Digestate as a Source of Nutrients: Nitrogen and Its Fractions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subject of Research
- Raw digestate (RD)—5 samples (A, B, C, D, E);
- Digestate liquid fraction (DLF)—3 samples (A, B, D);
- Digestate solid fraction (DSF)—3 samples (A, B, D);
- Centrifuge supernatant (CS)—3 samples (A, D, E);
- Centrifuge sludge (CSL)—3 samples (A, D, E).
2.2. Raw Digestate Separation
2.3. Physical and Chemical Analysis
3. Results
3.1. Physical and Chemical Properties
3.2. Content of Nitrogen and Its Fractions
4. Discussion
5. Conclusions and Further Research
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CS | centrifuge supernatant |
CSL | centrifuge sludge |
DM | dry matter [%] |
DLF | digestate liquid fraction |
DSF | digestate solid fraction |
FM | fresh matter [%] |
N-NH4 | ammonium nitrogen |
N-NO3 | nitrate nitrogen |
Ntot | total nitrogen |
OM | organic matter |
RD | raw digestate |
References
- Hannon, J.; Zaman, A.U. Exploring the Phenomenon of Zero Waste and Future Cities. Urban Sci. 2018, 2, 90. [Google Scholar] [CrossRef] [Green Version]
- Chatzisymeon, E. Application of Biological and Chemical Processes to Wastewater Treatment. Water 2021, 13, 1781. [Google Scholar] [CrossRef]
- Wawrzyniak, A.; Lewicki, A.; Pochwatka, P.; Sołowiej, P.; Czekała, W. Database System for Estimating the Biogas Potential of Cattle and Swine Feces in Poland. J. Ecol. Eng. 2021, 22, 111–120. [Google Scholar] [CrossRef]
- Dach, J.; Koszela, K.; Boniecki, P.; Zaborowicz, M.; Lewicki, A.; Czekała, W.; Skwarcz, J.; Wei, Q.; Piekarska-Boniecka, H.; Białobrzewski, I. The use of neural modelling to estimate the methane production from slurry fermentation processes. Renew. Sustain. Energy Rev. 2016, 56, 603–610. [Google Scholar] [CrossRef]
- Kupryaniuk, K.; Oniszczuk, T.; Combrzyński, M.; Czekała, W.; Matwijczuk, A. The Influence of Corn Straw Extrusion Pretreatment Parameters on Methane Fermentation Performance. Materials 2020, 13, 3003. [Google Scholar] [CrossRef]
- Pilarska, A.; Wolna-Maruwka, A.; Niewiadomska, A.; Pilarski, K.; Adamski, M.; Grzyb, A.; Grządziel, J.; Gałązka, A. Silica/Lignin Carrier as a Factor Increasing the Process Performance and Genetic Diversity of Microbial Communities in Laboratory-Scale Anaerobic Digesters. Energies 2021, 14, 4429. [Google Scholar] [CrossRef]
- Frankowski, J.; Zaborowicz, M.; Dach, J.; Czekała, W.; Przybył, J. Biological Waste Management in the Case of a Pandemic Emergency and Other Natural Disasters. Determination of Bioenergy Production from Floricultural Waste and Modeling of Methane Production Using Deep Neural Modeling Methods. Energies 2020, 13, 3014. [Google Scholar] [CrossRef]
- Czekała, W.; Cieślik, M.; Janczak, D.; Czekała, A.; Wojcieszak, D. Fruit and vegetable waste from markets as a substrate for biogas plant. In Proceedings of the 18th International Multidisciplinary Scientific Geoconference SGEM 2018, Albena, Bulgaria, 2–8 July 2018; pp. 473–478. [Google Scholar]
- Czekała, W. Biogas Production from Raw Digestate and its Fraction. J. Ecol. Eng. 2019, 20, 97–102. [Google Scholar] [CrossRef]
- Lu, J.; Muhmood, A.; Czekała, W.; Mazurkiewicz, J.; Dach, J.; Dong, R. Untargeted Metabolite Profiling for Screening Bioactive Compounds in Digestate of Manure under Anaerobic Digestion. Water 2019, 11, 2420. [Google Scholar] [CrossRef] [Green Version]
- Czekała, W. Solid Fraction of Digestate from Biogas Plant as a Material for Pellets Production. Energies 2021, 14, 5034. [Google Scholar] [CrossRef]
- Fernandez-Bayo, J.D.; Simmons, C.W.; VanderGheynst, J.S. Characterization of digestate microbial community structure following thermophilic anaerobic digestion with varying levels of green and food wastes. J. Ind. Microbiol. 2020, 47, 1031–1044. [Google Scholar] [CrossRef]
- Manu, M.K.; Li, D.; Liwen, L.; Jun, Z.; Varjani, S.; Wonga, J.W.C. A review on nitrogen dynamics and mitigation strategies of food waste digestate composting. Bioresour. Technol. 2021, 334, 125032. [Google Scholar] [CrossRef] [PubMed]
- Berg, W.; Salamat, R.; Scaar, H.; Mellmann, J. Investigation of nitrogen loss during laboratory scale fixed-bed drying of digestate. Waste Manag. 2021, 129, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Czekała, W.; Lewicki, A.; Pochwatka, P.; Czekała, A.; Wojcieszak, D.; Jóźwiakowski, K.; Waliszewska, H. Digestate management in Polish farms as an element of the nutrient cycle. J. Clean. Prod. 2020, 242, 118454. [Google Scholar] [CrossRef]
- Wang, X.; Wang, W.; Zhou, B.; Xu, M.; Wu, Z.; Liang, J.; Zhou, L. Improving solid–liquid separation performance of anaerobic digestate from food waste by thermally activated persulfate oxidation. J. Hazard. Mater. 2020, 398, 122989. [Google Scholar] [CrossRef] [PubMed]
- Kamizela, T.; Kowalczyk, M. Impact of Conditioning Substances and Filtration Pressure on Dewatering Efficiency of Sewage Sludge. Energies 2021, 14, 361. [Google Scholar] [CrossRef]
- Szogi, A.A.; Takata, V.H.; Shumaker, P.D. Chemical Extraction of Phosphorus from Dairy Manure and Utilization of Recovered Manure Solids. Agronomy 2020, 10, 1725. [Google Scholar] [CrossRef]
- Yu, Y.; Li, P.; Zhang, J.; Li, J.; Yu, R. Comprehensive insights into the organic fractions on solid–liquid separation performance of anaerobic digestates from food waste. Sci. Total Environ. 2021, 800, 149608. [Google Scholar] [CrossRef]
- Bremner, J.M. Total nitrogen. In Methods of Soil Analysis: Part 2. Agronomy; Black, C.A., Ed.; American Society of Agronomy: Madison, WI, USA, 1965; Volume 9, pp. 1149–1178. [Google Scholar] [CrossRef]
- Bremner, J.M. Inorganic forms of nitrogen. In Methods of Soil Analysis: Part 2. Agronomy; Black, C.A., Evans, D.E., White, J.L., Ensminger, L.E., Clark, F.E., Eds.; American Society of Agronomy: Madison, WI, USA, 1965; Volume 9, pp. 1179–1237. [Google Scholar] [CrossRef]
- Martínez-Dalmau, J.; Berbel, J.; Ordóñez-Fernández, R. Nitrogen Fertilization. A Review of the Risks Associated with the Inefficiency of Its Use and Policy Responses. Sustainability 2021, 13, 5625. [Google Scholar] [CrossRef]
- Ćustić, M.H.; Horvatić, M.; Pecina, M. Nitrogen Fertilization Influences Protein Nutritional Quality in Red Head Chicory. J. Plant Nutr. 2009, 32, 598–609. [Google Scholar] [CrossRef]
- Żołnowski, A.C. Effect of two technologies of nitrogen fertilization on contents of glycoalkaloids and amino acids in potato tubers. Ecol. Chem. Eng. 2010, 17, 717–725. [Google Scholar]
- Massey, J.; Antonangelo, J.; Zhang, H. Nitrogen Fertilization and Harvest Timing Affect Switchgrass Quality. Resources 2020, 9, 61. [Google Scholar] [CrossRef]
- Udvardi, M.; Brodie, E.L.; Riley, W.; Kaeppler, S.; Lynch, J. Impacts of Agricultural Nitrogen on the Environment and Strategies to Reduce these Impacts. Procedia Environ. Sci. 2015, 29, 303. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Koziel, J.A.; Lee, M.; O’Brien, S.C.; Li, P.; Brown, R.C. Mitigation of Acute Hydrogen Sulfide and Ammonia Emissions from Swine Manure during Three-Hour Agitation Using Pelletized Biochar. Atmosphere 2021, 12, 825. [Google Scholar] [CrossRef]
- Jahangir, M.M.R.; Khalil, M.I.; Johnston, P.; Cardenas, L.M.; Hatch, D.J.; Butler, M.; Barrett, M.; O’flaherty, V.; Richards, K.G. Denitrification potential in subsoils: A mechanism to reduce nitrate leaching to groundwater. Agric Ecosyst Environ. 2012, 147, 13–23. [Google Scholar] [CrossRef] [Green Version]
- Preza-Fontes, G.; Wang, J.; Umar, M.; Qi, M.; Banger, K.; Pittelkow, C.; Nafziger, E. Development of an Online Tool for Tracking Soil Nitrogen to Improve the Environmental Performance of Maize Production. Sustainability 2021, 13, 5649. [Google Scholar] [CrossRef]
- Robertson, G.P.; Groffman, P.M. Nitrogen Transformations: Soil Microbiology, Ecology and Biochemistry; Chapter 14, Denitrification; Academic Press: Cambridge, MA, USA, 2015; pp. 421–446. [Google Scholar] [CrossRef]
- Jadczyszyn, T.; Winiarski, R. Wykorzystanie pofermentu z biogazowni rolniczych do nawożenia. Stud. Rap. 2017, 53, 105–118. [Google Scholar] [CrossRef]
- Stürmer, B.; Pfundtner, E.; Kirchmeyr, F.; Uschnig, S. Legal requirements for digestate as fertilizer in Austria and the European Union compared to actual technical parameters. J. Environ. Manag. 2020, 253, 109756. [Google Scholar] [CrossRef] [PubMed]
- Akhiar, A.; Guilayn, F.; Torrijos, M.; Battimelli, A.; Shamsuddin, A.H.; Carrère, H. Correlations between the Composition of Liquid Fraction of Full-Scale Digestates and Process Conditions. Energies 2021, 14, 971. [Google Scholar] [CrossRef]
- Pochwatka, P.; Kowalczyk-Juśko, A.; Sołowiej, P.; Wawrzyniak, A.; Dach, J. Biogas Plant Exploitation in a Middle-Sized Dairy Farm in Poland: Energetic and Economic Aspects. Energies 2020, 13, 6058. [Google Scholar] [CrossRef]
- Kominko, H.; Gorazda, K.; Wzorek, Z. Formulation and evaluation of organo-mineral fertilizers based on sewage sludge optimized for maize and sunflower crops. Waste Manag. 2021, 136, 57–66. [Google Scholar] [CrossRef]
- Perea-Moreno, M.-A.; Samerón-Manzano, E.; Perea-Moreno, A.-J. Biomass as Renewable Energy: Worldwide Research Trends. Sustainability 2019, 11, 863. [Google Scholar] [CrossRef] [Green Version]
- Nicholson, F.; Bhogal, A.; Cardenas, L.; Chadwick, D.; Misselbrook, T.; Rollett, A.; Taylor, M.; Thorman, R.; Williams, J. Nitrogen losses to the environment following food-based digestate and compost applications to agricultural land. Environ. Pollut. 2017, 228, 504–516. [Google Scholar] [CrossRef] [Green Version]
- Riva, C.; Orzi, V.; Carozzi, M.; Acutis, M.; Boccasile, G.; Lonati, S.; Tambone, F.; D’Imporzano, G.; Adani. Short-term experiments in using digestate products as substitutes for mineral (N) fertilizer: Agronomic performance, odours, and ammonia emission impacts. Sci. Total Environ. 2016, 547, 206–214. [Google Scholar] [CrossRef]
- Czekała, W.; Jeżowska, A.; Chełkowski, D. The Use of Biochar for the Production of Organic Fertilizers. J. Ecol. Eng. 2019, 20, 1–8. [Google Scholar] [CrossRef]
- Mancuso, G.; Bencresciuto, G.F.; Lavrnić, S.; Toscano, A. Diffuse Water Pollution from Agriculture: A Review of Nature-Based Solutions for Nitrogen Removal and Recovery. Water 2021, 13, 1893. [Google Scholar] [CrossRef]
- Marks, S.; Dach, J.; Morales, F.J.F.; Mazurkiewicz, J.; Pochwatka, P.; Gierz, Ł. New Trends in Substrates and Biogas Systems in Poland. J. Ecol. Eng. 2020, 21, 19–25. [Google Scholar] [CrossRef]
- Dubis, B.; Szatkowski, A.; Jankowski, K.J. Sewage sludge, digestate, and mineral fertilizer application affects the yield and energy balance of Amur silvergrass. Ind. Crops Prod. 2022, 175, 114235. [Google Scholar] [CrossRef]
- Kozłowski, K.; Pietrzykowski, M.; Czekała, W.; Dach, J.; Kowalczyk-Juśko, A.; Jóźwiakowski, K.; Brzoski, M. Energetic and economic analysis of biogas plant with using the dairy industry waste. Energy 2019, 183, 1023–1031. [Google Scholar] [CrossRef]
- Jin, K.; Pezzuolo, A.; Gouda, S.G.; Jia, S.; Eraky, M.; Ran, Y.; Chen, M.; Ai, P. Valorization of bio-fertilizer from anaerobic digestate through ammonia stripping process: A practical and sustainable approach towards circular economy. Environ. Technol. Innov. 2022, 27, 102414. [Google Scholar] [CrossRef]
Biogas Plant | Dominant Substrates |
---|---|
A | maize silage, fruit pomace, distillers grains, whey, permeate |
B | maize silage, slurry |
C | maize silage, slurry |
D | maize silage, slurry, chicken droppings |
E | maize silage, slurry |
Biogas Plant | Type of Sample | Sample Code |
---|---|---|
Biogas Plant A | raw digestate | A-RD |
digestate liquid fraction | A-DLF | |
digestate solid fraction | A-DSF | |
centrifuge supernatant | A-CS | |
centrifuge sludge | A-CSL | |
Biogas Plant B | raw digestate | B-RD |
digestate liquid fraction | B-DLF | |
digestate solid fraction | B-DSF | |
Biogas Plant C | raw digestate | C-RD |
Biogas Plant D | raw digestate | D-RD |
digestate liquid fraction | D-DLF | |
digestate solid fraction | D-DSF | |
centrifuge supernatant | D-CS | |
centrifuge sludge | D-CSL | |
Biogas Plant E | raw digestate | E-RD |
centrifuge supernatant | E-CS | |
centrifuge sludge | E-CSL |
Biogas Plant | Type of Sample | Sample Code | DM [%] | OM [% of DM] | pH [-] | Conductivity [mS cm−1] |
---|---|---|---|---|---|---|
Biogas Plant A | raw digestate | A-RD | 5.18 | 80.85 | 7.33 | 14.03 |
digestate liquid fraction | A-DLF | 2.81 | 73.15 | 7.63 | 15.02 | |
digestate solid fraction | A-DSF | 25.24 | 94.26 | 8.75 | 1.467 | |
centrifuge supernatant | A-CS | 0.98 | 38.89 | 7.87 | 10.98 | |
centrifuge sludge | A-CSL | 8.15 | 82.74 | n.d. | n.d. | |
Biogas Plant B | raw digestate | B-RD | 8.34 | 83.46 | 7.50 | 7.85 |
digestate liquid fraction | B-DLF | 4.11 | 75.11 | 7.45 | 8.44 | |
digestate solid fraction | B-DSF | 23.13 | 91.36 | 9.00 | 0.865 | |
Biogas Plant C | raw digestate | C-RD | 10.23 | 72.06 | 8.37 | 19.41 |
Biogas Plant D | raw digestate | D-RD | 3.65 | 63.87 | 7.64 | 25.10 |
digestate liquid fraction | D-DLF | 3.5 | 59.72 | 7.98 | 25.80 | |
digestate solid fraction | D-DSF | 24.28 | 86.17 | 8.44 | 2.04 | |
centrifuge supernatant | D-CS | 1.97 | 54.39 | 8.05 | 4.20 | |
centrifuge sludge | D-CSL | 16.54 | 62.12 | n.d. | n.d. | |
Biogas Plant E | raw digestate | E-RD | 7.2 | 72.98 | 8.12 | 19.97 |
centrifuge supernatant | E-CS | 3.49 | 69.16 | 8.17 | 25.80 | |
centrifuge sludge | E-CSL | 11.95 | 75.42 | 8.33 | 3.22 |
Biogas Plant | Type of Sample | Sample Code | Content of Nitrogen Forms | ||
---|---|---|---|---|---|
Ntot | N-NH4 | N-NO3 | |||
g∙kg−1 FM | |||||
Biogas Plant A | raw digestate | A-RD | 1.64 | 1.30 | 0.08 |
digestate liquid fraction | A-DLF | 1.63 | 1.16 | 0.20 | |
digestate solid fraction | A-DSF | 4.50 | 0.75 | 0.02 | |
centrifuge supernatant | A-CS | 1.71 | 1.11 | 0.06 | |
centrifuge sludge | A-CSL | 5.60 | 1.38 | 0.10 | |
Biogas Plant B | raw digestate | B-RD | 1.80 | 1.26 | 0.03 |
digestate liquid fraction | B-DLF | 1.64 | 1.18 | 0.02 | |
digestate solid fraction | B-DSF | 13.22 | 1.30 | 0.03 | |
Biogas Plant C | raw digestate | C-RD | 7.76 | 4.75 | 0.31 |
Biogas Plant D | raw digestate | D-RD | 3.29 | 2.89 | 0.06 |
digestate liquid fraction | D-DLF | 3.52 | 2.93 | 0.08 | |
digestate solid fraction | D-DSF | 5.36 | 2.43 | 0.05 | |
centrifuge supernatant | D-CS | 3.73 | 2.76 | 0.17 | |
centrifuge sludge | D-CSL | 3.41 | 2.15 | 0.24 | |
Biogas Plant E | raw digestate | E-RD | 3.63 | 2.94 | 0.36 |
centrifuge supernatant | E-CS | 3.24 | 2.92 | 0.07 | |
centrifuge sludge | E-CSL | 4.35 | 3.06 | 0.07 |
Biogas Plant | Type of Sample | Share of Ntot (%) | N-NH4/N-NO3 | ||
---|---|---|---|---|---|
N-NH4 | N-NO3 | Norganic | |||
Biogas Plant A | raw digestate | 79.27 | 4.88 | 15.85 | 16.24 |
digestate liquid fraction | 71.16 | 12.27 | 16.57 | 5.80 | |
digestate solid fraction | 16.67 | 0.44 | 82.89 | 37.89 | |
centrifuge supernatant | 64.91 | 3.50 | 31.59 | 18.55 | |
centrifuge sludge | 24.64 | 1.78 | 73.58 | 13.84 | |
Biogas Plant B | raw digestate | 70.00 | 1.67 | 28.33 | 41.92 |
digestate liquid fraction | 71.95 | 1.22 | 26.83 | 58.98 | |
digestate solid fraction | 9.83 | 0.23 | 89.94 | 42.74 | |
Biogas Plant C | raw digestate | 61.21 | 4.00 | 34.79 | 15.30 |
Biogas Plant D | raw digestate | 87.84 | 1.82 | 10.34 | 48.26 |
digestate liquid fraction | 83.24 | 2.27 | 14.49 | 36.67 | |
digestate solid fraction | 45.33 | 0.93 | 53.74 | 48.74 | |
centrifuge supernatant | 73.99 | 4.56 | 21.45 | 16.23 | |
centrifuge sludge | 63.05 | 7.04 | 29.91 | 8.96 | |
Biogas Plant E | raw digestate | 81.00 | 9.92 | 9.08 | 8.17 |
centrifuge supernatant | 90.12 | 2.16 | 7.72 | 41.72 | |
centrifuge sludge | 70.34 | 1.61 | 28.05 | 43.69 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czekała, W. Digestate as a Source of Nutrients: Nitrogen and Its Fractions. Water 2022, 14, 4067. https://doi.org/10.3390/w14244067
Czekała W. Digestate as a Source of Nutrients: Nitrogen and Its Fractions. Water. 2022; 14(24):4067. https://doi.org/10.3390/w14244067
Chicago/Turabian StyleCzekała, Wojciech. 2022. "Digestate as a Source of Nutrients: Nitrogen and Its Fractions" Water 14, no. 24: 4067. https://doi.org/10.3390/w14244067
APA StyleCzekała, W. (2022). Digestate as a Source of Nutrients: Nitrogen and Its Fractions. Water, 14(24), 4067. https://doi.org/10.3390/w14244067