Fertilizer 15N Fates of the Coastal Saline Soil-Wheat Systems with Different Salinization Degrees in the Yellow River Delta
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Soil Properties
2.2. Experimental Design
2.3. Sampling, Measurement Methods and Assessment of Nitrogen Accumulation
2.4. Statistical Analysis
3. Results
3.1. Dry Matter Mass of Each Wheat Parts
3.2. Total N Concentration, 15N Uptake, Distribution Ratio of 15N Uptake, Ndff and Ndfs in Wheat Parts
3.3. 15N Residues and Distribution in Each 20 cm Soil Layer in 0~100 cm Soil Profile
3.4. 15N Fate in Coastal Saline Soil-Wheat System
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Y.; Wang, W.; Yuan, W.; Zhang, R.; Xi, X. Cattle Manure Application and Combined Straw Mulching Enhance Maize (Zea Mays L.) Growth and Water Use for Rain-Fed Cropping System of Coastal Saline Soils. Agriculture 2021, 11, 745. [Google Scholar] [CrossRef]
- Zhang, Y.; Yuan, W.; Han, L. Residue Mulching Alleviates Coastal Salt Accumulation and Stimulates Post-Fallow Crop Biomass under a Fallow–Maize (Zea Mays L.) Rotation System. Agriculture 2022, 12, 509. [Google Scholar] [CrossRef]
- Yu, J.; Chen, S.; Zhao, Q.; Wang, T.; Yang, C.; Diaz, C.; Sun, G.; Dai, S. Physiological and Proteomic Analysis of Salinity Tolerance in Puccinellia Tenuiflora. J. Proteome Res. 2011, 10, 3852–3870. [Google Scholar] [CrossRef]
- Hussain, M.I.; Farooq, M.; Muscolo, A.; Rehman, A. Crop Diversification and Saline Water Irrigation as Potential Strategies to Save Freshwater Resources and Reclamation of Marginal Soils—A Review. Environ. Sci. Pollut. Res. 2020, 27, 28695–28729. [Google Scholar] [CrossRef]
- Lv, Z.Z.; Liu, G.M.; Yang, J.S.; Zhang, M.M.; He, L.D.; Shao, H.B.; Yu, S.P. Spatial Variability of Soil Salinity in Bohai Sea Coastal Wetlands, China: Partition into Four Management Zones. Plant Biosyst. 2013, 147, 1201–1210. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Hou, X.; Yang, M.; Cheng, F.; Coxixo, A.; Wu, X.; Zhang, Y. Factors Driving the Relationships between Vegetation and Soil Properties in the Yellow River Delta, China. Catena 2018, 165, 279–285. [Google Scholar] [CrossRef]
- Yu, P.; Liu, S.; Yang, H.; Fan, G.; Zhou, D. Short-Term Land Use Conversions Influence the Profile Distribution of Soil Salinity and Sodicity in Northeastern China. Ecol. Indic. 2018, 88, 79–87. [Google Scholar] [CrossRef]
- Yang, C.; Sun, J. Soil Salinity Drives the Distribution Patterns and Ecological Functions of Fungi in Saline-Alkali Land in the Yellow River Delta, China. Front. Microbiol. 2020, 11, 594284. [Google Scholar] [CrossRef]
- Zhao, Q.; Bai, J.; Gao, Y.; Zhao, H.; Zhang, G.; Cui, B. Shifts in the Soil Bacterial Community along a Salinity Gradient in the Yellow River Delta. Land Degrad. Dev. 2020, 31, 2255–2267. [Google Scholar] [CrossRef]
- Kumawat, K.C.; Nagpal, S.; Sharma, P. Potential of Plant Growth-Promoting Rhizobacteria-Plant Interactions in Mitigating Salt Stress for Sustainable Agriculture: A Review. Pedosphere 2022, 32, 223–245. [Google Scholar] [CrossRef]
- Marsack, J.M.; Connolly, B.M. Generalist Herbivore Response to Volatile Chemical Induction Varies along a Gradient in Soil Salinization. Sci. Rep. 2022, 12, 1689. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.Q.; Chai, Y.H.; Wang, X.S.; Huang, L.Y.; Luo, X.M.; Qiu, C.; Liu, Q.H.; Guan, X.Y. Bacterial Community in Saline Farmland Soil on the Tibetan Plateau: Responding to Salinization While Resisting Extreme Environments. BMC Microbiol. 2021, 21, 119. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Jiang, X.; Xue, Y.; Li, Z.; Yu, B.; Xu, L.; Lu, X.; Miao, Q.; Liu, Z.; Cui, Z. Closing Yield Gaps through Soil Improvement for Maize Production in Coastal Saline Soil. Agronomy 2019, 9, 573. [Google Scholar] [CrossRef] [Green Version]
- Yin, S.; Suo, F.; Kong, Q.; You, X.; Zhang, X.; Yuan, Y.; Yu, X.; Cheng, Y.; Sun, R.; Zheng, H.; et al. Biochar Enhanced Growth and Biological Nitrogen Fixation of Wild Soybean (Glycine Max Subsp. Soja Siebold & Zucc.) in a Coastal Soil of China. Agriculture 2021, 11, 1246. [Google Scholar] [CrossRef]
- Saifullah; Dahlawi, S.; Naeem, A.; Rengel, Z.; Naidu, R. Biochar Application for the Remediation of Salt-Affected Soils: Challenges and Opportunities. Sci. Total Environ. 2018, 625, 320–335. [Google Scholar] [CrossRef]
- Saboor, A.; Ali, M.A.; Ahmed, N.; Skalicky, M.; Danish, S.; Fahad, S.; Hassan, F.; Hassan, M.M.; Brestic, M.; EL Sabagh, A.; et al. Biofertilizer-Based Zinc Application Enhances Maize Growth, Gas Exchange Attributes, and Yield in Zinc-Deficient Soil. Agriculture 2021, 11, 310. [Google Scholar] [CrossRef]
- Xiao, L.; Yuan, G.; Feng, L.; Bi, D.; Wei, J.; Shen, G.; Liu, Z. Coupled Effects of Biochar Use and Farming Practice on Physical Properties of a Salt-Affected Soil with Wheat–Maize Rotation. J. Soils Sediments 2020, 20, 3053–3061. [Google Scholar] [CrossRef]
- Ennan, Z. Influence of Water-Saving Irrigation and Nitrogenous Fertilizer Application on Assessment of the Rice Quality. Int. J. Agric. Biol. 2017, 19, 1213–1219. [Google Scholar] [CrossRef]
- Hussain, T.; Hussain, N.; Ahmed, M.; Nualsri, C.; Duangpan, S. Impact of Nitrogen Application Rates on Upland Rice Performance, Planted under Varying Sowing Times. Sustainability 2022, 14, 1997. [Google Scholar] [CrossRef]
- Jin, Q.; You, J.; Xie, M.; Qiu, Y.; Lei, S.; Ding, Q.; Chen, J. Drip Irrigation Reduced Fertilizer Nitrogen Loss from Lettuce Field—A Case Study Based on 15N Tracing Technique. Water 2022, 14, 675. [Google Scholar] [CrossRef]
- Li, G.; Zhao, B.; Dong, S.; Zhang, J.; Liu, P.; Lu, W. Controlled-Release Urea Combining with Optimal Irrigation Improved Grain Yield, Nitrogen Uptake, and Growth of Maize. Agric. Water Manag. 2020, 227, 105834. [Google Scholar] [CrossRef]
- Gong, P.; Zhang, Y.; Liu, H. Effects of Irrigation and N Fertilization on 15N Fertilizer Utilization by Vitis Vinifera L. Cabernet Sauvignon in China. Water 2022, 14, 1205. [Google Scholar] [CrossRef]
- Tyagi, J.; Ahmad, S.; Malik, M. Nitrogenous Fertilizers: Impact on Environment Sustainability, Mitigation Strategies, and Challenges. Int. J. Environ. Sci. Technol. 2022, 19, 11649–11672. [Google Scholar] [CrossRef]
- Ahmed, M.; Rauf, M.; Mukhtar, Z.; Saeed, N.A. Excessive Use of Nitrogenous Fertilizers: An Unawareness Causing Serious Threats to Environment and Human Health. Environ. Sci. Pollut. Res. 2017, 24, 26983–26987. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zheng, J.; You, J.; Li, J.; Qian, C.; Leng, S.; Yang, G.; Zuo, Q. Effects of Phosphorus Supply on the Leaf Photosynthesis, and Biomass and Phosphorus Accumulation and Partitioning of Canola (Brassica Napus L.) in Saline Environment. Agronomy 2021, 11, 1918. [Google Scholar] [CrossRef]
- Song, F.; Zhuge, Y.; Guo, X.; Lou, Y.; Wang, H.; Pan, H.; Feng, H. Optimizing Irrigation and Fertilization Can Improve Degraded Saline Soils and Increase Wheat Grain Yield. Land Degrad. Dev. 2021, 32, 494–504. [Google Scholar] [CrossRef]
- Singh, K. Microbial and Enzyme Activities of Saline and Sodic Soils. Land Degrad. Dev. 2016, 27, 706–718. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, G.; Gao, M.; Chang, C. Spatial Variability of Soil Salinity in Coastal Saline Soil at Different Scales in the Yellow River Delta, China. Environ. Monit. Assess. 2017, 189, 80. [Google Scholar] [CrossRef]
- Wang, F.; Wang, C.; Zheng, Y.; Li, X.; Qin, H.; Ding, W. Estimating Nitrogen Fates and Gross Transformations in Bioretention Systems with Applications of 15N Labeling Methods. Chemosphere 2021, 270, 129462. [Google Scholar] [CrossRef]
- Templer, P.H.; Mack, M.C.; Iii, F.S.C.; Christenson, L.M.; Compton, J.E.; Crook, H.D.; Currie, W.S.; Curtis, C.J.; Dail, D.B.; D’Antonio, C.M.; et al. Sinks for Nitrogen Inputs in Terrestrial Ecosystems: A Meta-Analysis of 15N Tracer Field Studies. Ecology 2012, 93, 1816–1829. [Google Scholar] [CrossRef]
- Sheng, W.; Yu, G.; Fang, H.; Jiang, C.; Yan, J.; Zhou, M. Sinks for Inorganic Nitrogen Deposition in Forest Ecosystems with Low and High Nitrogen Deposition in China. PLoS ONE 2014, 9, e89322. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Wang, J.; Zhang, J.-B.; Wang, S.-Q.; Cai, Z.-C. The Different Temperature Sensitivity of Gross N Transformations between the Coniferous and Broad-Leaved Forests in Subtropical China. Soil Sci. Plant Nutr. 2015, 61, 506–515. [Google Scholar] [CrossRef] [Green Version]
- Gao, L.; Liu, M.; Wang, M.; Shen, Q.; Guo, S. Enhanced Salt Tolerance under Nitrate Nutrition is Associated with Apoplast Na+ Content in Canola (Brassica Napus L.) and Rice (Oryza Sativa L.) Plants. Plant Cell Physiol. 2016, 57, 2323–2333. [Google Scholar] [CrossRef] [Green Version]
- Ma, T.; Chen, K.; He, P.; Dai, Y.; Yin, Y.; Peng, S.; Ding, J.; Yu, S.; Huang, J. Sunflower Photosynthetic Characteristics, Nitrogen Uptake, and Nitrogen Use Efficiency under Different Soil Salinity and Nitrogen Applications. Water 2022, 14, 982. [Google Scholar] [CrossRef]
- Dinh, T.H.; Watanabe, K.; Takaragawa, H.; Nakabaru, M.; Kawamitsu, Y. Photosynthetic Response and Nitrogen Use Efficiency of Sugarcane under Drought Stress Conditions with Different Nitrogen Application Levels. Plant Prod. Sci. 2017, 20, 412–422. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Chen, J.; Shangguan, Z. Photosynthetic Characteristics and Nitrogen Distribution of Large-Spike Wheat in Northwest China. J. Integr. Agric. 2016, 15, 545–552. [Google Scholar] [CrossRef] [Green Version]
- Fageria, N.K.; Knupp, A.M. Upland Rice Phenology and Nutrient Uptake in Tropical Climate. J. Plant Nutr. 2013, 36, 1–14. [Google Scholar] [CrossRef]
- Holaday, A.S.; Schwilk, D.W.; Waring, E.F.; Guvvala, H.; Griffin, C.M.; Lewis, O.M. Plasticity of Nitrogen Allocation in the Leaves of the Invasive Wetland Grass, Phalaris Arundinacea and Co-Occurring Carex Species Determines the Photosynthetic Sensitivity to Nitrogen Availability. J. Plant Physiol. 2015, 177, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, M.N.; Ul-Haq, T.; Ahmad, F.; Imran, M.; Ahmed, W.; Ghaffar, A.; Shahid, M.; Saleem, M.H.; Alshaya, H.; Okla, M.K.; et al. Application of Potassium along with Nitrogen under Varied Moisture Regimes Improves Performance and Nitrogen-Use Efficiency of High- and Low-Potassium Efficiency Cotton Cultivars. Agronomy 2022, 12, 502. [Google Scholar] [CrossRef]
- Bassil, E.; Tajima, H.; Liang, Y.-C.; Ohto, M.; Ushijima, K.; Nakano, R.; Esumi, T.; Coku, A.; Belmonte, M.; Blumwald, E. The Arabidopsis Na+/H+ Antiporters NHX1 and NHX2 Control Vacuolar pH and K+ Homeostasis to Regulate Growth, Flower Development, and Reproduction. Plant Cell 2011, 23, 3482–3497. [Google Scholar] [CrossRef]
- Huang, M.; Zhang, Z.; Zhai, Y.; Lu, P.; Zhu, C. Effect of Straw Biochar on Soil Properties and Wheat Production under Saline Water Irrigation. Agronomy 2019, 9, 457. [Google Scholar] [CrossRef] [Green Version]
- Zheng, C.; Jiang, D.; Liu, F.; Dai, T.; Jing, Q.; Cao, W. Effects of Salt and Waterlogging Stresses and Their Combination on Leaf Photosynthesis, Chloroplast ATP Synthesis, and Antioxidant Capacity in Wheat. Plant Sci. 2009, 176, 575–582. [Google Scholar] [CrossRef] [PubMed]
- Saqib, M.; Akhtar, J.; Qureshi, R.H. Pot Study on Wheat Growth in Saline and Waterlogged Compacted Soil. Soil Tillage Res. 2004, 77, 169–177. [Google Scholar] [CrossRef]
- Sarangi, S.K.; Singh, S.; Srivastava, A.K.; Choudhary, M.; Mandal, U.K.; Lama, T.D.; Mahanta, K.K.; Kumar, V.; Sharma, P.C.; Ismail, A.M. Crop and Residue Management Improves Productivity and Profitability of Rice–Maize System in Salt-Affected Rainfed Lowlands of East India. Agronomy 2020, 10, 2019. [Google Scholar] [CrossRef]
- Shahzad, M.; Witzel, K.; Zörb, C.; Mühling, K.H. Growth-Related Changes in Subcellular Ion Patterns in Maize Leaves (Zea mays L.) under Salt Stress. J. Agron. Crop Sci. 2012, 198, 46–56. [Google Scholar] [CrossRef]
- Savill, G.P.; Michalski, A.; Powers, S.J.; Wan, Y.; Tosi, P.; Buchner, P.; Hawkesford, M.J. Temperature and Nitrogen Supply Interact to Determine Protein Distribution Gradients in the Wheat Grain Endosperm. J. Exp. Bot. 2018, 69, 3117–3126. [Google Scholar] [CrossRef] [Green Version]
- Davis, A.M.; Tink, M.; Rohde, K.; Brodie, J.E. Urea Contributions to Dissolved ‘Organic’ Nitrogen Losses from Intensive, Fertilised Agriculture. Agric. Ecosyst. Environ. 2016, 223, 190–196. [Google Scholar] [CrossRef] [Green Version]
- Miller, A.; Schimel, J.; Meixner, T.; Sickman, J.; Melack, J. Episodic Rewetting Enhances Carbon and Nitrogen Release from Chaparral Soils. Soil Biol. Biochem. 2005, 37, 2195–2204. [Google Scholar] [CrossRef]
- Dai, X.; Zhou, X.; Jia, D.; Xiao, L.; Kong, H.; He, M. Managing the Seeding Rate to Improve Nitrogen-Use Efficiency of Winter Wheat. Field Crops Res. 2013, 154, 100–109. [Google Scholar] [CrossRef]
- Wang, J.; Chadwick, D.R.; Cheng, Y.; Yan, X. Global Analysis of Agricultural Soil Denitrification in Response to Fertilizer Nitrogen. Sci. Total Environ. 2018, 616–617, 908–917. [Google Scholar] [CrossRef]
- Ghosh, U.; Thapa, R.; Desutter, T.; He, Y.; Chatterjee, A. Saline-Sodic Soils: Potential Sources of Nitrous Oxide and Carbon Dioxide Emissions? Pedosphere 2017, 27, 65–75. [Google Scholar] [CrossRef]
Soil | pH | EC (dS m−1) | TS (g kg−1) | BD (g cm−3) | OM (g kg−1) | TN (g kg−1) | AP (mg kg−1) | AK (mg kg−1) |
---|---|---|---|---|---|---|---|---|
LS | 7.90 ± 0.01 | 0.42 ± 0.02 | 2.97 ± 0.28 | 1.38 ± 0.05 | 15.23 ± 0.19 | 1.05 ± 0.01 | 18.75 ± 0.49 | 185.70 ± 0.80 |
MS | 7.98 ± 0.01 | 1.24 ± 0.01 | 5.02 ± 0.24 | 1.32 ± 0.05 | 12.72 ± 0.09 | 0.93 ± 0.03 | 12.08 ± 0.10 | 227.05 ± 3.15 |
HS | 7.99 ± 0.02 | 2.97 ± 0.03 | 6.91 ± 0.55 | 1.30 ± 0.09 | 7.99 ± 0.07 | 0.76 ± 0.02 | 9.33 ± 0.10 | 250.30 ± 8.70 |
Treatment | Root | Stem | Leaf | Sheath | Grain | Whole Plant |
---|---|---|---|---|---|---|
LS | 22.63 ± 0.93 a | 125.60 ± 7.64 a | 94.69 ± 3.83 a | 103.26 ± 2.19 a | 222.83 ± 25.61 a | 569.02 ± 18.97 a |
MS | 3.40 ± 0.43 b | 18.85 ± 1.41 b | 15.37 ± 0.26 b | 29.13 ± 3.34 b | 82.64 ± 6.40 b | 149.38 ± 4.44 b |
HS | 1.75 ± 0.02 b | 6.95 ± 0.24 b | 6.33 ± 0.13 c | 7.69 ± 0.15 c | 14.80 ± 0.59 c | 37.51 ± 0.52 c |
Item | Treatment | Root | Stem | Leaf | Sheath | Grain | Whole Plant |
---|---|---|---|---|---|---|---|
Total N Concentration/% | LS | 0.74 ± 0.02 c | 0.47 ± 0.02 c | 0.80 ± 0.02 c | 0.84 ± 0.01 b | 1.87 ± 0.01 b | 1.15 ± 0.04 b |
MS | 1.02 ± 0.02 b | 0.60 ± 0.02 b | 1.27 ± 0.01 b | 1.33 ± 0.05 a | 2.34 ± 0.11 a | 1.78 ± 0.03 a | |
HS | 1.13 ± 0.01 a | 0.93 ± 0.03 a | 1.32 ± 0.00 a | 1.47 ± 0.10 a | 2.49 ± 0.19 a | 1.74 ± 0.07 a | |
15N Uptake/(g m−2) | LS | 0.05 ± 0.01 a | 0.15 ± 0.01 a | 0.32 ± 0.01 a | 0.36 ± 0.01 a | 2.28 ± 0.30 a | 3.15 ± 0.28 a |
MS | 0.01 ± 0.00 b | 0.04 ± 0.00 b | 0.08 ± 0.00 b | 0.17 ± 0.01 b | 1.09 ± 0.13 b | 1.39 ± 0.12 b | |
HS | 0.01 ± 0.00 b | 0.02 ± 0.00 b | 0.04 ± 0.00 c | 0.05 ± 0.00 c | 0.23 ± 0.01 c | 0.35 ± 0.01 c | |
Distribution Ratio of 15N Uptake/% | LS | 1.59 ± 0.18ab | 4.88 ± 0.72ab | 10.23 ± 1.26 a | 11.66 ± 1.13 a | 71.64 ± 3.17ab | / |
MS | 0.70 ± 0.09 b | 2.73 ± 0.45 b | 5.94 ± 0.57 b | 12.59 ± 2.04 a | 78.04 ± 3.06 a | / | |
HS | 2.16 ± 0.45 a | 7.12 ± 1.11 a | 10.84 ± 1.33 a | 13.97 ± 1.77 a | 65.91 ± 1.66 b | / | |
Ndff/% | LS | 25.52 ± 0.55 b | 28.16 ± 1.00 c | 36.85 ± 0.44 b | 41.56 ± 1.30 a | 47.05 ± 2.21 b | 45.63 ± 1.72 a |
MS | 29.53 ± 1.53ab | 32.89 ± 0.86 b | 40.28 ± 0.97 b | 43.50 ± 2.02 a | 55.47 ± 1.39 a | 45.42 ± 1.54 a | |
HS | 37.44 ± 3.93 a | 37.79 ± 0.56 a | 44.76 ± 1.46 a | 46.13 ± 1.09 a | 57.62 ± 3.15 a | 50.42 ± 2.48 a | |
Ndfs/% | LS | 74.48 ± 0.55 a | 71.84 ± 1.00 a | 63.15 ± 0.44 a | 58.44 ± 1.30 a | 52.95 ± 2.21 a | 54.37 ± 1.72 a |
MS | 70.47 ± 1.53ab | 67.11 ± 0.86 b | 59.72 ± 0.97 a | 56.50 ± 2.02 a | 44.53 ± 1.39 b | 54.58 ± 1.54 a | |
HS | 62.56 ± 3.93 b | 62.21 ± 0.56 c | 55.24 ± 1.46 b | 53.87 ± 1.09 a | 42.38 ± 3.15 b | 49.58 ± 2.48 a |
Treatment | 15N Input (g m−2) | Plant 15N Uptake | Soil 15N Residue | System 15N Loss | |||
---|---|---|---|---|---|---|---|
Uptake (g m−2) | Uptake Rate (%) | Residue (g m−2) | Residual Rate (%) | Loss (g m−2) | Loss Rate (%) | ||
LS | 22.60 | 3.15 ± 0.28 a | 13.96 ± 1.22 a | 11.00 ± 0.42 a | 48.69 ± 47.15 a | 8.44 ± 0.70 c | 37.35 ± 3.08 c |
MS | 22.60 | 1.39 ± 0.12 b | 6.17 ± 0.51 b | 7.83 ± 0.98 b | 34.65 ± 4.33 b | 13.37 ± 1.04 b | 59.19 ± 4.60 b |
HS | 22.60 | 0.35 ± 0.01 c | 1.53 ± 0.04 c | 2.27 ± 0.25 c | 10.05 ± 1.11 c | 19.98 ± 0.25 a | 88.42 ± 1.09 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, K.; Song, F.; Duan, F.; Zhuge, Y.; Chen, W.; Yang, Q.; Guo, X.; Hong, P.; Wan, L.; Lin, Q. Fertilizer 15N Fates of the Coastal Saline Soil-Wheat Systems with Different Salinization Degrees in the Yellow River Delta. Water 2022, 14, 3748. https://doi.org/10.3390/w14223748
Zhu K, Song F, Duan F, Zhuge Y, Chen W, Yang Q, Guo X, Hong P, Wan L, Lin Q. Fertilizer 15N Fates of the Coastal Saline Soil-Wheat Systems with Different Salinization Degrees in the Yellow River Delta. Water. 2022; 14(22):3748. https://doi.org/10.3390/w14223748
Chicago/Turabian StyleZhu, Kongming, Fupeng Song, Fujian Duan, Yuping Zhuge, Weifeng Chen, Quangang Yang, Xinsong Guo, Pizheng Hong, Li Wan, and Qun Lin. 2022. "Fertilizer 15N Fates of the Coastal Saline Soil-Wheat Systems with Different Salinization Degrees in the Yellow River Delta" Water 14, no. 22: 3748. https://doi.org/10.3390/w14223748