Ultrasonic Vibration Technology to Improve the Thermal Performance of CPU Water-Cooling Systems: Experimental Investigation
Abstract
1. Introduction
2. Ultrasonic Wave Propagation Phenomena
3. Experimental Apparatus
4. Uncertainty Analysis
5. Result and Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sohel Murshed, S.M.; Nieto de Castro, C.A. A critical review of traditional and emerging techniques and fluids for electronics cooling. Renew. Sustain. Energy Rev. 2017, 78, 821–833. [Google Scholar] [CrossRef]
- Agostini, B.; Fabbri, M.; Park, J.E.; Wojtan, L.; Thome, J.R.; Michel, B. State of the Art of High Heat Flux Cooling Technologies. Heat Transf. Eng. 2007, 28, 258–281. [Google Scholar] [CrossRef]
- Pedram, M.; Nazarian, S. Thermal Modeling, Analysis, and Management in VLSI Circuits: Principles and Methods. Proc. IEEE 2006, 94, 1487–1501. [Google Scholar] [CrossRef]
- Zhang, N.; Du, Y. Ultrasonic enhancement on heat transfer of palmitic-stearic acid as PCM in unit by experimental study. Sustain. Cities Soc. 2018, 43, 532–537. [Google Scholar] [CrossRef]
- Yaralioglu, G. Ultrasonic heating and temperature measurement in microfluidic channels. Sens. Actuators A Phys. 2011, 170, 1–7. [Google Scholar] [CrossRef]
- Gibbons, J.; Houghton, G. Effects of sonic vibrations on boiling. Chem. Eng. Sci. 1961, 15, 146–148. [Google Scholar] [CrossRef]
- Larson, M.B. A Study of the Effects of Ultrasonic Vibrations on Convective Heat Transfer in Liquids. Ph.D. Thesis, Stanford University, Stanford, CA, USA, 1961. [Google Scholar]
- Bergles, A.E.; Newell, J.P. The influence of ultrasonic vibrations on heat transfer to water flowing in annuli. Int. J. Heat Mass Transf. 1965, 8, 1273–1280. [Google Scholar] [CrossRef]
- Oh, Y.K.; Park, S.H.; Cho, Y.I. A study of the effect of ultrasonic vibrations on phase-change heat transfer. Int. J. Heat Mass Transf. 2002, 45, 4631–4641. [Google Scholar] [CrossRef]
- Nomura, S.Y. Ultrasonic Heat Transfer Enhancement Using a Horn-Type Transducer. Jpn. J. Appl. Phys. 2002, 41, 3217–3222. [Google Scholar] [CrossRef]
- Gondrexon, N.; Rousselet, Y.; Legay, M.; Boldo, P.; Le Person, S.; Bontemps, A. Intensification of heat transfer process: Improvement of shell-and-tube heat exchanger performances by means of ultrasound. Chem. Eng. Process. Process Intensif. 2010, 49, 936–942. [Google Scholar] [CrossRef]
- Yao, Y.; Zhang, X.; Guo, Y. Experimental study on heat transfer enhancement of water-water shell-and-tube heat exchanger assisted by power ultrasonic. In Proceedings of the 13th International Refrigeration and Air-Conditioning Conference at Purdue, West Lafayette, IN, USA, 12–15 July 2010. [Google Scholar]
- Legay, M.; Simony, B.; Boldo, P.; Gondrexon, N.; Le Person, S.; Bontemps, A. Improvement of heat transfer by means of ultrasound: Application to a double-tube heat exchanger. Ultrason. Sonochem. 2011, 19, 1194–1200. [Google Scholar] [CrossRef] [PubMed]
- Legay, M.; Le Person, S.; Gondrexon, N.; Boldo, P.; Bontemps, A. Performances of two heat exchangers assisted by ultrasound. Appl. Therm. Eng. 2012, 37, 60–66. [Google Scholar] [CrossRef]
- Dhanalakshmi, N.P.; Nagarajan, R.; Sivagaminathan, N.; Prasad, B.V.S.S.S. Acoustic enhancement of heat transfer in furnace tubes. Chem. Eng. Process. Process Intensif. 2012, 59, 36–42. [Google Scholar] [CrossRef]
- Gondrexon, N.; Cheze, L.; Jin, Y.; Legay, M.; Tissot, Q.; Hengl, N.; Baup, S.; Boldo, P.; Pignon, F.; Talansier, E. Intensification of heat and mass transfer by ultrasound: Application to heat exchangers and membrane separation processes. Ultrason. Sonochem. 2015, 25, 40–50. [Google Scholar] [CrossRef]
- Tam, H.K.; Tam, L.M.; Ghajar, A.J.; Chen, I.P. Experimental study of the ultrasonic effect on heat transfer inside a horizontal mini-tube in the laminar region. Appl. Therm. Eng. 2017, 114, 1300–1308. [Google Scholar] [CrossRef]
- Chen, S.W.; Liu, F.C.; Lin, H.J.; Ruan, P.S.; Su, Y.T.; Weng, Y.C.; Wang, J.R.; Lee, J.D.; Lin, W.K. Experimental test and empirical correlation development for heat transfer enhancement under ultrasonic vibration. Appl. Therm. Eng. 2018, 143, 639–649. [Google Scholar] [CrossRef]
- Delouei, A.A.; Sajjadi, H.; Mohebbi, R.; Izadi, M. Experimental study on inlet turbulent flow under ultrasonic vibration: Pressure drop and heat transfer enhancement. Ultrason. Sonochem. 2019, 51, 151–159. [Google Scholar] [CrossRef]
- Delouei, A.A.; Sajjadi, H.; Izadi, M.; Mohebbi, R. The simultaneous effects of nanoparticles and ultrasonic vibration on inlet turbulent flow: An experimental study. Appl. Therm. Eng. 2019, 146, 268–277. [Google Scholar] [CrossRef]
- Bulliard-Sauret, O.; Berindei, J.; Ferrouillat, S.; Vignal, L.; Memponteil, A.; Poncet, C.; Leveque, J.M.; Gondrexon, N. Heat transfer in-tensification by low or high frequency ultrasound: Thermal and hydrodynamic phenomenological analysis. Exp. Therm. Fluid Sci. 2019, 104, 258–271. [Google Scholar] [CrossRef]
- Bulliard-Sauret, O.; Ferrouillat, S.; Vignal, L.; Memponteil, A.; Gondrexon, N. Heat transfer enhancement using 2 MHz ultrasound. Ultrason. Sonochem. 2017, 39, 262–271. [Google Scholar] [CrossRef]
- Setareh, M.; Saffar-Avval, M.; Abdullah, A. Experimental and numerical study on heat transfer enhancement using ultrasonic vi-bration in a double-pipe heat exchanger. App. Therm. Eng. 2019, 159, 113867. [Google Scholar] [CrossRef]
- Setareh, M.; Saffar-Avval, M.; Abdullah, A. Heat transfer enhancement in an annulus under ultrasound field: A numerical and experimental study. Int. Commun. Heat Mass Transf. 2020, 114, 104560. [Google Scholar] [CrossRef]
- Zhang, Y.; Abatzoglou, N. Review: Fundamentals, applications and potentials of ultrasound-assisted drying. Chem. Eng. Res. Des. 2020, 154, 21–46. [Google Scholar] [CrossRef]
- Dehbani, M.; Rahimi, M.; Rahimi, Z. A review on convective heat transfer enhancement using ultrasound. Appl. Therm. Eng. 2022, 208, 118273. [Google Scholar] [CrossRef]
- Legay, M.; Gondrexon, N.; Le Person, S.; Boldo, P.; Bontemps, A. Enhancement of Heat Transfer by Ultrasound: Review and Recent Advances. Int. J. Chem. Eng. 2011, 2011, 670108. [Google Scholar] [CrossRef]
- Manasseh, R. Acoustic Bubbles, Acoustic Streaming, and Cavitation Microstreaming. In Handbook of Ultrasonics and Sonochemistry; Springer: Berlin/Heidelberg, Germany, 2016; pp. 33–68. [Google Scholar]
- Kuppa, R.; Moholkar, V.S. Physical features of ultrasound-enhanced heterogeneous permanganate oxidation. Ultrason. Sonochem. 2010, 17, 123–131. [Google Scholar] [CrossRef]
- Pecha, R.; Gompf, B. Microimplosions: Cavitation Collapse and Shock Wave Emission on a Nanosecond Time Scale. Phys. Rev. Lett. 2000, 84, 1328–1330. [Google Scholar] [CrossRef]
- Neppiras, E.A. Acoustic cavitation. Phys. Rep. 1980, 61, 159–251. [Google Scholar] [CrossRef]
- Nazari, M.; Ashouri, M.; Kayhani, M.H.; Tamayol, A. Experimental study of convective heat transfer of a nanofluid through a pipe filled with metal foam. Int. J. Therm. Sci. 2015, 88, 33–39. [Google Scholar] [CrossRef]
- Delouei, A.A.; Atashafrooz, M.; Sajjadi, H.; Karimnejad, S. The thermal effects of multi-walled carbon nanotube concentration on an ultrasonic vibrating finned tube heat exchanger. Int. Commun. Heat Mass Transf. 2022, 135, 106098. [Google Scholar] [CrossRef]
- Moffat, R.J. Describing the uncertainties in experimental results. Exp. Therm. Fluid Sci. 1988, 1, 3–17. [Google Scholar] [CrossRef]
- Gnielinski, V. New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow. Int. Chem. Eng. 1976, 16, 359–368. [Google Scholar]
- Petukhov, B.S. Advances in Heat Transfer; Irvine, T.F., Hartnett, J.P., Eds.; Academic Press: New York, NY, USA, 1970; Volume 6. [Google Scholar]
Parameter | Uncertainty |
---|---|
Heat transfer rate | ±2.1% |
Heat transfer coefficient | ±2.3% |
Nusselt number | ±2.4% |
Ultrasonic Power Level | Fan Speed (RPM) | Outlet Temperature (°C) |
---|---|---|
UP = 0 | 70 | 21.20 |
105 | 20.91 | |
140 | 20.37 | |
175 | 20.21 | |
UP = 30 W | 70 | 20.74 |
105 | 20.49 | |
140 | 20.01 | |
175 | 19.95 | |
UP = 60 W | 70 | 20.68 |
105 | 20.41 | |
140 | 19.89 | |
175 | 19.82 | |
UP = 120 W | 70 | 20.51 |
105 | 20.29 | |
140 | 19.84 | |
175 | 19.77 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amiri Delouei, A.; Sajjadi, H.; Ahmadi, G. Ultrasonic Vibration Technology to Improve the Thermal Performance of CPU Water-Cooling Systems: Experimental Investigation. Water 2022, 14, 4000. https://doi.org/10.3390/w14244000
Amiri Delouei A, Sajjadi H, Ahmadi G. Ultrasonic Vibration Technology to Improve the Thermal Performance of CPU Water-Cooling Systems: Experimental Investigation. Water. 2022; 14(24):4000. https://doi.org/10.3390/w14244000
Chicago/Turabian StyleAmiri Delouei, Amin, Hasan Sajjadi, and Goodarz Ahmadi. 2022. "Ultrasonic Vibration Technology to Improve the Thermal Performance of CPU Water-Cooling Systems: Experimental Investigation" Water 14, no. 24: 4000. https://doi.org/10.3390/w14244000
APA StyleAmiri Delouei, A., Sajjadi, H., & Ahmadi, G. (2022). Ultrasonic Vibration Technology to Improve the Thermal Performance of CPU Water-Cooling Systems: Experimental Investigation. Water, 14(24), 4000. https://doi.org/10.3390/w14244000