Path Analysis of the Main Control Factors of Transpiration in Greenhouse, Drip-Irrigated Grapes in Cold Areas of Northeast China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Data Collection
2.3. Path Analysis Method
3. Results
3.1. Dynamics of Transpiration and Environmental Factors in Grapes throughout the Growth Period
3.2. Correlation Analysis between Grape Transpiration and Environmental Factors
3.3. Path Analysis of Instantaneous Transpiration Influence Factors in Grapes
3.4. Path Analysis of Daily Transpiration Influence Factors in Grapes
3.5. Path Analysis of Transpiration Influence Factors during the Whole Grape Growth Period
3.6. Time Scale Effects of Transpiration Master Control Factors at Different Scales
4. Discussion
4.1. Analysis of Main Control Factors of Instantaneous Transpiration
4.2. Analysis of Main Control Factors of Daily Transpiration
4.3. Analysis of the Main Control Factors of Transpiration at the Growth Scale
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Di, N.; Xi, B.; Clothier, B.; Wang, Y.; Li, G.; Jia, L. Diurnal and nocturnal transpiration behaviors and their responses to groundwater-table fluctuations and meteorological factors of Populus tomentosa in the North China Plain. For. Ecol. Manag. 2019, 448, 445–456. [Google Scholar] [CrossRef]
- Jiao, L.; Lu, N.; Fang, W.; Li, Z.; Wang, J.; Jin, Z. Determining the independent impact of soil water on forest transpiration: A case study of a black locust plantation in the Loess Plateau, China. J. Hydrol. 2019, 572, 671–681. [Google Scholar] [CrossRef]
- Kumagai, T.o.; Tateishi, M.; Miyazawa, Y.; Kobayashi, M.; Yoshifuji, N.; Komatsu, H.; Shimizu, T. Estimation of annual forest evapotranspiration from a coniferous plantation watershed in Japan (1): Water use components in Japanese cedar stands. J. Hydrol. 2014, 508, 66–76. [Google Scholar] [CrossRef]
- Yan, H.; Li, M.; Zhang, C.; Zhang, J.; Wang, G.; Yu, J.; Ma, J.; Zhao, S. Comparison of evapotranspiration upscaling methods from instantaneous to daytime scale for tea and wheat in southeast China. Agric. Water Manag. 2022, 264, 107464. [Google Scholar] [CrossRef]
- Jiankun, G.; Yanfei, L.; Xuewen, G.; Zengjin, L.; Yanbin, L.; Cundong, X. Response of greenhouse crop ecophysiology, water consumption and yield to ventilation environment regulation. J. Inst. Eng. Ser. A 2019, 100, 743–752. [Google Scholar] [CrossRef]
- Nassar, A.; Torres-Rua, A.; Kustas, W.; Alfieri, J.; Hipps, L.; Prueger, J.; Nieto, H.; Alsina, M.; White, W.; McKee, L. Assessing daily evapotranspiration methodologies from one-time-of-day suas and ec information in the grapex project. Remote Sens. 2021, 13, 2887. [Google Scholar] [CrossRef]
- Li, B.; Zheng, S.; Wei, X.; Wang, T.; Sun, J.; Ge, D. Study on sap flow characteristics of grape and its environment influencing factors in cold regions of northeastern China. Trans. Chin. Soc. Agric. Eng. 2019, 35, 185–193. [Google Scholar] [CrossRef]
- Shao, D.; Sun, C.; Wang, H.; Liu, H.; Yuan, J.; Wang, J.; Zheng, C. Simulation on regulation for efficient utilization of water and fertilizer resources in paddy fields. Trans. Chin. Soc. Agric. Eng. 2010, 26, 72–78. [Google Scholar] [CrossRef]
- Wei, X.; Chen, D.; Wang, X.; Wang, Y.; Wei, X. Time scale effect on main factors that influence jujube transpiration in hillside jujube orchard. Trans. Chin. Soc. Agric. Eng. 2014, 30, 149–156. [Google Scholar] [CrossRef]
- Gong, X.; Liu, H.; Sun, J.; Zhang, H.; Ma, X.; Wang, W. Variation of evapotranspiration in different spatial scales for solar greenhouse tomato and its controlling meteorological factors. Trans. Chin. Soc. Agric. Eng. 2017, 33, 166–175. [Google Scholar] [CrossRef]
- Nalevanková, P.; Sitková, Z.; Kučera, J.; Střelcová, K. Impact of water deficit on seasonal and diurnal dynamics of European beech transpiration and time-lag effect between stand transpiration and environmental drivers. Water 2020, 12, 3437. [Google Scholar] [CrossRef]
- Xu, S.; Yu, Z. Environmental control on transpiration: A case study of a desert ecosystem in northwest china. Water 2020, 12, 1211. [Google Scholar] [CrossRef]
- Zhang, B.; Xu, D.; Liu, Y.; Li, F.; Cai, J.; Du, L. Multi-scale evapotranspiration of summer maize and the controlling meteorological factors in north China. Agric. For. Meteorol. 2016, 216, 1–12. [Google Scholar] [CrossRef]
- Han, Q.; Wang, T.; Wang, L.; Smettem, K.; Mai, M.; Chen, X. Comparison of nighttime with daytime evapotranspiration responses to environmental controls across temporal scales along a climate gradient. Water Resour. Res. 2021, 57, e2021WR029638. [Google Scholar] [CrossRef]
- Sun, J.; Sun, X.; Hu, Z.; Wang, G. Exploring the influence of environmental factors in partitioning evapotranspiration along an elevation gradient on Mount Gongga, eastern edge of the Qinghai-Tibet Platea, China. J. Mt. Sci. 2020, 17, 384–396. [Google Scholar] [CrossRef]
- Pour, S.H.; Abd Wahab, A.K.; Shahid, S.; Ismail, Z.B. Changes in reference evapotranspiration and its driving factors in peninsular Malaysia. Atmos. Res. 2020, 246, 105096. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, B.; Han, S. Quantitative analysis of the impact of meteorological factors on reference evapotranspiration Changes in Beijing, 1958–2017. Water 2020, 12, 2263. [Google Scholar] [CrossRef]
- Qiao, Y.; Ma, Y.; Xin, M. Analysis of evapotranspiration characteristics of Ziziphus jujuba Mill. orchards in arid areas based on improved S-W and structural equation model. Trans. Chin. Soc. Agric. Mach. 2021, 52, 307–317. [Google Scholar]
- Li, G.; Zhang, Y.; Deng, T.; Li, D.; Liu, J.; Jia, L.; Xi, B. Responses of tree stem sap flow and its main influencing factors to bud pruning. Trans. Chin. Soc. Agric. Eng. 2021, 37, 131–139. [Google Scholar] [CrossRef]
- Cai, J.; Xu, D.; Liu, Y.; Zhang, B. Path analysis on spatio-temporal scaling effect of crop evapotranspiration in growing seasons for winter wheat after reviving. Trans. Chin. Soc. Agric. Eng. 2011, 27, 69–76. [Google Scholar] [CrossRef]
- Su, Y.; Fan, X. Study of main meteorological factors affecting evapotranspiration based on gravimetric method. Agric. Res. Arid Areas 2020, 38, 40–48. [Google Scholar] [CrossRef]
- Anandacoomaraswamy, A.; De Costa, W.; Shyamalie, H.; Campbell, G. Factors controlling transpiration of mature field-grown tea and its relationship with yield. Agric. For. Meteorol. 2000, 103, 375–386. [Google Scholar] [CrossRef]
- Mellander, P.E.; Bishop, K.; Lundmark, T. The influence of soil temperature on transpiration: A plot scale manipulation in a young Scots pine stand. For. Ecol. Manag. 2004, 195, 15–28. [Google Scholar] [CrossRef]
- Álvarez, S.; Navarro, A.; Nicolás, E.; Sánchez-Blanco, M.J. Transpiration, photosynthetic responses, tissue water relations and dry mass partitioning in Callistemon plants during drought conditions. Sci. Hortic. 2011, 129, 306–312. [Google Scholar] [CrossRef] [Green Version]
- Alberto, M.C.R.; Quilty, J.R.; Buresh, R.J.; Wassmann, R.; Haidar, S.; Correa Jr, T.Q.; Sandro, J.M. Actual evapotranspiration and dual crop coefficients for dry-seeded rice and hybrid maize grown with overhead sprinkler irrigation. Agric. Water Manag. 2014, 136, 1–12. [Google Scholar] [CrossRef]
- Irmak, S.; Mutiibwa, D.; Irmak, A.; Arkebauer, T.; Weiss, A.; Martin, D.; Eisenhauer, D. On the scaling up leaf stomatal resistance to canopy resistance using photosynthetic photon flux density. Agric. For. Meteorol. 2008, 148, 1034–1044. [Google Scholar] [CrossRef]
- Granier, A.; Biron, P.; Lemoine, D. Water balance, transpiration and canopy conductance in two beech stands. Agric. For. Meteorol. 2000, 100, 291–308. [Google Scholar] [CrossRef]
- Cheng, C.; Feng, L.; Dong, C.; Gong, Z.; Liu, T.; Li, Z. Simulation of inside environmental factors in solar greenhouses using Elman neural network in North China. Trans. Chin. Soc. Agric. Eng. 2021, 37, 200–208. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J.; Gong, S.; Xu, D.; Sui, J.; Wu, Z. Analysis of water saving and yield increasing mechanism in maize field with drip irrigation under film mulching based on transpiration estimated by sap flow meter. Trans. Chin. Soc. Agric. Eng. 2018, 34, 89–97. [Google Scholar] [CrossRef]
- Li, J.; Fan, X.; Yan, F.; Li, H.; Cai, D. Effect of different irrigation amount based on transpiration model on yield and quality of muskmelon. Trans. Chin. Soc. Agric. Eng. 2017, 33, 156–162. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao Rome 1998, 300, D05109. [Google Scholar]
- Wright, S. The biometric relations between parent and offspring. Genetics 1921, 6, 111–123. [Google Scholar] [CrossRef] [PubMed]
- Cheng, P.; Li, H.; Li, C.; Zhang, Z.; Liu, B.; Sun, M. Stem sap flow dynamic of jujube and its response to meteorological factors in the arid area under pit irrigation. Agric. Res. Arid Areas 2017, 35, 263–270. [Google Scholar] [CrossRef]
- Du, T.; Kang, S.; Zhang, B.; Li, S.; Yang, X. Effects of alternate partial rootzone irrigation on roots activity, stem sap flow and fruit of apple. Chin. J. Appl. Ecol. 2008, 299–305. [Google Scholar] [CrossRef]
- Zhang, X.; Yan, Y.; Hu, Z. Using path analysis to identify impacting factors of evapotranspiration at different time scales in farmland. Chin. J. Agrometeorol. 2017, 38, 201–210. [Google Scholar] [CrossRef]
- Sun, X.; Yang, W.; Jiao, L.; Li, Z.; Zhou, W.; Wang, X.; Zhang, Y.; Wang, A. Relationship between sapflux density of pinustabuliformis trees and environmental factors at different temporal scales in Manghan National Forest Park of Beijing, China. Acta Ecol. Sin. 2022, 42, 4113–4123. [Google Scholar] [CrossRef]
- Zhang, R.; Bi, H.; Wang, N.; Zhao, D.; Huang, J.; Zhao, S. Relationship between transpiration of pseudoacacia and environmental factors at different times scales. J. Soil Water Conserv. 2022, 36, 204–211. [Google Scholar] [CrossRef]
Growth Period | 2020 | 2021 | ||
---|---|---|---|---|
Date | Transpiration (mm) | Date | Transpiration (mm) | |
New growth period | 4.11~5.2 | 35.37 | 4.6~4.29 | 22.75 |
Flowering and fruit setting period | 5.3~5.28 | 38.82 | 4.30~5.25 | 34.95 |
Fruit expansion period | 5.29~7.12 | 147.27 | 5.26~7.15 | 138.39 |
Fruit maturation period | 7.13~8.25 | 110.59 | 7.16~8.31 | 109.95 |
Dependent Variable | Variable | Decision Coefficient | Direct Path | Indirect Path | Total Indirect Path | |||||
---|---|---|---|---|---|---|---|---|---|---|
Rs | Ta | RH | VPD | SW | LAI | |||||
Fs | Rs | 0.86 ** | 0.61 ** | -- | 0.04 | 0.00 | 0.21 | -- | -- | 0.25 |
Ta | 0.65 ** | 0.07 | 0.35 | -- | 0.00 | 0.23 | -- | -- | 0.58 | |
RH | −0.65 ** | 0.00 | −0.35 | −0.03 | -- | −0.26 | -- | -- | −0.65 | |
VPD | 0.78 ** | 0.31 ** | 0.43 | 0.05 | 0.00 | -- | -- | -- | 0.48 | |
Trd | Rs | 0.81 ** | 0.51 ** | -- | −0.04 | −0.18 | 0.47 | 0.03 | 0.02 | 0.30 |
Ta | 0.44 ** | −0.18 * | 0.12 | -- | 0.03 | 0.31 | 0.24 | −0.07 | 0.62 | |
RH | −0.53 ** | 0.26 * | −0.35 | −0.02 | -- | −0.46 | 0.09 | −0.05 | −0.79 | |
VPD | 0.78 ** | 0.61 ** | 0.39 | −0.09 | −0.20 | -- | 0.08 | 0.00 | 0.18 | |
LAI | 0.36 ** | 0.30 ** | 0.05 | −0.15 | 0.08 | 0.15 | -- | −0.08 | 0.06 | |
SW | −0.04 | 0.11 * | 0.08 | 0.12 | −0.12 | −0.01 | −0.21 | -- | −0.15 | |
TrP | Rs | 0.68 | 0.61 | -- | −0.09 | −0.12 | 0.16 | 0.05 | 0.07 | 0.07 |
Ta | 0.34 * | −0.32 | 0.16 | -- | 0.25 | 0.14 | 0.35 | −0.24 | 0.66 | |
RH | −0.13 | 0.36 | −0.2 | −0.22 | -- | −0.15 | 0.22 | −0.15 | −0.49 | |
VPD | 0.52 | 0.35 | 0.27 | −0.12 | −0.15 | -- | 0.22 | −0.05 | 0.17 | |
LAI | 0.53 * | 0.51 | 0.05 | −0.22 | 0.16 | 0.15 | -- | −0.13 | 0.02 | |
SW | 0.19 | 0.26 | 0.16 | 0.29 | −0.21 | −0.06 | −0.26 | -- | −0.07 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pei, D.; Wei, X.; Bai, Y.; Wang, C.; Liu, Y.; Jiang, S. Path Analysis of the Main Control Factors of Transpiration in Greenhouse, Drip-Irrigated Grapes in Cold Areas of Northeast China. Water 2022, 14, 3764. https://doi.org/10.3390/w14223764
Pei D, Wei X, Bai Y, Wang C, Liu Y, Jiang S. Path Analysis of the Main Control Factors of Transpiration in Greenhouse, Drip-Irrigated Grapes in Cold Areas of Northeast China. Water. 2022; 14(22):3764. https://doi.org/10.3390/w14223764
Chicago/Turabian StylePei, Dongjie, Xinguang Wei, Yikui Bai, Cong Wang, Ying Liu, and Senyan Jiang. 2022. "Path Analysis of the Main Control Factors of Transpiration in Greenhouse, Drip-Irrigated Grapes in Cold Areas of Northeast China" Water 14, no. 22: 3764. https://doi.org/10.3390/w14223764