Bio-Organic Fertilizer Combined with Different Amendments Improves Nutrient Enhancement and Salt Leaching in Saline Soil: A Soil Column Experiment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Soil Properties
2.2. Experimental Material and Design
2.3. Soil Column Experiment
2.4. Soil and Water Sampling and Analysis
2.5. Statistical Analysis
3. Results
3.1. Effect of Soil Properties after Adding Modified Materials
3.2. Dynamics and Difference of the Soil Volumetric Water Content and EC during Leaching
3.3. Desalination Ratio and Efficiency of Different Treatments
3.4. Leakage Volume and Salt Ion Accumulation of Different Treatments
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhu, L.; Jia, X.; Li, M.X.; Wang, Y.; Zhang, J.P.; Hou, J.Q.; Wang, X.L. Associative effectiveness of bio-organic fertilizer and soil conditioners derived from the fermentation of food waste applied to greenhouse saline soil in Shan Dong Province, China. Appl. Soil Ecol. 2021, 167, 104006. [Google Scholar] [CrossRef]
- Sun, Y.P.; Yang, J.S.; Yao, R.J.; Chen, X.B.; Wang, X.P. Biochar and fulvic acid amendments mitigate negative effects of coastal saline soil and improve crop yields in a three-year field trial. Sci. Rep. 2020, 1, 8946. [Google Scholar] [CrossRef] [PubMed]
- Cuevas, J.; Daliakopoulos, I.N.; Del Moral, F.; Hueso, J.J.; Tsanis, I.K. A Review of Soil-Improving Cropping Systems for Soil Salinization. Agronomy 2019, 9, 295. [Google Scholar] [CrossRef] [Green Version]
- Bello, S.K.; Alayafi, A.H.; AL-Solaimani, S.G.; Abo-Elyousr, K.A.M. Mitigating Soil Salinity Stress with Gypsum and Bio-Organic Amendments: A Review. Agronomy 2021, 11, 1735. [Google Scholar] [CrossRef]
- Almeida, M.D.; Oliveira, M.M.; Saibo, N.J.M. Regulation of Na+ and K+ homeostasis in plants: Towards improved salt stress tolerance in crop plants. Genet. Mol. Biol. 2017, 40 (Suppl. S1), 326–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jamil, A.; Riaz, S.; Ashraf, M.; Foolad, M.R. Gene expression profiling of plants under salt stress. Crit. Rev. Plant Sci. 2011, 30, 435–458. [Google Scholar] [CrossRef]
- Miranda, M.F.A.; Freire, M.B.G.D.; De Almeida, B.G.; Freire, F.J.; Pessoa, L.G.M.; Freire, A.G. Phyto-desalination and chemical and organic conditioners to recover the chemical properties of saline-sodic soil. Soil Sci. Soc. Am. J. 2020, 85, 132–145. [Google Scholar] [CrossRef]
- Zhou, M.; Liu, X.; Meng, Q. Additional application of aluminum sulfate with different fertilizers ameliorates saline-sodic soil of Songnen Plain in Northeast China. J. Soils Sediments 2019, 19, 3521–3533. [Google Scholar] [CrossRef]
- Li, J.; Xu, Y.; Liu, H. Variations of soil quality from continuously planting greenhouses in North China. Int. J. Agric. Biol. Eng. 2019, 12, 139–145. [Google Scholar] [CrossRef]
- Oo, A.N.; Iwai, C.B.; Saenjan, P. Soil properties and maize growth in saline and non-saline soils using cassava-industrial waste compost and vermicompost with or without earthworms. Land Degrad. Dev. 2015, 26, 300–310. [Google Scholar] [CrossRef]
- Larney, F.J.; Angers, D.A. The role of organic amendments in soil reclamation: A review. Can. J. Soil Sci. 2012, 92, 19–38. [Google Scholar] [CrossRef]
- Li, Y.; Shao, M.; Wang, J.; Li, T. Effects of Earthworm Cast Application on Water Evaporation and Storage in Loess Soil Column Experiments. Sustainability 2020, 12, 3112. [Google Scholar] [CrossRef]
- Zhu, Y.; Shao, T.Y.; Zhou, Y.J.; Zhang, X.; Gao, X.M.; Long, X.Y.; Rengel, Z. Periphyton improves soil conditions and offers a suitable environment for rice growth in coastal saline alkali soil. Land Degrad. Dev. 2021, 32, 2775–2788. [Google Scholar] [CrossRef]
- Meng, Q.F.; Ma, X.; Zhang, J.; Yu, Z. The long-term effects of cattle manure application to agricultural soils as a natural-based solution to combat salinization. Catena 2019, 175, 193–202. [Google Scholar] [CrossRef]
- Yang, Y.; Duan, M.; Zhou, B. Effect of organic acid amendment on secondary saline soil amelioration in gully land consolidation area in northern Shaanxi, China. Arab. J. Geosci. 2020, 13, 1273. [Google Scholar] [CrossRef]
- Zhang, J.H.; Yan, Z.B.; Wan, X.; Ma, S.J.; Qin, J.H.; Zhao, Y.C. Effects of multifunctional ameliorations on physicochemical properties of saline soils and on straw yield of Sweet Sorghum in Hexi Inland of Gansu. Soils 2016, 48, 901–909. [Google Scholar] [CrossRef]
- Cheng, H.Y.; Zhu, X.Z.; Sun, R.X.; Niu, Y.N.; Yu, Q.; Shen, Y.F.; Li, S.Q. Effects of different mulching and fertilization on phosphorus transformation in upland farmland. J. Environ. Manag. 2020, 253, 109717. [Google Scholar] [CrossRef]
- Liu, X.Y.; Yang, J.S.; Tao, J.Y.; Yao, R.J. Integrated application of inorganic fertilizer with fulvic acid for improving soil nutrient supply and nutrient use efficiency of winter wheat in a salt-affected soil. Appl. Soil Ecol. 2022, 170, 104255. [Google Scholar] [CrossRef]
- Mamedov, A.I.; Wagner, L.E.; Tsunekawa, A.; Fujimaki, H.; Tsubo, M.; Kobayashi, M.; Norton, L.D.; Levy, G.J. Polyacrylamide dissolved in low-quality water effects on structure stability of soils varying in texture and clay type. Arch. Agron. Soil Sci. 2021, 67, 753–766. [Google Scholar] [CrossRef]
- Yao, R.; Li, H.; Zhu, W.; Yang, J.S.; Wang, X.P.; Yin, C.Y.; Jing, Y.P.; Chen, Q.; Xie, W.P. Biochar and potassium humate shift the migration, transformation and redistribution of urea-N in salt-affected soil under drip fertigation: Soil column and incubation experiments. Irrig. Sci. 2022, 40, 267–282. [Google Scholar] [CrossRef]
- Ramos, T.B.; Simunek, J.; Goncalves, M.C.; Martins, J.C.; Prazeres, A.; Pereira, L.S. Two-dimensional modeling of water and nitrogen fate from sweet sorghum irrigated with fresh and blended saline waters. Agric. Water Manag. 2012, 111, 87–104. [Google Scholar] [CrossRef]
- Leogrande, R.; Vitti, C. Use of organic amendments to reclaim saline and sodic soils: A review. Arid Land Res. Manag. 2019, 33, 1–21. [Google Scholar] [CrossRef]
- Wang, W.J.; He, H.S.; Zu, Y.G.; Guan, Y.; Liu, Z.G.; Zhang, Z.H.; Xu, H.N.; Yu, X.Y. Addition of HPMA affects seed germination, plant growth and properties of heavy saline-alkali soil in northeastern China: Comparison with other agents and determination of the mechanism. Plant Soil. 2010, 339, 177–191. [Google Scholar] [CrossRef]
- Chaganti, V.N.; Crohn, D.M. Evaluating the relative contribution of physiochemical and biological factors in ameliorating a saline–sodic soil amended with composts and biochar and leached with reclaimed water. Geoderma 2015, 259–260, 45–55. [Google Scholar] [CrossRef]
- Chen, C.; Lv, Q.; Tang, Q. Impact of bio-organic fertilizer and reduced chemical fertilizer application on physical and hydraulic properties of cucumber continuous cropping soil. Biomass Convers. Biorefin. 2022. [Google Scholar] [CrossRef]
- Yang, L.; Bian, X.; Yang, R.; Zhou, C.; Tang, B. Assessment of organic amendments for improving coastal saline soil. Land Degrad. Dev. 2018, 29, 3204–3211. [Google Scholar] [CrossRef]
- Si, H.P.; Wu, Z.D.; Wu, J.H.; Chen, J.; Lin, K.Y. Progress of Studies on Technology of Bio-organic Fertilizer. In Proceedings of the International Conference on Computer Science & Environmental Engineering (CSEE), Beijing, China, 17 May 2015; pp. 185–190. [Google Scholar]
- Yao, R.J.; Yang, J.S.; Zhu, W.; Li, H.; Yin, C.; Jing, Y.; Zhang, X. Impact of crop cultivation, nitrogen and fulvic acid on soil fungal community structure in salt-affected alluvial fluvo-aquic soil. Plant Soil 2021, 464, 539–558. [Google Scholar] [CrossRef]
- Sun, J.; Yang, R.; Zhu, J.; Pan, Y.; Yang, M.; Zhang, Z. Can the increase of irrigation frequency improve the rate of water and salt migration in biochar-amended saline soil? J. Soils Sediments 2019, 19, 4021–4030. [Google Scholar] [CrossRef]
- Zhou, H.; Chen, C.; Wang, D.; Arthur, E.; Zhang, Z.; Guo, Z.; Peng, X.; Mooney, S.J. Effect of long-term organic amendments on the full-range soil water retention characteristics of a Vertisol. Soil Tillage Res. 2020, 202, 104663. [Google Scholar] [CrossRef]
- Gardner, W.C.; Broersma, K.; Naeth, A.; Chanasyk, D.; Jobson, A. Influence of biosolids and fertilizer amendments on physical, chemical and microbiological properties of copper mine tailings. Can. J. Soil Sci. 2010, 90, 571–583. [Google Scholar] [CrossRef]
- Zhou, H.; Peng, X.; Perfect, E.; Xiao, T.; Peng, G. Effects of organic and inorganic fertilization on soil aggregation in an Ultisol as characterized by synchrotron based Xray micro-computed tomography. Geoderma 2013, 195–196, 23–30. [Google Scholar] [CrossRef]
- Papadopoulos, A.; Bird, N.R.A.; Whitmore, A.P.; Mooney, S.J. Does organic management lead to enhanced soil physical quality? Geoderma 2014, 213, 435–443. [Google Scholar] [CrossRef]
- Shi, Y.G.; Zhao, X.N.; Gao, X.D.; Zhang, S.L.; Wu, P.T. The effects of long-term fertilizer applications on soil organic carbon and hydraulic properties of a loess soil in China. Land Degrad. Dev. 2016, 27, 60–67. [Google Scholar] [CrossRef]
- Huang, L.; Liu, Y.; Ferreira, J.F.S.; Wang, M.; Na, J.; Huang, J.; Liang, Z. Long-term combined effects of tillage and rice cultivation with phosphogypsum or farmyard manure on the concentration of salts, minerals, and heavy metals of saline-sodic paddy fields in Northeast China. Soil Tillage Res. 2022, 215, 105222. [Google Scholar] [CrossRef]
- Heng, T.; Liao, R.K.; Wang, Z.H.; Wu, W.Y.; Li, W.H.; Zhang, J.Z. Effects of combined drip irrigation and sub-surface pipe drainage on water and salt transport of saline-alkali soil in Xinjiang, China. J. Arid Land 2018, 10, 932–945. [Google Scholar] [CrossRef] [Green Version]
- Du, Z.Y.; Wang, Q.H.; Liu, F.C.; Ma, H.L.; Ma, B.Y.; Malhi, S.S. Movement of Phosphorus in a Calcareous Soil as Affected by Humic Acid. Pedosphere 2013, 23, 229–235. [Google Scholar] [CrossRef]
- Ondrasek, G.; Rengel, Z. Environmental salinization processes: Detection, implications & solutions. Sci. Total Environ. 2020, 754, 142432. [Google Scholar] [CrossRef]
- Qadir, M.; Schubert, S.; Ghafoor, A.; Murtaza, G. Amelioration strategies for sodic soils: A review. Land Degrad. Dev. 2001, 12, 357–386. [Google Scholar] [CrossRef]
- Abd El-Naby, Z.M.; Hafez, W.A.E.-K.; Hashem, H.A. Remediation of salt-affected soil by natural and chemical amendments to improve berseem clover yield and nutritive quality. Afr. J. Range Forage Sci. 2018, 36, 49–60. [Google Scholar] [CrossRef]
Soil Depths (cm) | pH | EC (µs cm−1) | Salt Content (g kg−1) | SOM (g kg−1) | Bulk Density (g cm−3) | Soil Texture | AN (mg kg−1) | AK(mg kg−1) | AP(mg kg−1) | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Sand (0.02–2 mm) | Silt (0.002–0.02 mm) | Clay (<0.002 mm) | |||||||||
0–20 | 8.80 | 634.00 | 2.26 | 7.29 | 1.45 | 15.19 | 33.78 | 51.03 | 26.20 | 110.67 | 6.05 |
20–40 | 8.40 | 598.00 | 2.03 | 6.85 | 1.40 | 14.77 | 31.60 | 53.63 | 30.70 | 93.00 | 6.19 |
Amendment | pH | EC (ms cm−1) | SOM (g kg−1) | N (g kg−1) | P2O3 (g kg−1) | K2O (g kg−1) | Basic Component | Carboxyl (mg kg−1) | Density (g cm−3) |
---|---|---|---|---|---|---|---|---|---|
Organic fertilizer | 8.2 | 23.2 | 515 | 25.6 | 22.4 | 18.6 | - | - | - |
Fulvic acid | 7.5 | 15.6 | 600 | 12.5 | 10.8 | 120 | - | - | - |
Hekang | 2.1 | 0.77 | - | - | - | - | polymaleic anhydride | 180 | 1.15 |
Treatments | pH | Salt Content (g kg−1) | SOM (g kg−1) | AK (mg kg−1) | AP (mg kg−1) |
---|---|---|---|---|---|
OF | 8.49 ± 0.07 b | 2.34 ± 0.26 a | 8.30 ± 0.06 ab | 188 ± 6.97 a | 8.35 ± 0.66 a |
OH | 8.52 ± 0.12 b | 2.06 ± 0.32 ab | 7.58 ± 0.32 bc | 182 ± 5.71 a | 7.15 ± 0.15 b |
OB | 8.47 ± 0.12 b | 2.13 ± 0.08 a | 7.47 ± 0.18 bc | 166 ± 2.86 a | 6.98 ± 0.42 b |
CG | 8.87 ± 0.11 a | 2.27 ± 0.22 a | 7.29 ± 0.41 c | 110 ± 17.91 b | 6.10 ± 0.06 c |
Treatments | Soil Layer (cm) | Cumulative Infiltration Volume (2 L) | Cumulative Infiltration Volume (4 L) | Cumulative Infiltration Volume (6 L) | |||
---|---|---|---|---|---|---|---|
SVWC (m3 m−3) | EC (dS m−1) | SVWC (m3 m−3) | EC (dS m−1) | SVWC (m3 m−3) | EC (dS m−1) | ||
OF | 0–20 | 0.45 ± 0.01 a | 1.24 ± 0.27 a | 0.46 ± 0.00 a | 1.22 ± 0.11 a | 0.45 ± 0.01 a | 0.78 ± 0.02 ab |
20–40 | 0.38 ± 0.03 A | 1.45 ± 0.24 BC | 0.41 ± 0.00 B | 1.64 ± 0.02 B | 0.40 ± 0.00 B | 1.29 ± 0.04 A | |
OH | 0–20 | 0.45 ± 0.00 a | 1.47 ± 0.22 a | 0.42 ± 0.00 bc | 1.23 ± 0.03 a | 0.43 ± 0.00 bc | 0.89 ± 0.11 a |
20–40 | 0.43 ± 0.03 A | 1.87 ± 0.02 A | 0.43 ± 0.01 B | 1.50 ± 0.01 C | 0.44 ± 0.00 A | 1.15 ± 0.03 A | |
OB | 0–20 | 0.35 ± 0.00 b | 1.20 ± 0.08 a | 0.42 ± 0.00 c | 0.88 ± 0.01 b | 0.42 ± 0.00 c | 0.63 ± 0.12 b |
20–40 | 0.30 ± 0.00 B | 1.29 ± 0.07 C | 0.42 ± 0.01 B | 1.17 ± 0.05 D | 0.44 ± 0.01 A | 1.03 ± 0.00 B | |
CG | 0–20 | 0.35 ± 0.04 b | 1.37 ± 0.06 a | 0.43 ± 0.00 b | 1.21 ± 0.07 a | 0.44 ± 0.00 ab | 0.97 ± 0.12 a |
20–40 | 0.39 ± 0.04 A | 1.69 ± 0.06 AB | 0.48 ± 0.01 A | 1.97 ± 0.03 A | 0.45 ± 0.01 A | 1.37 ± 0.13 A |
Treatment | Leachate Volume (L) | Leaching Rate (mL h−1) | VR (%) | EM (g kg−1 mL−1) |
---|---|---|---|---|
OF | 7.00 ± 0.70 a | 18.3 ± 3.8 a | 32.61 ± 2.32 a | 0.108 ± 0.01 a |
OH | 7.00 ± 0.40 a | 21.2 ± 7.80 a | 32.95 ± 4.16 a | 0.101 ± 0.01 a |
OB | 6.80 ± 0.47 a | 22.4 ± 9.68 a | 32.12 ± 6.70 a | 0.098 ± 0.02 a |
CG | 5.80 ± 0.23 a | 0.06 ± 0.00 b | 18.44 ± 1.23 b | 0.060 ± 0.00 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, M.; Liu, G.; Jiang, S.; Guan, X.; Chen, J.; Yao, R.; Wang, X. Bio-Organic Fertilizer Combined with Different Amendments Improves Nutrient Enhancement and Salt Leaching in Saline Soil: A Soil Column Experiment. Water 2022, 14, 4084. https://doi.org/10.3390/w14244084
Xiao M, Liu G, Jiang S, Guan X, Chen J, Yao R, Wang X. Bio-Organic Fertilizer Combined with Different Amendments Improves Nutrient Enhancement and Salt Leaching in Saline Soil: A Soil Column Experiment. Water. 2022; 14(24):4084. https://doi.org/10.3390/w14244084
Chicago/Turabian StyleXiao, Meng, Guangming Liu, Shengguo Jiang, Xuewei Guan, Jinlin Chen, Rongjiang Yao, and Xiuping Wang. 2022. "Bio-Organic Fertilizer Combined with Different Amendments Improves Nutrient Enhancement and Salt Leaching in Saline Soil: A Soil Column Experiment" Water 14, no. 24: 4084. https://doi.org/10.3390/w14244084
APA StyleXiao, M., Liu, G., Jiang, S., Guan, X., Chen, J., Yao, R., & Wang, X. (2022). Bio-Organic Fertilizer Combined with Different Amendments Improves Nutrient Enhancement and Salt Leaching in Saline Soil: A Soil Column Experiment. Water, 14(24), 4084. https://doi.org/10.3390/w14244084