. J. Fish Biol. 2018, 93, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Su, L.; Gibeaut, J. Using UAS Hyperspatial RGB Imagery for Identifying Beach Zones along the South Texas Coast. Remote Sens. 2017, 9, 159. [Google Scholar] [CrossRef] [Green Version]
- Cao, J.; Leng, W.; Liu, K.; Liu, L.; He, Z.; Zhu, Y. Object-Based Mangrove Species Classification Using Unmanned Aerial Vehicle Hyperspectral Images and Digital Surface Models. Remote Sens. 2018, 10, 89. [Google Scholar] [CrossRef] [Green Version]
- Chabot, D.; Dillon, C.; Shemrock, A.; Weissflog, N.; Sager, E. An Object-Based Image Analysis Workflow for Monitoring Shallow-Water Aquatic Vegetation in Multispectral Drone Imagery. ISPRS Int. J. Geo-Inf. 2018, 7, 294. [Google Scholar] [CrossRef] [Green Version]
- Díaz-Delgado, R.; Cazacu, C.; Adamescu, M. Rapid Assessment of Ecological Integrity for LTER Wetland Sites by Using UAV Multispectral Mapping. Drones 2018, 3, 3. [Google Scholar] [CrossRef] [Green Version]
- Doughty, C.; Cavanaugh, K. Mapping Coastal Wetland Biomass from High Resolution Unmanned Aerial Vehicle (UAV) Imagery. Remote Sens. 2019, 11, 540. [Google Scholar] [CrossRef] [Green Version]
- Fairley, I.; Mendzil, A.; Togneri, M.; Reeve, D. The Use of Unmanned Aerial Systems to Map Intertidal Sediment. Remote Sens. 2018, 10, 1918. [Google Scholar] [CrossRef] [Green Version]
- Shaw, L.; Helmholz, P.; Belton, D.; Addy, N. Comparison of uav lidar and imagery for beach monitoring. ISPRS-Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-2/W13, 589–596. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.; Hawthorne, T.L.; Torres, H.; Feinman, M. Using Object-Oriented Classification for Coastal Management in the East Central Coast of Florida: A Quantitative Comparison between UAV, Satellite, and Aerial Data. Drones 2019, 3, 60. [Google Scholar] [CrossRef] [Green Version]
- Kilfoil, J.P.; Rodriguez-Pinto, I.; Kiszka, J.J.; Heithaus, M.R.; Zhang, Y.; Roa, C.C.; Ailloud, L.E.; Campbell, M.D.; Wirsing, A.J. Using unmanned aerial vehicles and machine learning to improve sea cucumber density estimation in shallow habitats. ICES J. Mar. Sci. 2020, 77, 2882–2889. [Google Scholar] [CrossRef]
- Kiszka, J.J.; Mourier, J.; Gastrich, K.; Heithaus, M.R. Using unmanned aerial vehicles (UAVs) to investigate shark and ray densities in a shallow coral lagoon. Mar. Ecol. Prog. Ser. 2016, 560, 237–242. [Google Scholar] [CrossRef]
- Casella, E.; Collin, A.; Harris, D.; Ferse, S.; Bejarano, S.; Parravicini, V.; Hench, J.L.; Rovere, A. Mapping coral reefs using consumer-grade drones and structure from motion photogrammetry techniques. Coral Reefs 2017, 36, 269–275. [Google Scholar] [CrossRef]
- Jadidi, M.; Mostafavi, M.A.; Bédard, Y.; Long, B. Toward an integrated spatial decision support system to improve coastal erosion risk assessment: Modeling and representation of risk zones. In Proceedings of the FIG Working Week 2012 Knowing to Manage the Territory, Protect the Environment, Evaluate the Cultural Heritage, Rome, Italy, 6–10 May 2012. [Google Scholar]
- Kardel, I.; Chormanski, J.; Miroslaw-Swiatek, D.; Okruszko, T.; Grygoruk, M.J.M. Decision support system for biebrza national park. In Efficient Decision Support Systems-Practice and Challenges from Current to Future; Jao, C., Ed.; InTech: London, UK, 2011. [Google Scholar] [CrossRef] [Green Version]
Pacific Islands | Population | Vulnerability Index (GAIN Ranking) |
---|---|---|
Samoa | 187,820 | 0.428 (127) |
Salomon Islands | 561,000 | 0.514 (164) |
Timor-Leste | 1,066,409 | 0.517 (165) |
Vanuatu | 264,652 | 0.429 (128) |
Aerial Photographs (Aircraft) | Satellite Images | LIDAR | |
---|---|---|---|
Utility | - Natural risk assessment - Urban development evolution | - Vegetation analysis - Shoreline change evaluation - Erosion assessment | - Erosion assessment - Marine submersion - Flood assessment - Reef state mapping |
Timeline of available data | 1955–2021 | 2003–2017 | 2015 |
Subject of data | All 5 archipelagos of French Polynesia | All 5 archipelagos of French Polynesia | - West coast of Tahiti - Coast of Moorea - Bora-Bora - Tetiaroa |
Accessibility | Open source | Available upon purchase | Available upon purchase |
Benefits | - Rapid acquisition time - Wide temporal availability | - Large spatial coverage - Multi-spectral data | - High spatial resolution - 3D models (DSM, DEM, DTM) |
Limitations | - Lower spatial resolution - High cost | - Lower precision - Slowest acquisition time | Highest cost |
Pre-Existing Data (LIDAR) | New Data (UAVs) | |
---|---|---|
Advantages | - Immediately accessible - Large spatial coverage - High resolution | - Low cost - Repetitive surveys - ustainable over time - High resolution - High acquisition time - Multiple sensor attachment - Capacity for obtaining own data |
Limits | - Very expensive - Cannot be reproduced over time - Dependent on large acquisition campaigns | - Requires flying skills and expertise - Limited spatial coverage - Laws and regulations |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jessin, J.; Heinzlef, C.; Long, N.; Serre, D. Supporting a Resilience Observatory to Climate Risks in French Polynesia: From Valorization of Preexisting Data to Low-Cost Data Acquisition. Water 2022, 14, 359. https://doi.org/10.3390/w14030359
Jessin J, Heinzlef C, Long N, Serre D. Supporting a Resilience Observatory to Climate Risks in French Polynesia: From Valorization of Preexisting Data to Low-Cost Data Acquisition. Water. 2022; 14(3):359. https://doi.org/10.3390/w14030359
Chicago/Turabian StyleJessin, Jérémy, Charlotte Heinzlef, Nathalie Long, and Damien Serre. 2022. "Supporting a Resilience Observatory to Climate Risks in French Polynesia: From Valorization of Preexisting Data to Low-Cost Data Acquisition" Water 14, no. 3: 359. https://doi.org/10.3390/w14030359
APA StyleJessin, J., Heinzlef, C., Long, N., & Serre, D. (2022). Supporting a Resilience Observatory to Climate Risks in French Polynesia: From Valorization of Preexisting Data to Low-Cost Data Acquisition. Water, 14(3), 359. https://doi.org/10.3390/w14030359