Evidence for Links between Feeding Behavior of Daphnia magna and Water Framework Directive Elements: Case Study of Crestuma-Lever Reservoir
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling Procedure
2.2. WFD Approach—Physical and Chemical, and Biological Elements Analysis
2.3. Daphnia Magna—Feeding Rate Assays
3. Results and Discussion
3.1. Physical and Chemical, and Biological Elements
3.2. Feeding Rate Assays
3.3. Physical and Chemical, and Ecological Potential vs. Feeding Behavior Approach
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Community Comission (ECC). Comission Diretive 2000/60/CE. J. Of. Das Comunidades Eur. 2000, 327, 1–73. [Google Scholar]
- Pinto, I.; Rodrigues, S.; Lage, O.M.; Antunes, S.C. Assessment of Water Quality in Aguieira Reservoir: Ecotoxicological Tools in Addition to the Water Framework Directive. Ecotoxicol. Environ. Saf. 2021, 208, 111583. [Google Scholar] [CrossRef]
- Neves, V.H.; Pace, G.; Delegido, J.; Antunes, S.C. Chlorophyll and Suspended Solids Estimation in Portuguese Reservoirs (Aguieira and Alqueva) from Sentinel-2 Imagery. Water 2021, 13, 2479. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, Y.; Ekroos, A.; Hallikainen, M. The Role of Remote Sensing Technology in the EU Water Framework Directive (WFD). Environ. Sci. Policy 2004, 7, 267–276. [Google Scholar] [CrossRef]
- Rodrigues, S.; Pinto, I.; Formigo, N.; Antunes, S.C. Microalgae Growth Inhibition-Based Reservoirs Water Quality Assessment to Identify Ecotoxicological Risks. Water 2021, 13, 2605. [Google Scholar] [CrossRef]
- Rodrigues, S.; Pinto, I.; Martins, F.; Formigo, N.; Antunes, S.C. Can Biochemical Endpoints Improve the Sensitivity of the Biomonitoring Strategy Using Bioassays with Standard Species, for Water Quality Evaluation? Ecotoxicol. Environ. Saf. 2021, 215, 112151. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, S.; Pinto, I.; Martins, F.; Formigo, N.; Antunes, S.C. An Ecotoxicological Approach Can Complement the Assessment of Natural Waters from Portuguese Reservoirs? Environ. Sci. Pollut. Res. 2022, 1, 52147–52161. [Google Scholar] [CrossRef] [PubMed]
- Verma, Y. Acute Toxicity Assessment of Textile Dyes and Textile and Dye Industrial Effluents Using Daphnia magna Bioassay. Toxicol. Ind. Health 2008, 24, 491–500. [Google Scholar] [CrossRef]
- Ra, J.S.; Lee, B.C.; Chang, N.I.; Kim, S.D. Comparative Whole Effluent Toxicity Assessment of Wastewater Treatment Plant Effluents Using Daphnia magna. Bull. Environ. Contam. Toxicol. 2008, 80, 196–200. [Google Scholar] [CrossRef]
- Celente, G.; Colares, G.; Araújo, P.; Machado, Ê. Acute Ecotoxicity and Genotoxicity Assessment of Two Wastewater Treatment Units. Environ. Sci. Pollut. Res. 2020, 27, 10520–10527. [Google Scholar] [CrossRef]
- Antunes, S.C.; Castro, B.; Gonçalves, F. Chronic Responses of Different Clones of Daphnia longispina (Field and Ephippia) to Different Food Levels. Acta Oecologica 2003, 24, S325–S332. [Google Scholar] [CrossRef]
- McWilliam, R.A.; Baird, D.J. Postexposure Feeding Depression: A New Toxicity Endpoint for Use in Laboratory Studies with Daphnia magna. Environ. Toxicol. Chem. Int. J. 2002, 21, 1198–1205. [Google Scholar] [CrossRef]
- Queirós, V.; Azeiteiro, U.M.; Antunes, S.C. Feeding Inhibition Tests as a Tool for Seston Quality Evaluation in Lentic Ecosystems: Salinization Impact. Ann. Limnol. 2019, 55, 33. [Google Scholar] [CrossRef]
- Barata, C.; Alañon, P.; Gutierrez-Alonso, S.; Riva, M.C.; Fernández, C.; Tarazona, J.V. A Daphnia magna Feeding Bioassay as a Cost Effective and Ecological Relevant Sublethal Toxicity Test for Environmental Risk Assessment of Toxic Effluents. Sci. Total Environ. 2008, 405, 78–86. [Google Scholar] [CrossRef]
- Yi, X.; Kang, S.W.; Jung, J. Long-Term Evaluation of Lethal and Sublethal Toxicity of Industrial Effluents Using Daphnia magna and Moina macrocopa. J. Hazard. Mater. 2010, 178, 982–987. [Google Scholar] [CrossRef]
- Bitton, G.; Rhodes, K.; Cornejo, M. Short-Term Toxicity Assay Based on Daphnid Feeding Behavior. Water Environ. Res. 1995, 67, 290–293. [Google Scholar] [CrossRef]
- Coelho, P.S.; Almeida, M. Modelação Matemática Da Qualidade Da Água Em Albufeiras Com Planos de Ordenamento 2011 VII-Albufeira Crestuma-Lever; Instituto da Água, Ministério da Agricultura, Mar, Ambiente e Ordenamento do Território: Lisbon, Portugal, 2011. [Google Scholar]
- Magalhães, C.M.; Joye, S.B.; Moreira, R.M.; Wiebe, W.J.; Bordalo, A.A. Effect of Salinity and Inorganic Nitrogen Concentrations on Nitrification and Denitrification Rates in Intertidal Sediments and Rocky Biofilms of the Douro River Estuary, Portugal. Water Res. 2005, 39, 1783–1794. [Google Scholar] [CrossRef]
- CNPGB. Comissão Nacional Portuguesa Das Grandes Barragens—Barragem de Crestuma-Lever. Available online: https://cnpgb.apambiente.pt/gr_barragens/gbportugal/FICHAS/Crestumaficha.htm (accessed on 4 October 2022).
- Leitão, R.; Lopes, A.I. A Utilização Dos Recursos Hídricos Da Parte Portuguesa Da Bacia Hidrográfica Do Rio Douro Para Produção de Energia Eléctrica. In II Congresso Ibérico sobre gestão e planeamento da água—Porto; Hidrorumo, Projeto e Gestão,5.A.: Porto, Portugal, 2000. [Google Scholar]
- American Public Health Association; Eaton, A.D.; American Water Works Association; Water Environment Federation. Standard Methods for the Examination of Water and Wastewater; APHA-AWWA-WEF: Washington, DC, USA, 1989. [Google Scholar]
- INAG. Critérios Para a Classificação Do Estado Das Massas de Água Superficiais—Rios e Albufeiras; Ministério do Ambiente, do Ordenamento do Território e do Desenvolvimento Regional: Lisboa, Portugal, 2009. [Google Scholar]
- Lorenzen, C.J. Determination of Chlorophyll and Pheopigments: Spectrophotometric Equations. Limnol. Oceanogr. 1967, 12, 343–346. [Google Scholar] [CrossRef]
- ASTM. Standard Practice for Conducting Acute Toxicity Tests with Fishes, Macroinvertebrates, and Amphibians. In Reports E 729-80; ASTM: West Conshohocken, PA, USA, 1989; Volume 11.04. [Google Scholar]
- Allen, Y.; Calow, P.; Baird, D.J. A Mechanistic Model of Contaminant-induced Feeding Inhibition in Daphnia magna. Environ. Toxicol. Chem. 1995, 14, 1625–1630. [Google Scholar] [CrossRef]
- SNIRH. Sistema Nacional de Informação de Recursos Hídricos—Albufeira Crestuma-Lever. Available online: http://snirh.pt/index.php?idRef=MTM4Ng==&findestacao=crestuma (accessed on 2 July 2022).
- INAG. Manual Para a Avaliação Da Qualidade Biológica Da Água Em Lagos e Albufeiras Segundo a Directiva Quadro Da Água. Protocolo de Amostragem e Análise Para o Fitoplâncton; Ministério do Ambiente, do Ordenamento do Território e do Desenvolvimento Regional: Lisboa, Portugal, 2009. [Google Scholar]
- Nisbet, M.; Verneaux, J. Composantes Chimiques Des Eaux Courantes. Discussion et Proposition de Classes En Tant Que Bases d’interprétation Des Analyses Chimiques. Limnol.-Int. J. Limnol. 1970, 6, 161–190. [Google Scholar] [CrossRef]
- Mendes, B.; Oliveira, J.F.S. Qualidade Da Água Para Consumo Humano. Lidel: Lisboa, Portugal, 2004; ISBN 9789727572748. [Google Scholar]
- Murphy, J.D.; Johnson, D.W.; Miller, W.W.; Walker, R.F.; Carroll, E.F.; Blank, R.R. Wildfire Effects on Soil Nutrients and Leaching in a Tahoe Basin Watershed. J. Environ. Qual. 2006, 35, 479–489. [Google Scholar] [CrossRef]
- Carlson, R.E. A Trophic State Index for Lakes. Limnol. Oceanogr. 1977, 22, 361–369. [Google Scholar] [CrossRef] [Green Version]
- EDP. EIA Do Aproveitamento Hidroelétrico Do Fridão. Volume 2—Relatório Síntese Capitulo IV; Energias de Portugal: Lisbon, Portugal, 2009. [Google Scholar]
- Castro, B.B.; Gonçalves, F. Seasonal Dynamics of the Crustacean Zooplankton of a Shallow Eutrophic Lake from the Mediterranean Region. Fundam. Appl. Limnol. 2007, 169, 189–202. [Google Scholar] [CrossRef]
- Rodrigues, S.; Pinto, I.; Nogueira, S.; Antunes, S.C. Perspective Chapter: Daphnia Magna as a Potential Indicator of Reservoir Water Quality—Current Status and Perspectives Focused in Ecotoxicological Classes Regarding the Risk Prediction; Intechopen Limited: London, UK, 2022. [Google Scholar] [CrossRef]
- Gellis, S.S.; Clarke, G.L. Organic Matter in Dissolved and in Colloidal Form as Food for Daphnia magna. Physiol. Zool. 1935, 8, 127–137. [Google Scholar] [CrossRef]
- Ebert, D. Ecology, Epidemiology and Evolution of Parasitism in Daphnia; National Library of Medicine: Bethesda, MD, USA, 2005; ISBN 1-932811-06-0. [Google Scholar]
- Sun, Y.; Yu, B.; Lei, Y.; Qin, S.; Lyu, K.; Yang, Z. Differential Comprehensive Effects of Food Quality and ZnO Nanoparticles on the Key Traits of Early Life History of Daphnia Magna. Front. Environ. Sci. 2022, 10, 700. [Google Scholar] [CrossRef]
- Taylor, G.; Baird, D.J.; Soares, A.M.V.M. Surface Binding of Contaminants by Algae: Consequences for Lethal Toxicity and Feeding to Daphnia magna Straus. Environ. Toxicol. Chem. 2009, 17, 412–419. [Google Scholar] [CrossRef]
- Kmeť, T.; Straškraba, M. Feeding Adaptations of Filter Feeders: Daphnia. Ecol. Modell. 2004, 178, 313–327. [Google Scholar] [CrossRef] [Green Version]
- Pestana, J.; Alexander, A.; Culp, J.; Baird, D.; Cessna, A.; Soares, A. Structural and Functional Responses of Benthic Invertebrates to Imidacloprid in Outdoor Stream Mesocosms. Environ. Pollut. 2009, 157, 2328–2334. [Google Scholar] [CrossRef] [Green Version]
- Maltby, L.; Clayton, S.A.; Yu, H.; McLoughlin, N.; Wood, R.M.; Yin, D. Using Single-Species Toxicity Tests, Community-Level Responses, and Toxicity Identification Evaluations to Investigate Effluent Impacts. Environ. Toxicol. Chem. 2000, 19, 151–157. [Google Scholar] [CrossRef]
- Ruppert, E.; Barnes, R. Zoologia Dos Invertebrados. Roca: Sao Paulo, Brazil.
- Compte, J.; Brucet, S.; Gascón, S.; Boix, D.; Sala, J.; López-Flores, R.; Quintana, X.D. Impact of Different Developmental Stages of Daphnia magna (Straus) on the Plankton Community under Different Trophic Conditions. Hydrobiologia 2009, 635, 45–56. [Google Scholar] [CrossRef]
- Enserink, E. Food Mediated Life History Strategies in Daphnia magna: Their Relevance to Ecotoxicological Evaluations; Enserink: Wageningen, The Netherlands, 1995; Available online: https://edepot.wur.nl/200505 (accessed on 2 July 2022).
- Jones, M.; Folt, C.; Guarda, S. Characterizing Individual, Population and Community Effects of Sublethal Levels of Aquatic Toxicants: An Experimental Case Study Using Daphnia. Freshw. Biol. 1991, 26, 35–44. [Google Scholar] [CrossRef]
- Antunes, S.; Castro, B. Pulgas-de-Água (Daphnia spp.). Rev. de Ciência Elem. 2017, 5, 10–12. [Google Scholar] [CrossRef]
Physical and Chemical Parameters | EQS | Crestuma—Sampling Period | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Oct12 | Nov12 | Dec12 | Jan13 | Feb13 | Mar13 | Apr13 | May13 | Jun13 | Jul13 | Aug13 | Sept13 | ||
Temperature (°C) | 21.7 | 17.2 | 13.1 | 12.2 | 10.0 | 9.60 | 12.0 | 14.8 | 18.5 | 22.5 | 25.0 | 24.0 | |
pH | 6.00–9.00 | 7.70 | 7.80 | 7.90 | 7.70 | 8.20 | 8.60 | 7.20 | 9.00 | 8.20 | 8.80 | 7.70 | 8.80 |
Conductivity(μS/cm) | 270 | 250 | 200 | 187 | 145 | 196 | 153 | 191 | 188 | 255 | 293 | 300 | |
Dissolved O2 (mg/L) | ≥5.00 | 6.30 | 7.30 | 7.60 | 8.20 | 10.6 | 3.70 | 8.50 | 10.0 | 9.50 | 10.7 | 1.70 | 7.30 |
Dissolved O2 (%) | 60.0–120 | 59.0 | 64.0 | 66.0 | 72.2 | 93.0 | 32.5 | 99.3 | 90.9 | 27.0 | 120 | 14.5 | 87.0 |
TDS (mg/L) | 130 | 230 | 290 | 55.0 | 60.0 | 98.0 | 81.0 | 95.0 | 118 | 127 | 146 | 147 | |
Turbidity (m−1) | 0.001 | 0.003 | 0.006 | 0.007 | 0.063 | 0.007 | 0.009 | 0.009 | 0.004 | 0.001 | 0.001 | 0.001 | |
Secchi disk (m) | 2.30 | 2.00 | 2.20 | 2.30 | 2.00 | 2.50 | 3.00 | 1.30 | 2.00 | 2.20 | 2.20 | 2.10 | |
BOD5 (mg/L) | 2.20 | 2.10 | 1.90 | 2.40 | 1.50 | 2.00 | 2.30 | 1.20 | 1.80 | 1.30 | 1.30 | 0.800 | |
NO2- (mg/L) | BDL | 0.040 | BDL | BDL | 0.670 | 0.200 | 0.300 | 0.030 | BDL | BDL | BDL | 0.330 | |
NO3- (mg/L) | ≤25.0 | BDL | BDL | BDL | BDL | 5.32 | 6.94 | 1.18 | 4.43 | 0.050 | 0.100 | 0.100 | BDL |
NH4 (mg/L) | 0.050 | 0.040 | 0.030 | BDL | BDL | 0.060 | 0.010 | BDL | BDL | BDL | 0.080 | 0.050 | |
Ptotal (mg/L) | ≤0.050 | 0.070 | 0.010 | BDL | BDL | BDL | BDL | BDL | 0.030 | BDL | BDL | 0.020 | 0.030 |
Ecological Potential (Physicochemical) | Moderate | Good or More | Good or More | Good or More | Good or More | Moderate | Good or More | Good or More | Moderate | Good or More | Moderate | Good or More | |
Chl a (mg/m3) | 9.50 | 9.26 | 1.07 | 10.3 | 3.74 | 0.800 | 1.19 | 2.14 | 7.48 | 1.18 | 0.800 | 0.330 | 0.530 |
Ecological Potential (Biological) | Good or More | Good or More | Moderate or Less | Good or More | Good or More | Good or More | Good or More | Good or More | Good or More | Good or More | Good or More | Good or More | |
Final Ecological Potential | Moderate | Good | Moderate | Good | Good | Moderate | Good | Good | Moderate | Good | Moderate | Good |
Physical and Chemical Parameters | EQS | Marina—Sampling Period | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Oct12 | Nov12 | Dec12 | Jan13 | Feb13 | Mar13 | Apr13 | May13 | Jun13 | Jul13 | Aug13 | Sept13 | ||
Temperature (°C) | 21.6 | 15.8 | 13.5 | 13.6 | 12.0 | 13.6 | 15.2 | 15.9 | 17.7 | 28.2 | 27.2 | 25.8 | |
pH | 6.00–9.00 | 7.30 | 7.90 | 7.30 | 7.00 | 7.90 | 8.30 | 7.80 | 8.40 | 8.7.0 | 8.10 | 7.80 | 7.70 |
Conductivity(μS/cm) | 300 | 280 | 220 | 157 | 105 | 101 | 132 | 179 | 162 | 237 | 289 | 258 | |
Dissolved O2 (mg/L) | ≥5.00 | 6.80 | 7.40 | 7.10 | 9.30 | 9.00 | 4.90 | 7.70 | 10.4 | 8.70 | 5.00 | 1.80 | 6.50 |
Dissolved O2 (%) | 60.0–120 | 59.0 | 65.0 | 62.0 | 81.7 | 83.0 | 38.5 | 83.4 | 103 | 27.5 | 43.6 | 15.7 | 78.3 |
TDS (mg/L) | 150 | 26.0 | 21.0 | 78.0 | 10.0 | 50.0 | 43.0 | 90.0 | 96.0 | 109 | 143 | 128 | |
Turbidity (m−1) | 0.004 | 0.009 | 0.012 | 0.009 | 0.097 | 0.060 | 0.002 | 0.002 | 0.009 | 0.005 | 0.005 | 0.019 | |
Secchi disk (m) | <0.500 | <0.500 | <0.500 | <0.500 | <0.500 | <0.500 | <0.500 | <0.500 | <0.500 | <0.500 | <0.500 | <0.500 | |
BOD5 (mg/L) | 2.70 | 2.20 | 2.6.0 | 2.10 | 0.400 | 0.900 | 2.00 | 2.00 | 2.10 | 1.20 | 1.20 | 0.600 | |
NO2- (mg/L) | BDL | BLD | BLD | BLD | 2.41 | 0.030 | BLD | BLD | BLD | BLD | BLD | 0.330 | |
NO3- (mg/L) | ≤25.0 | 1.51 | 0.110 | 0.530 | 0.500 | 0.890 | 1.52 | BLD | 4.43 | 0.130 | 0.160 | 0.170 | BLD |
NH4 (mg/L) | 0.080 | 0.050 | 0.040 | BLD | BLD | 0.040 | 0.010 | 0.010 | BLD | BLD | 0.060 | 0.360 | |
Ptotal (mg/L) | ≤0.050 | 0.050 | BLD | BLD | BLD | BLD | BLD | BLD | BLD | 0.010 | 0.010 | 0.030 | 0.020 |
Ecological Potential (Physicochemical) | Moderate | Good or More | Good or More | Good or More | Good or More | Moderate | Good or More | Good or More | Moderate | Moderate | Moderate | Good or More | |
Chl a (mg/m3) | 9.50 | 25.6 | 20.8 | 16.0 | 22.1 | 18.2 | 8.54 | 15.0 | 15.7 | 22.4 | 5.34 | 8.54 | 14.2 |
Ecological Potential (Biological) | Good or More | Moderate or Less | Moderate or Less | Moderate or Less | Moderate or Less | Moderate or Less | Good or More | Moderate or Less | Moderate or Less | Moderate or Less | Good or More | Good or More | |
Final Ecological Potential | Moderate | Moderate | Moderate | Moderate | Moderate | Moderate | Moderate | Moderate | Moderate | Moderate | Moderate | Moderate |
Feeding Rate | Oct12 | Nov12 | Dec12 | Jan13 | Feb13 | Mar13 | Apr13 | May13 | Jun13 | Jul13 | Aug13 | Sept13 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
d.f. | 2, 9 | 2, 11 | 2, 10 | 2, 11 | 2, 8 | 2, 9 | 2, 10 | 2, 10 | 2, 8 | 2, 10 | 2, 9 | 2, 11 |
F | 0.528 | 4.173 | 3.242 | 26.69 | 24.38 | 5.929 | 45.66 | 7.976 | 0.755 | 2.44 | 1.438 | 19.95 |
p | 0.607 | 0.045 | 0.082 | <0.001 | <0.001 | 0.023 | <0.001 | 0.008 | 0.501 | 0.137 | 0.287 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diogo, B.S.; Rodrigues, S.; Silva, N.; Pinto, I.; Antunes, S.C. Evidence for Links between Feeding Behavior of Daphnia magna and Water Framework Directive Elements: Case Study of Crestuma-Lever Reservoir. Water 2022, 14, 3989. https://doi.org/10.3390/w14243989
Diogo BS, Rodrigues S, Silva N, Pinto I, Antunes SC. Evidence for Links between Feeding Behavior of Daphnia magna and Water Framework Directive Elements: Case Study of Crestuma-Lever Reservoir. Water. 2022; 14(24):3989. https://doi.org/10.3390/w14243989
Chicago/Turabian StyleDiogo, Bárbara S., Sara Rodrigues, Nelson Silva, Ivo Pinto, and Sara C. Antunes. 2022. "Evidence for Links between Feeding Behavior of Daphnia magna and Water Framework Directive Elements: Case Study of Crestuma-Lever Reservoir" Water 14, no. 24: 3989. https://doi.org/10.3390/w14243989
APA StyleDiogo, B. S., Rodrigues, S., Silva, N., Pinto, I., & Antunes, S. C. (2022). Evidence for Links between Feeding Behavior of Daphnia magna and Water Framework Directive Elements: Case Study of Crestuma-Lever Reservoir. Water, 14(24), 3989. https://doi.org/10.3390/w14243989