Managed Aquifer Recharge as a Low-Regret Measure for Climate Change Adaptation: Insights from Los Arenales, Spain
Abstract
:1. Introduction
2. Methods
2.1. Los Arenales MAR Systems
2.2. Approach
2.2.1. Groundwater Levels
2.2.2. Energy Cost
2.2.3. Rural Population
2.2.4. Surface Water Bodies
2.2.5. Groundwater Governance
2.2.6. River Flows
2.2.7. Droughts
2.2.8. Floods
3. Results and Discussion
3.1. Groundwater Levels
3.2. Energy Cost
3.3. Rural Population
3.4. Surface Water Bodies
3.5. Groundwater Governance
3.6. River Flows
3.7. Droughts
3.8. Floods
3.9. General Discussion and Outlook
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Summary for Policymakers. In Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; pp. 3–33. [Google Scholar]
- Rogelj, J.; den Elzen, M.; Höhne, N.; Fransen, T.; Fekete, H.; Winkler, H.; Schaeffer, R.; Sha, F.; Riahi, K.; Meinshausen, M. Paris Agreement Climate Proposals Need a Boost to Keep Warming Well below 2 °C. Nature 2016, 534, 631–639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- UN. Climate Action. Available online: https://www.un.org/en/climatechange/net-zero-coalition#:~:text=To%20keep%20global%20warming%20to,reach%20net%20zero%20by%202050 (accessed on 8 September 2022).
- IEA. Global Energy Review: CO2 Emissions in 2021-Global Emissions Rebound Sharply to Highest Ever Level; International Energy Agency: Paris, France, 2022; p. 14. [Google Scholar]
- IPCC. Annex II—Glossary. In Climate Change 2014 Impacts, Adaptation, and Vulnerability; Part A: Global and Sectoral Aspects; Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; p. 1132. [Google Scholar]
- Burton, I. The Growth of Adaptation Capacity: Practice and Policy. In Adapting to Climate Change; Smith, J.B., Bhatti, N., Menzhulin, G.V., Benioff, R., Campos, M., Jallow, B., Rijsberman, F., Budyko, M.I., Dixon, R.K., Eds.; Springer: New York, NY, USA, 1996; pp. 55–67. ISBN 978-1-4613-8473-1. [Google Scholar]
- Cutter, S.L. Vulnerability to Environmental Hazards. Prog. Hum. Geogr. 1996, 20, 529–539. [Google Scholar] [CrossRef]
- Conway, D.; Nicholls, R.J.; Brown, S.; Tebboth, M.G.L.; Adger, W.N.; Ahmad, B.; Biemans, H.; Crick, F.; Lutz, A.F.; De Campos, R.S.; et al. The Need for Bottom-up Assessments of Climate Risks and Adaptation in Climate-Sensitive Regions. Nat. Clim. Chang. 2019, 9, 503–511. [Google Scholar] [CrossRef] [Green Version]
- Wilby, R.L.; Dessai, S. Robust Adaptation to Climate Change. Weather 2010, 65, 180–185. [Google Scholar] [CrossRef] [Green Version]
- Schiermeier, Q. Get Practical, Urge Climatologists. Nature 2007, 448, 234–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, S.H. CO2, Climate and Society: A brief overview. In Social Science Research and Climate Change: An Interdisciplinary Appraisal; D. Reidel Publishing Company: Dordrecht, The Netherlands, 1983; pp. 9–15. [Google Scholar]
- Smith, K.A.; Wilby, R.L.; Broderick, C.; Prudhomme, C.; Matthews, T.; Harrigan, S.; Murphy, C. Navigating Cascades of Uncertainty—As Easy as ABC? Not Quite… J. Extr. Even. 2018, 5, 1850007. [Google Scholar] [CrossRef] [Green Version]
- Stainforth, D.A.; Allen, M.R.; Tredger, E.R.; Smith, L.A. Confidence, Uncertainty and Decision-Support Relevance in Climate Predictions. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2007, 365, 2145–2161. [Google Scholar] [CrossRef] [PubMed]
- Dessai, S.; Hulme, M. Does Climate Adaptation Policy Need Probabilities? Clim. Policy 2004, 4, 107–128. [Google Scholar] [CrossRef]
- Earman, S.; Dettinger, M. Potential Impacts of Climate Change on Groundwater Resources—A Global Review. J. Water Clim. Chang. 2011, 2, 213–229. [Google Scholar] [CrossRef]
- Green, T.R.; Taniguchi, M.; Kooi, H.; Gurdak, J.J.; Allen, D.M.; Hiscock, K.M.; Treidel, H.; Aureli, A. Beneath the Surface of Global Change: Impacts of Climate Change on Groundwater. J. Hydrol. 2011, 405, 532–560. [Google Scholar] [CrossRef]
- Taylor, R.G.; Scanlon, B.; Döll, P.; Rodell, M.; van Beek, R.; Wada, Y.; Longuevergne, L.; Leblanc, M.; Famiglietti, J.S.; Edmunds, M.; et al. Ground Water and Climate Change. Nat. Clim Chang. 2013, 3, 322–329. [Google Scholar] [CrossRef] [Green Version]
- Bhave, A.G.; Mishra, A.; Raghuwanshi, N.S. A Combined Bottom-up and Top-down Approach for Assessment of Climate Change Adaptation Options. J. Hydrol. 2014, 518, 150–161. [Google Scholar] [CrossRef]
- Ford, J.D.; Keskitalo, E.C.H.; Smith, T.; Pearce, T.; Berrang-Ford, L.; Duerden, F.; Smit, B. Case Study and Analogue Methodologies in Climate Change Vulnerability Research: Climate Change Vulnerability Research. Wiley Interdiscip. Rev. Clim. Chang. 2010, 1, 374–392. [Google Scholar] [CrossRef]
- Dessai, S.; Hulme, M. Assessing the Robustness of Adaptation Decisions to Climate Change Uncertainties: A Case Study on Water Resources Management in the East of England. Glob. Environ. Chang. 2007, 17, 59–72. [Google Scholar] [CrossRef]
- The World Bank. Mainstreaming Adaptation to Climate Change in Agriculture and Natural Resources Management Projects; Guidance Notes; The World Bank-Climate Change Team Environment Department: Washington, DC, USA, 2010; p. 23. [Google Scholar]
- Wilby, R.L. Dealing with Uncertainties of Future Climate: The Special Challenge of Semi-Arid Regions. Water Trib. 2008, 11. Available online: http://zaragoza.es/contenidos/medioambiente/cajaAzul/5S1-P3-WilbyACC.pdf (accessed on 10 November 2022).
- IPCC. Chapter 3: Freshwater Resources. In Climate Change 2014: Impacts, Adaptation, and Vulnerability; Part A: Global and Sectoral Aspects; Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 229–269. [Google Scholar]
- Dillon, P.; Toze, S.; Page, D.; Vanderzalm, J.; Bekele, E.; Sidhu, J.; Rinck-Pfeiffer, S. Managed Aquifer Recharge: Rediscovering Nature as a Leading Edge Technology. Water Sci. Technol. 2010, 62, 2338–2345. [Google Scholar] [CrossRef]
- Gale, I. Strategies for Managed Aquifer Recharge (MAR) in Semi-Arid Areas; UNESCO IHP: Paris, France, 2005; p. 33. [Google Scholar]
- Dillon, P.; Stuyfzand, P.; Grischek, T.; Lluria, M.; Pyne, R.D.G.; Jain, R.C.; Bear, J.; Schwarz, J.; Wang, W.; Fernández, E.; et al. Sixty Years of Global Progress in Managed Aquifer Recharge. Hydrogeol. J. 2019, 27, 1–30. [Google Scholar] [CrossRef] [Green Version]
- Clifton, C.; Evans, R.; Hayes, S.; Hirji, R.; Puz, G.; Pizarro, C. Water and Climate Change: Impacts on Groundwater Resources and Adaptation Options; World Bank: Washington, DC, USA, 2010. [Google Scholar]
- Dragoni, W.; Sukhija, B.S. Climate Change and Groundwater: A Short Review. Geol. Soc. Lond. Spec. Publ. 2008, 288, 1–12. [Google Scholar] [CrossRef]
- Stigter, T.Y.; Miller, J.; Chen, J.; Re, V. Groundwater and Climate Change: Threats and Opportunities. Hydrogeol. J. 2022, 1–4. [Google Scholar] [CrossRef]
- Taylor, R.; Aureli, A.; Allen, D.; Banks, D.; Villholth, K.; Stigter, T. Groundwater, Aquifers and Climate Change. In Groundwater Making the Invisible Visible; The United Nations world water development report; UNESCO: Paris, France, 2022; ISBN 978-92-3-100507-7. [Google Scholar]
- IAH. Climate-Change Adaptation & Groundwater; International Association of Hydrogeologists Strategic Overview Series; International Association of Hydrogeologist: Reading, UK, 2019; p. 6. [Google Scholar]
- Wendt, D.E.; Van Loon, A.F.; Scanlon, B.R.; Hannah, D.M. Managed Aquifer Recharge as a Drought Mitigation Strategy in Heavily-Stressed Aquifers. Environ. Res. Lett. 2020, 16, 014046. [Google Scholar] [CrossRef]
- Guyennon, N.; Salerno, F.; Portoghese, I.; Romano, E. Climate Change Adaptation in a Mediterranean Semi-Arid Catchment: Testing Managed Aquifer Recharge and Increased Surface Reservoir Capacity. Water 2017, 9, 689. [Google Scholar] [CrossRef]
- Rupérez-Moreno, C.; Pérez-Sánchez, J.; Senent-Aparicio, J.; Flores-Asenjo, P.; Paz-Aparicio, C. Cost-Benefit Analysis of the Managed Aquifer Recharge System for Irrigation under Climate Change Conditions in Southern Spain. Water 2017, 9, 343. [Google Scholar] [CrossRef] [Green Version]
- Hugman, R.; Stigter, T.; Costa, L.; Monteiro, J.P. Numerical Modelling Assessment of Climate-Change Impacts and Mitigation Measures on the Querença-Silves Coastal Aquifer (Algarve, Portugal). Hydrogeol. J. 2017, 25, 2105–2121. [Google Scholar] [CrossRef]
- Clark, R.; González, D.; Dillon, P.; Charles, S.; Cresswell, D.; Naumann, B. Reliability of Water Supply from Stormwater Harvesting and Managed Aquifer Recharge with a Brackish Aquifer in an Urbanising Catchment and Changing Climate. Environ. Model. Softw. 2015, 72, 117–125. [Google Scholar] [CrossRef]
- Fernández-Escalante, A.E.; San Sebastian Sauto, J.; Calero Gil, R. Sites and Indicators of MAR as a Successful Tool to Mitigate Climate Change Effects in Spain. Water 2019, 11, 1943. [Google Scholar] [CrossRef] [Green Version]
- Henao Casas, J.D.; Fernández Escalante, E.; Ayuga, F. Alleviating Drought and Water Scarcity in the Mediterranean Region through Managed Aquifer Recharge. Hydrogeol. J. 2022, 30, 1685–1699. [Google Scholar] [CrossRef]
- Fernández Escalante, E. Recarga Artificial de Acuíferos En Cuencas Fluviales. Aspectos Derivados de La Experiencia En La Cubeta de Santiuste (Segovia) (Artificial Aquifer Recharge in River Basins. Aspects Derived from the Experience in the Santiuste Basin (Segovia)). Ph.D. Thesis, Universidad Complutense de Madrid, Departamento de Geodinámica de la Facultad de Ciencias Geológicas, Madrid, Spain, 2004. [Google Scholar]
- European Parliament; Council of the European Union. Directive 2000/60/Ec of the European Parliament and of The Council; European Environment Agency: Copenhague, Denmark, 2000. [Google Scholar]
- CHD. Estudio General de La Demarcación Hidrográfica. Tomo II 1a Parte (General Study of the Hydrographic Demarcation. Volume II Part I); Documentos iniciales del plan Hidrológico 2009; Confederación Hidrográfica del Duero: Castilla y León, Spain, 2007; p. 125. [Google Scholar]
- Fernández-Escalante, A.E.; Calero Gil, R.; Villanueva Lago, M.; San Sebastian Sauto, J. Managed Aquifer Recharge to Combat Groundwater Overexploitation at the Los Arenales Site, Castilla y León, Spain; MARSOL Demonstrating Managed Aquifer Recharge as a Solution to Water Scarcity and Drought; MARSOL: Madrid, Spain, 2016; p. 70. [Google Scholar]
- Comunidad de Regantes El Carracillo. C.R. El Carracillo Historia de La Comunidad de Regantes (C.R. El Carracillo History of the Irrigation Community). Available online: http://www.regantesdelcarracillo.es/historia.htm (accessed on 18 September 2020).
- del Estado, J. Real Decreto-Ley 9/1998, de 28 de agosto, por el que se aprueban y declaran de interés General Determinadas Obras Hidráulicas (Royal Decree-Law 9/1998 of 28 August 1998 approving and declaring certain hydraulic works to be of general interest). Boletín Oficial del Estado 1998, BOE-A-1998-20676, 29488–29497. [Google Scholar]
- CHD. Red de Control Del Nivel (Level Control Network). Available online: https://www.chduero.es/web/guest/red-de-control-del-nivel (accessed on 19 September 2022).
- CHD. Visor MIRAME (MIRAME Viewer). Available online: https://mirame.chduero.es/DMADuero_09/index.faces (accessed on 1 February 2022).
- Moreno, M.A.; Ortega, J.F.; Córcoles, J.I.; Martínez, A.; Tarjuelo, J.M. Energy Analysis of Irrigation Delivery Systems: Monitoring and Evaluation of Proposed Measures for Improving Energy Efficiency. Irrig. Sci. 2010, 28, 445–460. [Google Scholar] [CrossRef]
- Rocamora, C.; Vera, J.; Abadía, R. Strategy for Efficient Energy Management to Solve Energy Problems in Modernized Irrigation: Analysis of the Spanish Case. Irrig. Sci. 2013, 31, 1139–1158. [Google Scholar] [CrossRef]
- Bea Martínez, M.; Fernández Lop, A.; Gil, T.; Seiz Puyuelo, R.; Cols, R. El Robo Del Agua. Cuatro Ejemplos Flagrantes Del Saqueo Hídrico En España; WWF España: Madrid, Spain, 2021; p. 39. [Google Scholar]
- ITACYL. Plan de Monitorización de Los Cultivos de Regadío En Castilla y León—Resultados de La Encuesta de Cultivos Con Datos Acumulados de Las Campañas Agrícolas 2011–2018 (Plan for Monitoring Irrigated Crops in Castile and León—Results of the Crop Survey with Accumulated Data from the 2011-2018 Agricultural Campaigns); Instituto Tecnológico y Agrario de Castilla y León: Valladolid, Spain, 2020. [Google Scholar]
- IPCC. IPCC Guidelines for National Greenhouse Gas Inventories; Prepared by the National Greenhouse Gas Inventories Programme; IPCC: Geneva, Switzerland, 2006; pp. 10–11. [Google Scholar]
- Juhrich, K. CO2 Emissions Factors for Fossil Fuels; German Environment Agency (UBA): Dessau-Roßlau, Germany, 2016. [Google Scholar]
- IDEA. Factores de Conversión En El Cálculo de Ahorro de Energía y Reducción de Emisiones de CO2 (Conversion Factors in the Calculation of Energy Savings and CO2 Emission Reductions). Available online: https://sede.idae.gob.es/lang/extras/tramites-servicios/2021/MOVES_Proyectos_Singulares_II/Factores_de_conversion_ahorros_y_emisiones_de_CO2.pdf (accessed on 1 February 2022).
- Junta de Castilla y León. Programa de Impulso de La Infraestructura de Interés General—Regadío En Castilla y León (Programme for the Promotion of Infrastructure of General Interest—Irrigation in Castilla y León); Junta de Castilla y León: Valladolid, Spain, 2020; p. 44. [Google Scholar]
- Fernández-Escalante, A.E.; Calero Gil, R.; Villanueva Lago, M.; San Sebastian Sauto, J.; De Borja González Herrarte, F. Los Arenales Demonstration Site Characterisation; MARSOL Demonstrating Managed Aquifer Recharge as a Solution to Water Scarcity and Drought; MARSOL: Madrid, Spain, 2015; p. 99. [Google Scholar]
- INE. Cifras Oficiales de Población Resultantes de La Revisión Del Padrón Municipal a 1 de Enero (Official Population Figures Resulting from the Revision of the Municipal Census as of 1 January). Available online: https://www.ine.es/dynt3/inebase/es/index.htm?padre=517&capsel=525 (accessed on 1 February 2022).
- Junta de Castilla y León. Estadísticas Generales (General Statistics). Available online: https://agriculturaganaderia.jcyl.es/web/es/estadisticas-generales-2020.html (accessed on 1 February 2022).
- CLC. CORINE Land Cover. Available online: https://land.copernicus.eu/pan-european/corine-land-cover (accessed on 1 February 2022).
- SIOSE. Acerca de SIOSE (About SIOSE). Available online: https://www.siose.es/ (accessed on 1 February 2022).
- Fernández-Escalante, A.E.; Calero Gil, R.; de Borja González-Herrarte, F.; San Sebastian Sauto, J.; Del Pozo-Campos, E.; Carvalho, T. MAR Technical Solutions Review and Data Base; MARSOL Demonstrating Managed Aquifer Recharge as a Solution to Water Scarcity and Drought; MARSOL: Madrid, Spain, 2015; p. 171. [Google Scholar]
- Fernández-Escalante, A.E.; López-Gunn, E. Co-Managed Aquifer Recharge: Case Studies from Castilla y León (Spain). In The Role of Sound Groundwater Resources Management and Governance to Achieve Water Security (Series III); Global Water Security Issues (GWSI) Series; UNESCO Publishing: Paris, France, 2021. [Google Scholar]
- López Gunn, E.; Rica, M.; Zorrilla-Miras, P.; Vay, L.; Mayor, B.; Pagano, A.; Altamirano, M.; Giordano, R. The Natural Assurance Value of Nature-Based Solutions: A Layered Institutional Analysis of Socio Ecological Systems for Long Term Climate Resilient Transformation. Ecol. Econ. 2021, 186, 107053. [Google Scholar] [CrossRef]
- Aguilera, H.; Heredia Díaz, J.; Losa Román, A. A Methodology for Simulating Perched Conditions in Multilayer Aquifer Systems with 2D Variably Saturated Flow. Vadose Zone J. 2021, 20, e20152. [Google Scholar] [CrossRef]
- Johnston, R.H. Sources of Water Supplying Pumpage from Regional Aquifer Systems of the United States. Hydrogeol. J. 1997, 5, 54–63. [Google Scholar] [CrossRef]
- Llamas, M.R.; Garrido, A. Lessons from Intensive Groundwater Use in Spain: Economic and Social Benefits and Conflicts. In The Agricultural Groundwater Revolution: Opportunities and Threats to Development; Giordano, M., Villholth, K.G., Eds.; CABI: Wallingford, UK, 2007; pp. 266–295. ISBN 978-1-84593-172-8. [Google Scholar]
- Shah, T.; Roy, A.D.; Qureshi, A.S.; Wang, J. Sustaining Asia’s Groundwater Boom: An Overview of Issues and Evidence. Nat. Resour. Forum 2003, 27, 130–141. [Google Scholar] [CrossRef] [Green Version]
- Van Loon, A.F.; Van Lanen, H.A.J. Making the Distinction between Water Scarcity and Drought Using an Observation-Modeling Framework: Distinguishing between water scarcity and drought. Water Resour. Res. 2013, 49, 1483–1502. [Google Scholar] [CrossRef]
- Moreno, E.S.; Arroyo, X.; Cabestrero, Ó.; Sorando, J.P.C.; Escalante, A.E.F.; Hijano, C.F.; del Cura, M.Á.G.; García Avilés, J.; González Martín, J.A.; Rodríguez Aranda, J.P.; et al. Procesos de Sedimentación y Biomineralización En La Laguna Alcalina de Las Eras (Humedal Coca-Olmedo) (Sedimentation and Biomineralization Processes in Las Eras Lake (Coca-Olmedo Wetland)). Geogaceta 2013, 53, 97–100. [Google Scholar]
- Llamas, M.R.; Custodio, E.; de la Hera, A.; Fornés, J.M. Groundwater in Spain: Increasing Role, Evolution, Present and Future. Environ. Earth Sci. 2015, 73, 2567–2578. [Google Scholar] [CrossRef]
- Martínez-Santos, P.; de Stefano, L.; Llamas, M.R.; Martínez-Alfaro, P.E. Wetland Restoration in the Mancha Occidental Aquifer, Spain: A Critical Perspective on Water, Agricultural, and Environmental Policies. Restor. Ecol. 2008, 16, 511–521. [Google Scholar] [CrossRef]
- Giordano, R.; Máñez Costa, M.; Pagano, A.; Mayor Rodriguez, B.; Zorrilla-Miras, P.; Gomez, E.; Lopez-Gunn, E. Combining Social Network Analysis and Agent-Based Model for Enabling Nature-Based Solution Implementation: The Case of Medina Del Campo (Spain). Sci. Total Environ. 2021, 801, 149734. [Google Scholar] [CrossRef]
- Guerreiro, S.B.; Birkinshaw, S.; Kilsby, C.; Fowler, H.J.; Lewis, E. Dry Getting Drier—The Future of Transnational River Basins in Iberia. J. Hydrol. Reg. Stud. 2017, 12, 238–252. [Google Scholar] [CrossRef]
- Cruz-García, R.; Gámiz-Fortis, S.R.; Castro-Díez, Y.; Esteban-Parra, M.J. Climate Change Projections for Winter Streamflow in Douro River. In Clima, Sociedad, Riesgos y Ordenación del Territorio; Servicio de Publicaciones de la UA: Alicante, Spain, 2016; pp. 437–447. ISBN 978-84-16724-19-2. [Google Scholar]
- Francés, P.A.; Calle, M.J.C.; Saavedra, A.P.; Calzado, R.P.; Rodríguez Camino, E. Guía de Escenarios Regionalizados de Cambio Climático Sobre España a Partir de Los Resultados Del IPCC-AR5 (Guide to Regionalised Climate Change Scenarios for Spain Based on IPCC-AR5 Results); Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente—Agencia Estatal Meteorológica: Madrid, Spain, 2017. [Google Scholar]
- del Estado, J. Orden MAM/85/2008 de 16 de enero, por el que se establecen los criterios técnicos para la evaluación de los daños al dominio público hidráulico y las normas de muestreo y análisis de los vertidos de aguas residuales (Order MAM/85/2008 of 16 January 2008, establishing the technical criteria for the assessment of damage to the public water domain and the rules for sampling and analysis of wastewater discharges). Boletín Oficial del Estado 2008, BOE-A-2008-1498, 5238–5253. [Google Scholar]
- de Miguel, E.O.; Medina, Y.F.; Rodríguez, J.J.S.; Cruz, C.A.; Real Jiménez, Á. Manual Para La Implementación de Sistemas de Depuración En Pequeñas Poblaciones (Manual for the Implementation of Wastewater Treatment Systems in Small Villages); Ministerio de Medio Ambiente y Medio Rural y Marino: Madrid, Spain, 2010; ISBN 978-84-491-1071-9. [Google Scholar]
- IGN. Información Geográfica Temática (Thematic Geographic Information). Available online: http://centrodedescargas.cnig.es/CentroDescargas/catalogo.do?Serie=SIOSE# (accessed on 1 February 2022).
- Thiessen, A. Precipitation Averages for Large Areas. Mon. Weather Rev. 1911, 39, 6. [Google Scholar] [CrossRef]
- Agencia Estatal de Meteorología AEMET. Available online: https://www.aemet.es/es/portada (accessed on 1 February 2022).
- Junta de Castilla y León. Listado de Las Estaciones Agrometeorológicas (List of Agrometeorological Stations). Available online: https://www.inforiego.org/opencms/opencms/estaciones/listado/index.html (accessed on 28 October 2022).
- Ileon. Las Ciudades de Castilla y León Disponen de 2254 Metros Cuadrados de Zona Verde Por Habitante (The Cities of Castilla y León Have 22.54 Square Metres of Green Space per Inhabitant). Available online: https://ileon.eldiario.es/actualidad/088943/las-ciudades-de-castilla-y-leon-disponen-de-22-54-metros-cuadrados-de-zona-verde-por-habitante (accessed on 1 May 2022).
- Guerreiro, S.B.; Kilsby, C.; Fowler, H.J. Assessing the Threat of Future Megadrought in Iberia: Assesing the Threat of Future Megadrought in Iberia. Int. J. Clim. 2017, 37, 5024–5034. [Google Scholar] [CrossRef] [Green Version]
- Cerdà, E.; Fernández-Haddad, Z.; Foudi, S.; Galaraga, I.; Martínez, A.; Montoya, Á.; Nortes, D.; Quiroga, S.; Suárez, C. Valoración Económica de Los Efectos Del Cambio Climático En España En El Sector de Recursos Hídricos (Economic Assessment of the Effects of Climate Change in Spain on the Water Resources Sector). 2017. Available online: https://adaptecca.es/sites/default/files/documentos/sintesis_economia_agua_cambio_climatico.pdf (accessed on 10 November 2022).
- Rodríguez, C.G.M.; Villazán, M.T.O. Las Inundaciones En Castilla y León (Floods in Castilla y León). Ería 2002, 59, 305–332. [Google Scholar] [CrossRef]
- Vicente Moya, R. Delimitación Del Área Inundable En El Municipio de Viana de Cega (Delimitation of the Floodable Area in the Municipality of Viana de Cega). Bachelor’s Thesis, Universidad de Valladolid, Facultad de Filosofía y Letras, Valladolid, Spain, 2014. [Google Scholar]
- Fernández-Escalante, A.E.; Calero Gil, R.; Villanueva Lago, M.; San Sebastían Sauto, J.; Martínez Tejero, Ó.; Valiente Blazquéz, J.A.; MARSOL. Appropiate MAR Methodology and Tested Knowhow for the General Rural Development; MARSOL Demonstrating Managed Aquifer Recharge as a Solution to Water Scarcity and Drought; MARSOL: Madrid, Spain, 2016; p. 171. [Google Scholar]
- San Sebastían Sauto, J.; Fernández Escalante, E.; González Herrarte, F.B. La Recarga Gestionada En Santiuste: 13 Años de Usos y Servicios Múltiples Para La Comunidad Rural (Managed Recharge in Santiuste: 13 Years Of Multiple Uses and Services for the Rural Community). Tierras de Castilla y León Agricultura 2015, 234, 78–85. [Google Scholar]
- Henao Casas, J.D.; Fernández Escalante, E.; Ayuga, F. Increasing Groundwater Storage and Maintaining Irrigation through Managed Aquifer Recharge. Groundw. Sustain. Dev. 2022, 19, 100842. [Google Scholar] [CrossRef]
- Fernández Escalante, E. Grupo Tragsa 2002–2012, Una Decada de La Recarga Gestionada. Acuífero de La Cubeta de Santiuste (Castilla y León) (2002-2012, A Decade of Managed Recharge. Cubeta de Santiuste Aquifer (Castilla y León)); Grafinat: Madrid, Spain, 2014; ISBN 84-616-8910-0. [Google Scholar]
- Villamayor-Tomas, S. The Water–Energy Nexus in Europe and Spain. In Competition for Water Resources; Elsevier: Amsterdam, The Netherlands, 2017; pp. 105–122. ISBN 978-0-12-803237-4. [Google Scholar]
- Velasco, J.L.; Soriano, Ó.; Fernández, J.; Rubio, A. Características Físico-Químicas de Diferentes Masas de Agua: La Cuenca Del Duero (España) (Physico-Chemical Characteristics of Different Water Bodies: The Douro River Basin (Spain)). Ecología 2004, 18, 21–34. [Google Scholar]
- Sanz-Moreno, M.E.; del Cura, M.Á.G.; Rodríguez-Aranda, J.P.; Sorando, C.J.P. Tapices Microbianos y Estructuras Sedimentarias Asociadas En Sistemas Deposicionales Evaporíticos de La Mancha: Un Enfoque Actualista (Microbial Mats and Related Sedimentary Structures in Evaporitic Lakes: An Actualistic Perspective into Ancient Sequences). Geotemas 2012, 13, 167–170. [Google Scholar]
- Comelles, M. Hallazgo de Dos Poblaciones Sexuales de “Chara Canescens” Desv. & Lois., En España (Discovery of Two Sexual Populations of “Chara Canescens” Desv. & Lois. in Spain). Anales del Jardín Botánico de Madrid 1985, 42, 285AD. [Google Scholar]
- Rouillard, J.; Babbitt, C.; Pulido-Velazquez, M.; Rinaudo, J.-D. Transitioning out of Open Access: A Closer Look at Institutions for Management of Groundwater Rights in France, California, and Spain. Water Res. 2021, 57, e2020WR028951. [Google Scholar] [CrossRef]
- Escalante, F.E.; Gunn, L.E. Co-Managed Aquifer Recharge (Co-MAR). A Bottom-up Approach for Integrated Water Resources Management Enhancement. Novel Method Employed at Los Arenales Aquifer (Spain) and First Results. In International Symposium on Managed Aquifer Recharge, ISMAR 11 Abstracts Book, Long Beach, California, 2022; IAH Commission on Managing Aquifer Recharge: Reading, UK, 2022; pp. 10–12. [Google Scholar]
- Huertas, R.; Marcos, C.; Ibarguren, N.; Ordás, S. Guía Práctica Para La Depuración de Aguas Residuales En Pequeñas Poblaciones (Practical Guide to Wastewater Treatment in Small Settlements); Confederación Hidrográfica del Duero: Valladolid, Mexico, 2013. [Google Scholar]
- Council of the European Communities. COUNCIL DIRECTIVE of 21 May 1991 Concerning Urban Waste Water Treatment (9 1/271/EEC). Off. J. Eur. Communities 1991, 30, 13. [Google Scholar]
- del Estado, J. REAL DECRETO-LEY 11/1995, de 28 de Diciembre, Por El Que Se Establecen Las Normas Aplicables al Tratamiento de Las Aguas Residuales Urbanas (ROYAL DECREE-LAW 11/1995 of 28 December 1995 Laying down the Rules Applicable to the Treatment of Urban Waste Waters). Boletín Oficial del Estado 1995, BOE-A-1995-27963, 37517–37519. [Google Scholar]
- del Estado, J. Real Decreto 1620/2007, de 7 de Diciembre, Por El Que Se Establece El Régimen Jurídico de La Reutilización de Las Aguas Depuradas (Royal Decree 1620/2007, of 7 December, Establishing the Legal Regime for the Reuse of Purified Waters). Boletín Oficial del Estado 2007, BOE-A-2007-21092, 50639–50661. [Google Scholar]
- MTERD. Plan Nacional de Depuración, Saneamiento, Eficiencia, Ahorro y Reutilización—Plan DSEAR (National Plan for Purification, Sanitation, Efficiency, Savings and Reuse—DSEAR Plan); Ministerio de la Transición Ecológica y el Reto Demográfico: Madrid, Spain, 2021. [Google Scholar]
- European Parliament; Council of the European Union. REGULATION (EU) 2020/741 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 25 May 2020 on Minimum Requirements for Water Reuse. Off. J. Eur. Union 2020, 177, 24. [Google Scholar]
- Jodar-Abellan, A.; López-Ortiz, M.I.; Melgarejo-Moreno, J. Wastewater Treatment and Water Reuse in Spain. Current Situation and Perspectives. Water 2019, 11, 1551. [Google Scholar] [CrossRef] [Green Version]
- Bloomfield, J.P.; Marchant, B.P. Analysis of Groundwater Drought Building on the Standardised Precipitation Index Approach. Hydrol. Earth Syst. Sci. 2013, 17, 4769–4787. [Google Scholar] [CrossRef] [Green Version]
- López, G.R.; Mendieta, L.F.; Rubio, M.J.; Antequera, M.C.; Martínez, G.G.; Escalante, F.E. Recarga Artificial Del Acuifero de Los Arenales En La Comarca de “El Carracillo” (Segovia) (2° Parte) Hidrologia Subterranea (Artificial Recharge of Los Arenales Aquifer in the Region of “El Carracillo” (Segovia) (2nd Part) Groundwater Hydrology). In Proceedings of the VII Simposio de Hidrogeología, Murcia, Spain, 2 May–1 June 2001; p. 12. [Google Scholar]
- Burton, I.; Malone, E.L.; Huq, S. Adaptation Policy Frameworks for Climate Change: Developing Strategies, Policies, and Measures; Lim, B., Spanger-Siegfried, E., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2005; ISBN 978-0-521-61760-4. [Google Scholar]
- Macías Antequera, C.; Martínez Gamo, R.; Martínez Rubio, J. Estudios Preliminares Para El Diseño de Una Instalación de Recarga Artificial En La Zona Oriental Del Acuífero de “El Carracillo, Segovia” (Preliminary Studies for the Design of an Artificial Recharge Facility in the Eastern Part of the “El Carracillo, Segovia” Aquifer). Boletín Geológico y Minero 2014, 125, 187–202. [Google Scholar]
- Bathiany, S.; Dakos, V.; Scheffer, M.; Lenton, T.M. Climate Models Predict Increasing Temperature Variability in Poor Countries. Sci. Adv. 2018, 4, eaar5809. [Google Scholar] [CrossRef] [Green Version]
- Harrington, L.J.; Frame, D.J.; Fischer, E.M.; Hawkins, E.; Joshi, M.; Jones, C.D. Poorest Countries Experience Earlier Anthropogenic Emergence of Daily Temperature Extremes. Environ. Res. Lett. 2016, 11, 055007. [Google Scholar] [CrossRef]
- Li, Q.; Sun, P.; Li, B.; Mohiuddin, M. Impact of Climate Change on Rural Poverty Vulnerability from an Income Source Perspective: A Study Based on CHIPS2013 and County-Level Temperature Data in China. Int. J. Environ. Res. Public Health 2022, 19, 3328. [Google Scholar] [CrossRef]
- Dasgupta, P.; Morton, J.F.; Dodman, D.; Karapinar, B.; Meza, F.; Rivera-Ferre, M.G.; Toure Sarr, A.; Vincent, K.E. Rural Areas. In Climate Change 2014: Impacts, Adaptation, and Vulnerability; Part A: Global and Sectoral Aspects; Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 613–657. [Google Scholar]
- Lal, P.; Alavalapati, J.R.R.; Mercer, E.D. Socio-Economic Impacts of Climate Change on Rural United States. Mitig. Adapt. Strateg. Glob. Chang. 2011, 16, 819–844. [Google Scholar] [CrossRef] [Green Version]
- Leichenko, R.; Silva, J.A. Climate Change and Poverty: Vulnerability, Impacts, and Alleviation Strategies. Wiley Interdiscip. Rev. Clim. Chang. 2014, 5, 539–556. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Reedy, R.C.; Faunt, C.C.; Pool, D.; Uhlman, K. Enhancing Drought Resilience with Conjunctive Use and Managed Aquifer Recharge in California and Arizona. Environ. Res. Lett. 2016, 11, 035013. [Google Scholar] [CrossRef] [Green Version]
- Dillon, P.; Gale, I.; Contreras, S.; Pavelic, P.; Evans, R.; Ward, J. Managing Aquifer Recharge and Discharge to Sustain Irrigation Livelihoods under Water Scarcity and Climate Change. In Improving Integrated Surface and Groundwater Resources Management in a Vulnerable and Changing World, Proceedings of the JS.3 at the Joint IAHS & IAH Convention, Hydsrabad, India, 6–12 September 2009; IAH Publications: Hyderabad, India, 2009; p. 330. [Google Scholar]
- Icekson-Tal, N.; Avraham, O.; Sack, J.; Cikurel, H. Water Reuse in Israel—The Dan Region Project: Evaluation of Water Quality and Reliability of Plant’s Operation. Water Supply 2003, 3, 231–237. [Google Scholar] [CrossRef]
Groundwater Monitoring Site | CHD Code | Well Depth (m) | Utilisation Period |
---|---|---|---|
1 | PC0245001 | 72 | 2003–2020 |
2 | PZ0245004 | 217 | 1985–2001, 2003–2020 |
3 | PZ0245005 | 150 | 1985–2001, 2003–2020 |
4 | PZ0245011 | 331 | 2003–2020 |
5 | PZ0245013 | 177 | 2003–2020 |
6 | PZ0245017 | 564 | 2003–2020 |
7 | PZ0245031 | 450 | 2003–2020 |
8 | PZ0245036 | 525 | 2003–2020 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Henao Casas, J.D.; Fernández Escalante, E.; Calero Gil, R.; Ayuga, F. Managed Aquifer Recharge as a Low-Regret Measure for Climate Change Adaptation: Insights from Los Arenales, Spain. Water 2022, 14, 3703. https://doi.org/10.3390/w14223703
Henao Casas JD, Fernández Escalante E, Calero Gil R, Ayuga F. Managed Aquifer Recharge as a Low-Regret Measure for Climate Change Adaptation: Insights from Los Arenales, Spain. Water. 2022; 14(22):3703. https://doi.org/10.3390/w14223703
Chicago/Turabian StyleHenao Casas, Jose David, Enrique Fernández Escalante, Rodrigo Calero Gil, and Francisco Ayuga. 2022. "Managed Aquifer Recharge as a Low-Regret Measure for Climate Change Adaptation: Insights from Los Arenales, Spain" Water 14, no. 22: 3703. https://doi.org/10.3390/w14223703