Preparation and Modification of Rape Straw Biochar and Its Adsorption Characteristics for Methylene Blue in Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Main Reagents and Solutions
2.2. Preparation and Modification of Biochar
2.3. Experimental Scheme
2.4. Analysis Method
3. Results and Discussion
3.1. Structural Characteristics of RSB
3.2. Analysis of Adsorption Influencing Factors
3.2.1. Effect of Initial pH Value of Solution
3.2.2. Effect of RSB Dosage
3.2.3. Effect of Contact Time
3.2.4. Effect of Initial Concentration of MB
3.3. Adsorption Kinetics
3.4. Adsorption Isotherm
3.5. Adsorption Thermodynamics
3.6. FTIR Comparison before and after Adsorption
3.7. Analysis of Regeneration Effect
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bezzerrouk, M.A.; Bousmaha, M.; Hassan, M.; Akriche, A.; Guezzoul, M. Enhanced methylene blue removal efficiency of SnO2 thin film using sono-photocatalytic processes. Opt. Mater. 2021, 117, 111116. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, Y.; Yang, Y.; Huang, J.; Gao, B. Mechanisms and adsorption capacities of hydrogen peroxide modified ball milled biochar for the removal of methylene blue from aqueous solutions. Bioresour. Technol. 2021, 337, 125432. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Yeap, S.P. Using magneto-adsorbent for methylene blue removal: A decision-making via analytical hierarchy process (AHP). J. Water Process Eng. 2021, 40, 101948. [Google Scholar] [CrossRef]
- Hu, Y.; Chen, D.; Wang, S.; Zhang, R.; Wang, Y.; Liu, M. Activation of peroxymonosulfate by nitrogen-doped porous carbon for efficient degradation of organic pollutants in water: Performance and mechanism. Sep. Purif. Technol. 2022, 280, 119791. [Google Scholar] [CrossRef]
- Lin, Q.; Zeng, G.; Pu, S.; Yan, G.; Luo, J.; Wan, Y.; Zhao, Z. A dual regulation strategy for MXene-based composite membrane to achieve photocatalytic self-cleaning properties and multi-functional applications. Chem. Eng. J. 2022, 443, 136335. [Google Scholar] [CrossRef]
- Lin, Q.; Zeng, G.; Yan, G.; Luo, J.; Cheng, X.; Zhao, Z.; Li, H. Self-cleaning photocatalytic MXene composite membrane for synergistically enhanced water treatment: Oil/water separation and dyes removal. Chem. Eng. J. 2022, 427, 131668. [Google Scholar] [CrossRef]
- Zeng, G.; Wei, K.; Zhang, H.; Zhang, J.; Lin, Q.; Cheng, X.; Sengupta, A.; Chiao, Y. Ultra-high oil-water separation membrane based on two-dimensional MXene (Ti3C2Tx) by co-incorporation of halloysite nanotubes and polydopamine. Appl. Clay Sci. 2021, 211, 106177. [Google Scholar] [CrossRef]
- Choi, Y.K.; Srinivasan, R.; Kan, E. Facile and economical functionalized hay biochar with dairy effluent for adsorption of tetracycline. ACS Omega 2020, 5, 16521–16529. [Google Scholar] [CrossRef]
- Bekhoukh, A.; Moulefera, I.; Zeggai, F.Z.; Benyoucef, A.; Bachari, K. Anionic methyl orange removal from aqueous solutions by activated carbon reinforced conducting polyaniline as adsorbent: Synthesis, characterization, adsorption behavior, regeneration and kinetics study. J. Polym. Environ. 2022, 30, 886–895. [Google Scholar] [CrossRef]
- Thang, N.H.; Khang, D.S.; Hai, T.D.; Nga, D.T.; Tuan, P.D. Methylene blue adsorption mechanism of activated carbon synthesised from cashew nut shells. RSC Adv. 2021, 11, 26563–26570. [Google Scholar] [CrossRef]
- Liu, X.J.; Li, M.F.; Singh, S.K. Manganese-modified lignin biochar as adsorbent for removal of methylene blue. J. Mater. Res. Technol. 2021, 12, 1434–1445. [Google Scholar] [CrossRef]
- Li, F.; Liu, J.; Liu, W.; Xu, Y.; Xu, M. Preparation of hyper-cross-linked hydroxylated polystyrene for adsorptive removal of methylene blue. RSC Adv. 2021, 11, 25551–25560. [Google Scholar] [CrossRef] [PubMed]
- Al-Aoh, H.A.; Aljohani, M.; Darwish, A.; Ahmad, M.A.; Bani-Atta, S.A.; Al-sharif, M.A.; Alrawashdeh, L.R.; Al-Tweher, J.N. A potentially low-cost adsorbent for methylene blue removal from synthetic wastewater. Desalin. Water Treat. 2021, 213, 431–440. [Google Scholar] [CrossRef]
- Toumi, I.; Djelad, H.; Chouli, F.; Benyoucef, A. Synthesis of PANI@ZnO hybrid material and evaluations in adsorption of congo red and methylene blue dyes: Structural characterization and adsorption performance. J. Inorg. Organomet. P. 2022, 32, 112–121. [Google Scholar] [CrossRef]
- Wei, S.; Wu, J.; Chen, P.; Fu, B.; Zhu, X.; Chen, M. Integration of phosphotungstic acid into zeolitic imidazole framework-67 for efficient methylene blue adsorption. ACS Omega 2022, 7, 9900–9908. [Google Scholar] [CrossRef]
- Gao, Y.A.; Sun, D.I.; Han, C.; Huang, J. Comprehensive utilization of phosphogypsum: Adsorption of methylene blue and its application in bricks. Surf. Rev. Lett. 2021, 28, 2150075. [Google Scholar] [CrossRef]
- Li, N.; He, M.; Lu, X.; Yan, B.; Duan, X.; Chen, G.; Wang, S.; Hou, L. Municipal solid waste derived biochars for wastewater treatment: Production, properties and applications. Resour. Conserv. Recy. 2022, 177, 106003. [Google Scholar] [CrossRef]
- Lesbani, A.; Siregar, P.; Palapa, N.R.; Taher, T.; Riyanti, F. Adsorptive removal methylene-blue using Zn/Al LDH modified rice husk biochar. Pol. J. Environ. Stud. 2021, 30, 3117–3124. [Google Scholar] [CrossRef]
- Wang, Y.; Srinivasakannan, C.; Wang, H.; Xue, G.; Wang, L.; Wang, X.; Duan, X. Preparation of novel biochar containing graphene from waste bamboo with high methylene blue adsorption capacity. Diam. Relat. Mater. 2022, 125, 109034. [Google Scholar] [CrossRef]
- Amin, M.T.; Alazba, A.A.; Shafiq, M. Successful application of eucalyptus camdulensis biochar in the batch adsorption of crystal violet and methylene blue dyes from aqueous solution. Sustainability 2021, 13, 3600. [Google Scholar] [CrossRef]
- Anas, A.K.; Pratama, S.Y.; Izzah, A.; Kurniawan, M.A. Sodium dodecylbenzene sulfonate-modified biochar as an adsorbent for the removal of methylene blue. Bull. Chem. React. Eng. 2021, 16, 188–195. [Google Scholar] [CrossRef]
- Primaz, C.T.; Ribes-Greus, A.; Jacques, R.A. Valorization of cotton residues for production of bio-oil and engineered biochar. Energy 2021, 235, 121363. [Google Scholar] [CrossRef]
- Yang, Z.; Hou, J.; Miao, L.; Wu, J. Comparison of adsorption behavior studies of methylene blue by microalga residue and its biochars produced at different pyrolytic temperatures. Environ. Sci. Pollut. Res. 2021, 28, 14028–14040. [Google Scholar] [CrossRef] [PubMed]
- Suma, Y.; Pasukphun, N.; Eaktasang, N. Adsorption of methylene blue by low-cost biochar derived from elephant dung. Appl. Environ. Res. 2021, 43, 34–44. [Google Scholar] [CrossRef]
- Yin, Q.; Nie, Y.; Han, Y.; Wang, R.; Zhao, Z. Properties and the application of sludge-based biochar in the removal of phosphate and methylene blue from water: Effects of acid treating. Langmuir 2022, 38, 1833–1844. [Google Scholar] [CrossRef]
- Zhang, X.; Zheng, H.; Wu, J.; Chen, W.; Chen, Y.; Gao, X.; Yang, H.; Chen, H. Physicochemical and adsorption properties of biochar from biomass-based pyrolytic polygeneration: Effects of biomass species and temperature. Biochar 2021, 4, 657–670. [Google Scholar]
- Huang, L.; Zhu, Y.; Wang, Q.; Zhu, A.; Li, L. Assessment of the effects of straw burning bans in China: Emissions, air quality, and health impacts. Sci. Total Environ. 2021, 789, 147935. [Google Scholar] [CrossRef]
- Cui, S.B.; Zhao, Y.; Liu, Y.; Huang, R.; Pan, J. Preparation of straw porous biochars by microwave-assisted KOH activation for removal of gaseous H2S. Energy Fuels 2021, 35, 18592–18603. [Google Scholar] [CrossRef]
- Magid, A.; Islam, M.S.; Chen, Y.; Weng, L.; Li, Y. Enhanced adsorption of polystyrene nanoplastics (PSNPs) onto oxidized corncob biochar with high pyrolysis temperature. Sci. Total Environ. 2021, 784, 147115. [Google Scholar] [CrossRef]
- Pandey, D.; Daverey, A.; Dutta, K.; Yata, V.K.; Arunachalam, K. Valorization of waste pine needle biomass into biosorbents for the removal of methylene blue dye from water: Kinetics, equilibrium and thermodynamics study. Environ. Technol. Innov. 2022, 25, 102200. [Google Scholar] [CrossRef]
- Wang, Z.; Jang, H.M. Comparative study on characteristics and mechanism of levofloxacin adsorption on swine manure biochar. Bioresour. Technol. 2022, 351, 127025. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.; Lee, Y.G.; Lee, S.H.; Kim, S.; Chon, K. Single and competitive adsorptions of micropollutants using pristine and alkali-modified biochars from spent coffee grounds. J. Hazard. Mater. 2020, 400, 123102. [Google Scholar] [CrossRef] [PubMed]
- Novera, T.M.; Tabassum, M.; Bardhan, M.; Islam, M.A.; Islam, M.A. Chemical modification of betel nut husk prepared by sodium hydroxide for methylene blue adsorption. Appl. Water Sci. 2021, 11, 66. [Google Scholar] [CrossRef]
- Huang, W.; Zhang, M.; Wang, Y.; Chen, J.; Zhang, J. Biochars prepared from rabbit manure for the adsorption of Rhodamine B and Congo red: Characterization, kinetics, isotherms, and thermodynamic studies. Water Sci. Technol. 2020, 81, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Chen, J.; Zhao, L.; Zhou, Z.; Qiu, C.; Li, Q. Adsorption of Rhodamine B from aqueous solution by goat manure biochar: Kinetics, isotherms, and thermodynamic studies. Pol. J. Environ. Stud. 2020, 29, 2721–2730. [Google Scholar] [CrossRef]
- Konicki, W.; Aleksandrzak, M.; Mijowska, E. Equilibrium, kinetic and thermodynamic studies on adsorption of cationic dyes from aqueous solutions using graphene oxide. Chem. Eng. Res. Des. 2017, 123, 35–49. [Google Scholar] [CrossRef]
- Huang, W.; Chen, J.; Zhang, J. Adsorption characteristics of methylene blue by biochar prepared using sheep, rabbit and pig manure. Environ. Sci. Pollut. Res. 2018, 25, 29256–29266. [Google Scholar] [CrossRef]
- Salah, J.; Amine, A.A.; Majida, A.; Yassine, C.; Nasser, A.J.; Ahmed, A.; Muhammad, U.; Noura, A.N.; Mohammed, A.A.; Mejdi, J. Conversion of industrial sludge into activated biochar for effective cationic dye removal: Characterization and adsorption properties assessment. Water 2022, 14, 2206. [Google Scholar]
- Taheri, E.; Fatehizadeh, A.; Lima, E.C.; Rezakazemi, M. High surface area acid-treated biochar from pomegranate husk for 2,4-dichlorophenol adsorption from aqueous solution. Chemosphere 2022, 295, 133850. [Google Scholar] [CrossRef]
- Huang, W.; Chen, J.; Zhang, J. Removal of ciprofloxacin from aqueous solution by rabbit manure biochar. Environ. Technol. 2020, 41, 1380–1390. [Google Scholar] [CrossRef]
- Wang, F.; Li, L.; Iqbal, J.; Yang, Z.; Du, Y. Preparation of magnetic chitosan corn straw biochar and its application in adsorption of amaranth dye in aqueous solution. Int. J. Biol. Macromol. 2022, 199, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Chen, J.; Zhang, J.; Fu, C. Kinetic, isotherm and thermodynamic studies on the adsorption behavior of atrazine onto sheep manure-derived biochar. Pol. J. Environ. Stud. 2019, 28, 2725–2733. [Google Scholar] [CrossRef]
- Cai, G.; Ye, Z. Concentration-dependent adsorption behaviors and mechanisms for ammonium and phosphate removal by optimized Mg-impregnated biochar. J. Clean. Prod. 2022, 349, 131453. [Google Scholar] [CrossRef]
- Palansooriya, K.N.; Kim, S.; Igalavithana, A.D.; Hashimoto, Y.; Choi, Y.; Mukhopadhyay, R.; Sarkar, B.; Ok, Y.S. Fe(III) loaded chitosan-biochar composite fibers for the removal of phosphate from water. J. Hazard. Mater. 2021, 415, 125464. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Zhang, X.; Yuan, X.; Xie, R.; Han, L. Characteristics, adsorption behaviors, Cu(II) adsorption mechanisms by cow manure biochar derived at various pyrolysis temperatures. Bioresour. Technol. 2021, 331, 125013. [Google Scholar] [CrossRef]
- Hoslett, J.; Ghazal, H.; Mohamad, N.; Jouhara, H. Removal of methylene blue from aqueous solutions by biochar prepared from the pyrolysis of mixed municipal discarded material. Sci. Total Environ. 2020, 714, 136832. [Google Scholar] [CrossRef]
- Li, H.; Xiong, J.; Zhang, G.; Liang, A.; Long, J.; Xiao, T.; Chen, Y.; Zhang, P.; Liao, D.; Lin, L.; et al. Enhanced thallium (I) removal from wastewater using hypochlorite oxidation coupled with magnetite-based biochar adsorption. Sci. Total Environ. 2020, 698, 134166. [Google Scholar] [CrossRef]
- Lu, Y.; Chen, J.; Bai, Y.; Gao, J.; Peng, M. Adsorption properties of methyl orange in water by sheep manure biochar. Pol. J. Environ. Stud. 2019, 28, 3791–3797. [Google Scholar] [CrossRef]
- Hu, Y.; Zhu, Y.; Zhang, Y.; Lin, T.; Long, H. An efficient adsorbent: Simultaneous activated and magnetic zno doped biochar derived from camphor leaves for ciprofloxacin adsorption. Bioresour. Technol. 2019, 288, 121511. [Google Scholar] [CrossRef]
- Mariia, G.; Alicja, B.; Dariusz, S.; Viktor, B.; Olena, O.; Gun’ko, V.; Deryło-Marczewska, A. Development, synthesis and characterization of tannin/bentonite-derived biochar for water and wastewater treatment from methylene blue. Water 2022, 14, 2407. [Google Scholar]
- Bardhan, M.; Novera, T.M.; Tabassum, M.; Islam, M.A.; Jawad, A.H.; Islam, M.A. Adsorption of methylene blue onto betel nut husk-based activated carbon prepared by sodium hydroxide activation process. Water Sci. Technol. 2020, 82, 1932–1949. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Liu, Y.; Zhang, Y.; Liu, S.; Wang, C.; Chen, W.; Liu, C.; Chen, Z.; Zhang, Y. ZnCl2 modified biochar derived from aerobic granular sludge for developed microporosity and enhanced adsorption to tetracycline. Bioresour. Technol. 2020, 297, 122381. [Google Scholar] [CrossRef] [PubMed]
- Zeng, S.; Kan, E. Adsorption and regeneration on iron-activated biochar for removal of microcystin-LR. Chemosphere 2021, 273, 129649. [Google Scholar] [CrossRef]
- Zhang, Z.; Yan, L.; Yu, H.; Yan, T.; Li, X. Adsorption of phosphate from aqueous solution by vegetable biochar/layered double oxides: Fast removal and mechanistic studies. Bioresour. Technol. 2019, 284, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Li, F.; Jin, J.; Khan, S.; Eltohamy, K.M.; He, M.; Liang, X. Qualitative and quantitative investigation on adsorption mechanisms of Cd(II) on modified biochar derived from co-pyrolysis of straw and sodium phytate. Sci. Total Environ. 2022, 829, 154599. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, M.; Kumar, R.; Neogi, S. Activated biochar derived from Opuntia ficus-indica for the efficient adsorption of malachite green dye, Cu+2 and Ni+2 from water. J. Hazard. Mater. 2020, 392, 122441. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Wang, H.; Yan, J.; Shan, L.; Quan, G.; Pan, X.; Cui, L. Wheat straw derived biochar with hierarchically porous structure for bisphenol a removal: Preparation, characterization, and adsorption properties. Sep. Purif. Technol. 2022, 289, 120796. [Google Scholar] [CrossRef]
- Hu, H.; Zhang, J.; Wang, T.; Wang, P. Adsorption of toxic metal ion in agricultural wastewater by torrefaction biochar from bamboo shoot shell. J. Clean. Prod. 2022, 338, 130558. [Google Scholar] [CrossRef]
- Hernandes, P.T.; Franco, D.S.P.; Georgin, J.; Salau, N.P.G.; Dotto, G.L. Investigation of biochar from Cedrella fissilis applied to the adsorption of atrazine herbicide from an aqueous medium. J. Environ. Chem. Eng. 2022, 10, 107408. [Google Scholar] [CrossRef]
- Wang, S.; Zhong, S.; Zheng, X.; Xiao, D.; Zhang, L.; Yang, Y.; Zhang, H.; Ai, B.; Sheng, Z. Calcite modification of agricultural waste biochar highly improves the adsorption of Cu(II) from aqueous solutions. J. Environ. Chem. Eng. 2021, 9, 106215. [Google Scholar] [CrossRef]
- Huang, H.; Zheng, Y.; Wei, D.; Yang, G.; Peng, X.; Fan, L.; Luo, L.; Zhou, Y. Efficient removal of pefloxacin from aqueous solution by acid–alkali modified sludge-based biochar: Adsorption kinetics, isotherm, thermodynamics, and mechanism. Environ. Sci. Pollut. Res. 2022, 29, 43201–43211. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chen, X.; Liu, L.; Liu, P.; Zhou, Z.; Huhetaoli; Wu, Y.; Lei, T. Characteristics and adsorption of Cr(VI) of biochar pyrolyzed from landfill leachate sludge. J. Anal. Appl. Pyrol. 2022, 162, 105449. [Google Scholar] [CrossRef]
- Liu, P.; Zhang, A.; Liu, Y.; Liu, Z.; Liu, X.; Yang, L.; Yang, Z. Adsorption mechanism of high-concentration ammonium by Chinese natural zeolite with experimental optimization and theoretical computation. Water 2022, 14, 2413. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, B.; Shen, J.; Yan, P.; Kang, J.; Wang, W.; Bi, L.; Zhu, X.; Wang, S.; Shen, L.; et al. Preparation of novel N-doped biochar and its high adsorption capacity for atrazine based on π–π electron donor-acceptor interaction. J. Hazard. Mater. 2022, 432, 128757. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Xiang, Y.; Zhou, H.; Yang, J.; Zhou, Y. Manganese ferrite modified biochar from vinasse for enhanced adsorption of levofloxacin: Effects and mechanisms. Environ. Pollut. 2021, 272, 115968. [Google Scholar] [CrossRef] [PubMed]
- Zubair, M.; Mu’azu, N.D.; Jarrah, N.; Blaisi, N.I.; Aziz, H.A.; Al-Harthi, M.A. Adsorption behavior and mechanism of methylene blue, crystal violet, Eriochrome Black T, and methyl orange dyes onto biochar-derived. Water Air Soil Poll. 2020, 231, 240. [Google Scholar] [CrossRef]
- Gao, L.; Li, Z.; Yi, W.; Li, Y.; Wang, L. Impacts of pyrolysis temperature on lead adsorption by cotton stalk-derived biochar and related mechanisms. J. Environ. Chem. Eng. 2021, 9, 105602. [Google Scholar] [CrossRef]
- Sahu, S.; Pahi, S.; Tripathy, S.; Singh, S.K.; Patel, R.K. Adsorption of methylene blue on chemically modified lychee seed biochar: Dynamic, equilibrium, and thermodynamic study. J. Mol. Liq. 2020, 315, 113743. [Google Scholar] [CrossRef]
- Mu, Y.; Du, H.; He, W.; Ma, H. Functionalized mesoporous magnetic biochar for methylene blue removal: Performance assessment and mechanism exploration. Diam. Relat. Mater. 2022, 121, 108795. [Google Scholar] [CrossRef]
- Mu, Y.; Ma, H. NaOH-modified mesoporous biochar derived from tea residue for methylene blue and Orange II removal. Chem. Eng. Res. Des. 2021, 167, 129–140. [Google Scholar] [CrossRef]
- Ribeiro, M.R.; de Moraes Guimarães, Y.; Silva, I.F.; Almeida, C.A.; Silva, M.S.V.; Nascimento, M.A.; da Silva, U.P.; Varejão, E.V.; dos Santos Renato, N.; de Carvalho Teixeira, A.P.; et al. Synthesis of value-added materials from the sewage sludge of cosmetics industry effluent treatment plant. J. Environ. Chem. Eng. 2021, 9, 105367. [Google Scholar] [CrossRef]
Chemical Formula | Molecular Weight (g/mol) | Molecular Structure | Solubility in Water (25 °C) | CAS Number |
---|---|---|---|---|
C16H18ClN3S | 319.85 | 10% | 61-73-4 |
Analysis Item | Index | RSB600 | M-RSB600 |
---|---|---|---|
Quality composition | Ash (%) | 14.239 | 11.865 |
C (%) | 66.417 | 63.674 | |
H (%) | 2.554 | 1.821 | |
O (%) | 9.731 | 12.823 | |
N (%) | 1.428 | 2.956 | |
Atomic ratio | H/C | 0.038 | 0.029 |
O/C | 0.147 | 0.201 | |
(O+N)/C | 0.168 | 0.248 | |
BET | Specific surface area (m2/g) | 61.597 | 119.462 |
Total pore volume (cm3/g) | 0.168 | 0.305 | |
Average pore diameter (nm) | 7.162 | 4.139 |
Analysis Item | Index | RSB600 | M-RSB600 |
---|---|---|---|
Quasi-first-order | qe (mg/g) | 147.88 | 247.04 |
k1 (min−1) | 0.10 | 0.11 | |
R2 | 0.9698 | 0.9449 | |
Quasi-second-order | qe (mg/g) | 162.11 | 268.46 |
k2 [g/(mg·min)] | 8.51 | 6.21 | |
R2 | 0.984 | 0.992 | |
Intraparticle diffusion | A | 82.47 | 149.57 |
k3 [mg/(g·min0.5)] | 6.51 | 9.88 | |
R2 | 0.622 | 0.642 | |
Elovich | B | 39.98 | 85.87 |
k4 [mg/(g·min)] | 24.22 | 36.55 | |
R2 | 0.855 | 0.869 |
Stage | Parameter | RSB600 | M-RSB600 |
---|---|---|---|
I | A1 | 17.30 | 55.12 |
k31 [mg/(g·min0.5)] | 22.18 | 32.54 | |
R2 | 0.902 | 0.909 | |
II | A2 | 86.92 | 154.02 |
k32 [mg/(g·min0.5)] | 8.01 | 12.33 | |
R2 | 0.999 | 0.959 | |
III | A3 | 144.12 | 248.52 |
k33 [mg/(g·min0.5)] | 0.62 | 0.53 | |
R2 | 0.976 | 0.984 |
Model | Parameter | RSB600 | M-RSB600 | ||||
---|---|---|---|---|---|---|---|
298K | 308K | 318K | 298K | 308K | 318K | ||
Langmuir | qm (mg/g) | 172.36 | 175.22 | 182.06 | 287.20 | 296.15 | 302.21 |
KL (L/mg) | 3.45 | 8.17 | 7.54 | 6.33 | 9.29 | 24.94 | |
R2 | 0.779 | 0.664 | 0.676 | 0.714 | 0.774 | 0.684 | |
Freundlich | 1/n | 0.064 | 0.060 | 0.068 | 0.058 | 0.054 | 0.051 |
KF [(mg1−1/n·L1/n)/g] | 138.40 | 145.53 | 148.40 | 238.26 | 250.01 | 261.66 | |
R2 | 0.995 | 0.975 | 0.990 | 0.991 | 0.965 | 0.958 | |
Temkin | C | 137.63 | 145.63 | 148.57 | 238.03 | 250.37 | 263.09 |
KT (L/g) | 10.18 | 9.56 | 11.24 | 15.21 | 14.63 | 13.90 | |
R2 | 0.995 | 0.971 | 0.987 | 0.987 | 0.964 | 0.954 |
Adsorbent | ΔG (kJ/mol) | ΔH (kJ/mol) | ΔS [kJ/(mol·K)] | R2 | ||
---|---|---|---|---|---|---|
298K | 308K | 318K | ||||
RSB600 | −9.072 | −9.947 | −11.080 | 20.890 | 0.100 | 0.989 |
M-RSB600 | −10.793 | −13.551 | −15.651 | 61.466 | 0.243 | 0.988 |
Type of Biochar | Pyrolysis Temperature (°C) | Modifying Agent | Adsorption Capacity (mg/g) | References |
---|---|---|---|---|
Rice husk | — | Zn/Al LDH | 15.585 | [18] |
Sawdust | 800 | None | 123.3 | [20] |
Cassava peel | 300 | SDBS | 4.6916 | [21] |
Cotton residue | 550 | NaOH | 23.82 | [22] |
Lychee seed | 700 | KOH | 124.53 | [68] |
Tea residue | 700 | KOH + FeCl3 | 394.3 | [69] |
Tea residue | 700 | NaOH | 105.44 | [70] |
Sewage sludge | 600 | None | 51.1 | [71] |
RSB600 | 600 | None | 148.94 | Present study |
M-RSB600 | 600 | NaOH | 250.30 | Present study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Tang, C.; Li, X.; Sun, J.; Liu, Y.; Huang, W.; Wang, A.; Lu, Y. Preparation and Modification of Rape Straw Biochar and Its Adsorption Characteristics for Methylene Blue in Water. Water 2022, 14, 3761. https://doi.org/10.3390/w14223761
Chen J, Tang C, Li X, Sun J, Liu Y, Huang W, Wang A, Lu Y. Preparation and Modification of Rape Straw Biochar and Its Adsorption Characteristics for Methylene Blue in Water. Water. 2022; 14(22):3761. https://doi.org/10.3390/w14223761
Chicago/Turabian StyleChen, Jiao, Chenghan Tang, Xiaoyuan Li, Jieyu Sun, Yujie Liu, Wen Huang, Aojie Wang, and Yixin Lu. 2022. "Preparation and Modification of Rape Straw Biochar and Its Adsorption Characteristics for Methylene Blue in Water" Water 14, no. 22: 3761. https://doi.org/10.3390/w14223761