Evaluation of Agricultural Water Supply and Selection of Deficient Districts in Yeongsan River Basin of South Korea Considering Supply Priority
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Method
2.2. Study Area
2.3. MODSIM-DSS
2.3.1. Model Description
2.3.2. Network Design
2.3.3. Datasets
2.3.4. SWAT Modeling
2.4. Scenario Definition
3. Results and Discussion
3.1. Actual Water Supply Analysis Results of MODSIM-DSS
3.2. Scenario Analysis
3.2.1. Changes in Water Shortage Due to Application of Water Supply Scenarios
3.2.2. Evaluation of Water Supply Scenario according to Flow Regime Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- He, G.; Geng, C.; Zhai, J.; Zhao, Y.; Wang, Q.; Jiang, S.; Zhu, Y.; Wang, L. Impact of food consumption patterns change on agricultural water requirements: An urban–rural comparison in China. Agric. Water Manag. 2021, 243, 106504. [Google Scholar] [CrossRef]
- MOLIT. Water Resources Long-Term Comprehensive Plan Report (2001–2020); Ministry of Land, Infrastructure and Transport: Sejong-si, Korea, 2016. (In Korean) [Google Scholar]
- Hao, X.; Yan, J.; Sha, J.; Ke, W.; He, G.; Song, C.; Ma, Y.; Zhang, G. Exploring the synthetic optimal policies for solving problems of agricultural water use with a dynamic optimization simulation model. J. Clean. Prod. 2021, 287, 125062. [Google Scholar] [CrossRef]
- He, L.; Du, Y.; Wu, S.; Zhang, Z. Evaluation of the agricultural water resource carrying capacity and optimization of a planting-raising structure. Agric. Water Manag. 2021, 243, 106456. [Google Scholar] [CrossRef]
- Zhao, C.; Chen, B.; Hayat, T.; Alsaedi, A.; Ahmad, B. Driving force analysis of water footprint change based on extended STIRPAT model: Evidence from the Chinese agricultural sector. Ecol. Indic. 2014, 47, 43–49. [Google Scholar] [CrossRef]
- Ahn, S.R.; Park, G.A.; Shin, Y.H.; Kim, S.J. Assessment of the potential water supply rate of agricultural irrigation facilities using MODSIM -for Geum River basin. J. Korea Soc. 2009, 42, 825–843. (In Korean) [Google Scholar]
- Nam, W.H.; Hayes, M.J.; Svoboda, M.D.; Tadesse, T.; Wilhite, D.A. Drought hazard assessment in the context of climate change for South Koera. Agric. Water Manag. 2015, 160, 106–117. [Google Scholar] [CrossRef]
- Bae, H.; Ji, H.; Lim, Y.J.; Rye, Y.; Kim, M.H.; Kim, B.J. Characteristics of drought propagation in South Korea: Relationship between meteorological, agricultural, and hydrological drought. Nat. Hazards 2019, 99, 1–16. [Google Scholar] [CrossRef] [Green Version]
- KREI. Reforming Agricultural Water Policy for Integrated Water Resources Management in Korea Report: Agricultural Sector; Korea Rural Economic Institute: Naju-si, Korea, 2020. (In Korean) [Google Scholar]
- Kim, S.M.; Kim, S.J.; Kim, Y.W.; Park, T.Y.; Kim, S.M.; Park, K.W.; Jang, M.W. Potential release of Environmental flow through irrigation reservoir. J. Korean Soc. Agric. Eng. 2011, 53, 101–109. (In Korean) [Google Scholar]
- Sieber, J. WEAP Water Evaluation and Planning System; Brigham Young University: Burlington, VT, USA, 2006. [Google Scholar]
- Zagona, E.A.; Fulp, T.J.; Shane, R.; Magee, T.; Goranflo, H.M. Riverware: A generalized tool for complex reservoir system modeling. J. Am. Water Resour. Assoc. 2001, 37, 913–929. [Google Scholar] [CrossRef]
- Labadie, J. Modsim-dss Water Rights Planning Water Resources Management & River Operations Decision Support System. In Documentation and User Manual; Colorado State University: Fort Collins, CO, USA, 2011. [Google Scholar]
- Vaghefi, S.A.; Abbaspour, K.C.; Faramarzi, M.; Srinivasan, R.; Arnold, J.G. Modeling crop water productivity using a coupled SWAT–MODSIM model. Water 2017, 9, 157. [Google Scholar] [CrossRef] [Green Version]
- Ahn, S.R.; Jeong, J.H.; Kim, S.J. Assessing drought threats to agricultural water supplies under climate change by combining the SWAT and MODSIM models for the Geum River basin, South Korea. Hydrol. Sci. J. 2016, 61, 2740–2753. [Google Scholar] [CrossRef] [Green Version]
- Fereidoon, M.; Koch, M. SWAT-MODSIM-PSO optimization of multi-crop planning in the Karkheh river basin, Iran, under the impacts of climate change. Sci. Total Environ. 2018, 630, 502–516. [Google Scholar] [CrossRef]
- Naghdi, S.; Bozorg-Haddad, O.; Khorsandi, M.; Chu, X. Multi-objective optimization for allocation of surface water and groundwater resources. Sci. Total Environ. 2021, 776, 146026. [Google Scholar] [CrossRef]
- Tian, J.; Guo, S.; Deng, L.; Yin, J.; Pan, Z.; He, S.; Li, Q. Adaptive optimal allocation of water resources response to future water availability and water demand in the Han River basin, China. J. Sci. Rep. 2021, 11, 7879. [Google Scholar] [CrossRef]
- Choi, I.C.; Shin, H.J.; Nguyen, T.T.; Tenhunen, J. Water policy reforms in South Korea: A historical review and ongoing challenges for sustainable water governance and management. Water 2017, 9, 717. [Google Scholar] [CrossRef] [Green Version]
- Park, K.B. Review of hydrological stability due to aging of small agriculture reservoirs. J. Korean Soc. Environ. Adm. 2017, 24, 7–13. (In Korean) [Google Scholar]
- KRC. Drought White Paper; Korean Rural Community Corporation: Naju-si, Korea, 2012. (In Korean) [Google Scholar]
- Nam, W.H.; Kwon, H.J.; Choi, K.S. Reevaluation of design frequency of drought and water supply safety for agricultural reservoirs under changing climate and farming methods in paddy field. J. Korean Soc. Agric. Eng. 2018, 60, 121–131. (In Korean) [Google Scholar]
- Bang, N.K.; Nam, W.H.; Shin, J.H.; Kim, H.J.; Kang, K.; Baek, S.C.; Lee, K.Y. Water balance analysis of Pumped-Storage reservoir during Non-irrigation period for recurrent irrigation water management. J. Korean Soc. Agric. Eng. 2020, 62, 1–12. (In Korean) [Google Scholar]
- Hama, T.; Nakamura, K.; Kawashima, S. Effectiveness of cyclic irrigation in reducing suspended solids load from a paddy-field district. Agric. Water Manag. 2010, 97, 483–489. [Google Scholar] [CrossRef] [Green Version]
- Jung, J.W.; Yoon, K.S.; Choi, D.H.; Lim, S.S.; Choi, W.J.; Choi, S.M.; Lim, B.J. Water management practices and SCS curve numbers of paddy fields equipped with surface drainage pipes. Agric. Water Manag. 2012, 110, 78–83. [Google Scholar] [CrossRef]
- Choi, D.H.; Jung, J.W.; Yoon, K.S.; Baek, W.J.; Choi, W.J. Farmers’ water management practice and effective rainfall and runoff ratio of paddy fields. Irrig. Drain. 2016, 65, 66–71. [Google Scholar] [CrossRef]
- An, W.T.; Choi, S.K. Development of database management system for agriculture facilities using Geographic information system. J. Korean Acad.-Ind. 2021, 22, 570–579. [Google Scholar]
- Kim, Y.W.; Lee, J.W.; Woo, S.Y.; Kim, S.J. Evaluation of stream flow and water quality changes of Yeongsan river basin by inter-basin water transfer using SWAT. J. Korean Soc. Water Res. 2020, 53, 1081–1095. (In Korean) [Google Scholar]
- KREI. Development of Sustainable Estuary Management Strategy in Korea Report: Agricultural Sector; Korea Rural Economic Institute: Naju-si, Korea, 2006. (In Korean) [Google Scholar]
- Sabzzadeh, I.; Alimohammadi, S.; ShahriariNia, E. Estimating return-flow fractions at the river basin scale using automatic calibration of MODSIM. J. Irrig. Drain. Eng. 2016, 142, 05016002. [Google Scholar] [CrossRef]
- Ahn, S.R.; Park, G.A.; Kim, S.J. Assessment of agricultural water supply capacity using MODSIM-DSS coupled with SWAT. J. Korean Soc. 2013, 33, 507–519. [Google Scholar]
- Behboudian, M.; Kerachian, R. Evaluating the resilience of water resources management scenarios using the evidential reasoning approach: The Zarrinehrud river basin experience. J. Environ. Manag. 2021, 284, 112025. [Google Scholar] [CrossRef]
- Chhuon, K.; Herrera, E.; Nadaoka, K. Application of integrated hydrologic and river basin management modeling for the optimal development of a multi-purpose reservoir project. Water Resour. Manag. 2016, 30, 3143–3157. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large-area hydrologic modeling and Assessment. Part I: Model Development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Shen, Z.Y.; Chen, L.; Chen, T. Analysis of parameter uncertainty in hydrological and sediment modeling using GLUE method: A case study of SWAT model applied to three gorges reservoir region, China. Hydrol. Earth Syst. Sci. 2012, 16, 121–132. [Google Scholar] [CrossRef] [Green Version]
- Zhang, A.; Zhang, C.; Fu, G.; Wang, B.; Bao, Z.; Zheng, H. Assessments of impacts of climate change and human activities on runoff with SWAT for the Huifa River basin, Northeast China. Water Resour. Manag. 2012, 26, 2199–2217. [Google Scholar] [CrossRef]
- Zhu, C.; Li, Y. Long-term hydrological impacts of land use/land cover change from 1984 to 2010 in the little river watershed, Tennessee. Int. Soil Water Conserv. Res. 2014, 2, 11–21. [Google Scholar] [CrossRef] [Green Version]
- Kwak, J.W. A study on estimation of agricultural water usage in river consider hydrological condition. J. Korean Soc. Water Res. 2021, 54, 311–320. (In Korean) [Google Scholar]
- Chung, J.H.; Lee, Y.G.; Jang, W.J.; Lee, S.W.; Kim, S.J. Correlation analysis between air temperature and MODIS land surface temperature and prediction of air temperature using TensorFlow long short-term memory for the period of occurrence of cold and heat waves. Remote Sens. 2020, 12, 3231. [Google Scholar] [CrossRef]
- Kwon, H.H.; Lall, U.; Kim, S.J. The unusual 2013–2015 drought in South Korea in the context of a multicentury precipitation record: Inferences from a nonstationary, multivariate, Bayesian copula model. Geophys. Res. Lett. 2016, 43, 8534–8544. [Google Scholar] [CrossRef]
- Lee, J.W.; Jung, C.G.; Chung, J.H.; Kim, S.J. The relationship among meteorological, agricultural, and in situ news-generated big data on droughts. Nat. Hazards 2019, 98, 765–781. [Google Scholar] [CrossRef]
- Kim, S.J.; Park, S.G.; Lee, S.J.; Shaimerdenova, A.; Kim, J.W.; Park, E.B.; Lee, W.A.; Kim, G.S.; Kim, N.H.; Kim, T.H.; et al. Developing spatial agricultural drought risk index with controllable Geo-spatial indicators: A case study for South Korea and Kazakhstan. Int. J. Disaster Risk Reduct. 2021, 54, 102056. [Google Scholar] [CrossRef]
- Nam, W.H.; Hong, E.M.; Choi, J.Y. Assessment of water delivery efficiency in irrigation canals using performance indicators. Irrig. Sci. 2016, 34, 129–143. [Google Scholar] [CrossRef]
- Song, J.; Kang, M.S.; Song, I.; Jun, S.M. Water balance in irrigation reservoirs considering flood control and irrigation efficiency variation. J. Irrig. Drain. Eng. 2016, 142, 04016003. [Google Scholar] [CrossRef]
- Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Chang. 2013, 3, 52–58. [Google Scholar] [CrossRef]
- Wei, C.; Cheng, J.; Gong, Y.; Gong, Z. Optimal water allocation method for joint operation of the reservoir and pumping station under insufficient irrigation. Water Supply 2021, 20, 2709–2719. [Google Scholar] [CrossRef]
- Zhuan, X.; Xia, X. Optimal operation scheduling of a pumping station with multiple pumps. Appl. Energy 2013, 104, 250–257. [Google Scholar] [CrossRef]
- Im, S.J.; Park, S.U.; Kim, H.J. Methodology for estimating agricultural water supply in the Han River basin. J. Korean Soc. Water Res. 2000, 33, 765–774. (In Korean) [Google Scholar]
- Dadar, S.; Đurin, B.; Alamatian, E.; Plantak, L. Impact of the pumping regime on electricity cost savings in urban water supply system. Water 2021, 13, 1141. [Google Scholar] [CrossRef]
- Perrone, D.; Jasechko, S. Dry groundwater wells in the western united states. Environ. Res. Lett. 2017, 12, 104002. [Google Scholar] [CrossRef]
- Kim, N.W.; Lee, J.W.; Chung, I.M.; Sung, G.Y. Analysis of effects of groundwater abstraction on streamflow for Sinduncheon watershed. J. Korean Soc. Water Res. 2012, 45, 1259–1273. (In Korean) [Google Scholar] [CrossRef] [Green Version]
- Kim, N.W.; Lee, J.E.; Lee, B.J. Characteristics of flow duration curve according to the operation of multi-purpose Dam in the Han-river basin. J. Korean Soc. Civ. Eng. 2007, 27, 53–63. [Google Scholar]
- Kim, J.; Lee, J.; Park, J.; Kim, S.; Kim, S. Improvement of Downstream Flow by Modifying SWAT Reservoir Operation Considering Irrigation Water and Environmental Flow from Agricultural Reservoirs in South Korea. Water 2021, 13, 2543. [Google Scholar] [CrossRef]
- Jung, C.G.; Kim, S.J. Evaluation of land use change and groundwater use impact on stream drying phenomena using a grid-based continuous hydrologic model. Paddy Water Environ. 2017, 15, 111–122. [Google Scholar] [CrossRef]
Node Type | Description | Source | |
---|---|---|---|
NonStorage | Inflow | Natural inflow of watershed and reservoir | SWAT modeling data (1980–2020) |
River maintenance water | Monthly flow data for river maintenance in reservoirs | KME | |
Pumping station | River intake monitoring data for rice paddy area | YRFCC (2010–2020) | |
Diversion weir | River intake monitoring data for rice paddy area | YRFCC (2010–2020) | |
Underground culvert | Total operating hours of the irrigation facilities for 1 year were 270 days (February–October) | KRC | |
Groundwater well | Total operating hours of the irrigation facilities for 1 year were 270 days (February–October) | KRC | |
Reservoir | Maximum, minimum, and target storage of the reservoir | KRC | |
Demand | Projected water demand scenario for domestic, industrial, and agricultural | MOLIT | |
Flowthru | Return flow | Ratio of return flow (sum of residential, industrial, and agricultural) to runoff | KME |
Sub-Basin | Reservoir | Underground Culvert | Pumping Station | Diversion Weir | Groundwater Well | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No. | R.R | E.S | Max. | Min. | No. | A.O.S | No. | A.O.S. | M.S. | No. | A.O.S. | M.S. | No. | A.O.S. | M.S. | |
5004 | 101 | Suyang | 11.9 | 15.5 | 1.8 | 7 | 0.3 | 16 | 1.3 | 6.7 | 7 | 0.7 | 4.4 | 100 | 0.6 | 1.7 |
5005 | 39 | Geumjeon | 4.8 | 6.5 | 1.0 | - | 0.0 | 3 | 0.2 | 0.8 | 1 | 0.0 | 0.1 | 84 | 0.4 | 0.7 |
5006 | 108 | Suyang | 11.9 | 17.3 | 2.0 | - | 0.0 | 21 | 4.1 | 14.7 | 2 | 0.2 | 0.2 | 469 | 2.3 | 4.6 |
5007 | 64 | Suyang | 11.9 | 14.0 | 1.7 | 11 | 2.4 | 8 | 5.0 | 47.3 | 4 | 0.4 | 3.3 | 156 | 1.0 | 1.0 |
5008 | 28 | Yulchi | 3.6 | 4.3 | 1.0 | 5 | 0.0 | 5 | 4.6 | 42.3 | - | - | - | 48 | 0.2 | 0.2 |
Evaluation Criteria | MR | SCW | JSW | |||
---|---|---|---|---|---|---|
Cal. | Val. | Cal. | Val. | Cal. | Val. | |
R2 | 0.74 | 0.70 | 0.50 | 0.80 | 0.58 | 0.78 |
NSE | 0.52 | 0.50 | 0.66 | 0.66 | 0.56 | 0.67 |
RMSE (mm/day) | 11.71 | 8.57 | 11.16 | 2.74 | 2.27 | 0.95 |
PBIAS (%) | +5.5 | +9.4 | −2.4 | +16.4 | −14.1 | −0.7 |
Scenarios | Description | Develop Storage |
---|---|---|
1 | Maximum river intake using pumping station | 111.8 |
2 | Maximum river intake using diversion weir | 8.0 |
3 | Ground water development by groundwater well | 3.6 |
4 | Maximum river intake using pumping station and diversion weir (scenario 1 + scenario 2) | 119.8 |
5 | Maximum river intake using pumping station and groundwater development by groundwater well (scenario 1 + scenario 3) | 115.4 |
6 | Maximum river intake using diversion weir and groundwater development by groundwater well (scenario 2 + scenario 3) | 11.6 |
7 | Maximum river intake using pumping station, diversion weir, and groundwater development by groundwater well (scenario 1 + scenario 2 + scenario 3) | 123.4 |
Sub-Basin | Land Use (km2) | Agricultural Facilities Storage (106 m3/Month *) | Capacity of Agricultural Facilities (106 m3/1 km2) * | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Total | Urban | Paddy | Crop | Forest | Water | RES | P.S | D.W | U.C | G.W | RES | P.S | D.W | U.C | G.W | |
5004 | 408.10 | 26.7 | 128.9 | 100.4 | 125.7 | 26.3 | 11.93 | 1.27 | 0.73 | 0.30 | 0.60 | 0.052 | 0.006 | 0.003 | 0.001 | 0.003 |
5005 | 219.00 | 12.2 | 66.9 | 35.6 | 91.8 | 12.5 | 4.82 | 0.18 | 0.00 | - | 0.42 | 0.047 | 0.002 | 0.004 | ||
5006 | 483.60 | 26.4 | 161.4 | 100.1 | 154.8 | 41.0 | 11.90 | 4.13 | 0.17 | - | 2.32 | 0.046 | 0.016 | 0.001 | 0.009 | |
5007 | 264.30 | 11.5 | 101.2 | 46.9 | 84.6 | 20.1 | 11.90 | 5.03 | 0.42 | 2.35 | 0.99 | 0.080 | 0.034 | 0.003 | 0.016 | 0.007 |
5008 | 150.70 | 7.3 | 43.2 | 17.0 | 51.9 | 31.2 | 3.60 | 4.59 | - | - | 0.15 | 0.060 | 0.076 | 0.002 | ||
Total | 1525.7 | 84.1 | 501.6 | 300.0 | 508.9 | 131.0 | 44.2 | 15 | 1.32 | 2.7 | 4.5 | 0.285 | 0.133 | 0.007 | 0.017 | 0.025 |
Sub-Basin | Demand | Supply | P.W.S.R (%) | Shortage | S.R (%) | Water Supply Steps Based on Priority | R.F | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1st | 2nd | 3rd | ||||||||||
Inflow | R.D | P.S | D.W | U.C | G.W | |||||||
5004 | 192.9 | 73.5 | 38.1 | 119.4 | 61.9 | 50.7 | 4.7 | 9.5 | 5.1 | 1.2 | 2.4 | 0.0 |
5005 | 59.6 | 25.3 | 42.5 | 34.3 | 57.5 | 19.6 | 2.5 | 1.8 | 0.0 | 0.0 | 1.7 | 0.3 |
5006 | 218.1 | 102.8 | 47.1 | 115.3 | 52.9 | 46.5 | 12.2 | 34.8 | 0.2 | 0.0 | 9.3 | 0.2 |
5007 | 197.1 | 118.4 | 60.1 | 78.7 | 39.9 | 51.4 | 12.2 | 38.7 | 3.1 | 9.4 | 4.0 | 0.3 |
5008 | 59.2 | 54.4 | 91.9 | 4.8 | 8.1 | 12.3 | 3.0 | 42.4 | 0.0 | 0.0 | 0.6 | 4.0 |
Average | 145.4 | 74.9 | 55.9 | 70.5 | 44.1 | 36.1 | 6.9 | 25.4 | 1.7 | 2.1 | 3.6 | 1.0 |
Years | Agricultural Water Shortage during the Irrigation Period (June to September) | ||||||
---|---|---|---|---|---|---|---|
Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 | Scenario 5 | Scenario 6 | Scenario 7 | |
1988 | 339.4 (66) | 118.8 (23) | 37.2 (7) | 370.3 (72) | 349.6 (68) | 134.2 (26) | 380.4 (74) |
1994 | 380.3 (73) | 149.5 (29) | 24.0 (5) | 411.8 (79) | 391.1 (75) | 164.8 (32) | 422.6 (81) |
1995 | 378.9 (65) | 156.5 (27) | 44.0 (8) | 436.7 (75) | 404.7 (70) | 186.4 (32) | 451.0 (78) |
2015 | 349.2 (67) | 127.3 (25) | 23.5 (5) | 380.1 (73) | 359.3 (69) | 142.6 (28) | 390.1 (75) |
Avg. | 361.9 (68) | 138.0 (26) | 32.2 (6) | 399.7 (75) | 376.2 (71) | 157.0 (29) | 411.0 (77) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.; Lee, J.; Kim, J.; Kim, Y.; Shin, H.; Song, I.; Kim, S. Evaluation of Agricultural Water Supply and Selection of Deficient Districts in Yeongsan River Basin of South Korea Considering Supply Priority. Water 2022, 14, 298. https://doi.org/10.3390/w14030298
Kim S, Lee J, Kim J, Kim Y, Shin H, Song I, Kim S. Evaluation of Agricultural Water Supply and Selection of Deficient Districts in Yeongsan River Basin of South Korea Considering Supply Priority. Water. 2022; 14(3):298. https://doi.org/10.3390/w14030298
Chicago/Turabian StyleKim, Sehoon, Jiwan Lee, Jinuk Kim, Yongwon Kim, Hyungjin Shin, Inhong Song, and Seongjoon Kim. 2022. "Evaluation of Agricultural Water Supply and Selection of Deficient Districts in Yeongsan River Basin of South Korea Considering Supply Priority" Water 14, no. 3: 298. https://doi.org/10.3390/w14030298
APA StyleKim, S., Lee, J., Kim, J., Kim, Y., Shin, H., Song, I., & Kim, S. (2022). Evaluation of Agricultural Water Supply and Selection of Deficient Districts in Yeongsan River Basin of South Korea Considering Supply Priority. Water, 14(3), 298. https://doi.org/10.3390/w14030298