A Concise Review of Theoretical Models and Numerical Simulations of Membrane Fouling
Abstract
:1. Introduction
2. Theoretical Models
2.1. Concentration Polarization
2.2. Cake Formation
2.3. Pore Blocking
3. Numerical Simulation
3.1. Computational Fluid Dynamics (CFD)
Membranes | Aims | Highlights | References |
---|---|---|---|
RO/NF |
|
| [69] |
|
| [66] | |
|
| [67] | |
|
| [70] | |
Electro-osmosis |
|
| [55] |
UF |
|
| [60] |
MF |
|
| [68] |
|
| [61] | |
MBR |
|
| [65] |
|
| [56] | |
Distillation |
|
| [62] |
|
| [58] | |
|
| [63] | |
Forward Osmosis (FO) |
|
| [71] |
3.2. Monte Carlo Simulation
Membrane | Aims | Highlights | References |
---|---|---|---|
MF |
|
| [74] |
|
| [85] | |
|
| [86] | |
UF |
|
| [76] |
UF/MF |
|
| [72] |
|
| [73] | |
RO |
|
| [78] |
RO/NF |
|
| [87] |
RO/NF |
|
| [81] |
|
| [80] | |
|
| [5] | |
|
| [82] | |
MD |
|
| [83] |
|
| [84] |
3.3. Artificial Neural Networks (ANN)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Van der Bruggen, B.; Manttari, M.; Nystrom, M. Drawbacks of Applying Nanofiltration and How to Avoid Them: A Review. Sep. Purif. Technol. 2008, 63, 251–263. [Google Scholar] [CrossRef]
- Yang, Z.; Sun, P.F.; Li, X.; Gan, B.; Wang, L.; Song, X.; Park, H.D.; Tang, C.Y. A Critical Review on Thin-Film Nanocomposite Membranes with Interlayered Structure: Mechanisms, Recent Developments, and Environmental Applications. Environ. Sci. Technol. 2020, 54, 15563–15583. [Google Scholar] [CrossRef] [PubMed]
- Iritani, E.; Katagiri, N. Developments of Blocking Filtration Model in Membrane Filtration. Kona Powder Part. J. 2016, 33, 179–202. [Google Scholar] [CrossRef] [Green Version]
- Tang, C.Y.; Chong, T.H.; Fane, A.G. Colloidal Interactions and Fouling of NF and RO Membranes: A Review. Adv. Colloid Interface Sci. 2011, 164, 126–143. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Huang, T.; Ji, R.; Wang, Z.; Tang, C.Y.; Leckie, J.O. Stochastic Collision-Attachment-Based Monte Carlo Simulation of Colloidal Fouling: Transition from Foulant-Clean-Membrane Interaction to Foulant-Fouled-Membrane Interaction. Environ. Sci. Technol. 2020, 54, 12703–12712. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, Z.; Tang, C.Y.; Leckie, J.O. Modeling Dynamics of Colloidal Fouling of RO/NF Membranes with a Novel Collision-Attachment Approach. Environ. Sci. Technol. 2018, 52, 1471–1478. [Google Scholar] [CrossRef]
- Tan, Y.W.; Lin, T.; Chen, W.; Zhou, D.J. Effect of Organic Molecular Weight Distribution on Membrane Fouling in an Ultrafiltration System with Ozone Oxidation from the Perspective of Interaction Energy. Environ.Sci. Water Res. Technol. 2017, 3, 1132–1142. [Google Scholar] [CrossRef]
- She, Q.; Tang, C.Y.; Wang, Y.-N.; Zhang, Z. The Role of Hydrodynamic Conditions and Solution Chemistry on Protein Fouling During Ultrafiltration. Desalination 2009, 249, 1079–1087. [Google Scholar] [CrossRef]
- Tang, C.Y.; Leckie, J.O. Membrane Independent Limiting Flux for RO and NF Membranes Fouled by Humic Acid. Environ. Sci. Technol. 2007, 41, 4767–4773. [Google Scholar] [CrossRef]
- Porter, M.C. Concentration Polarization with Membrane Ultrafiltration. Ind. Eng. Chem. Prod. Res. Dev. 1972, 11, 234–248. [Google Scholar] [CrossRef]
- Yao, W.; Wang, Z.; Song, P. The Cake Layer Formation in the Early Stage of Filtration in MBR: Mechanism and Model. J. Membr. Sci. 2018, 559, 75–86. [Google Scholar] [CrossRef]
- Hermans, P.H. Zur Kenntnis Der Filtrationsgesetze. Recl. Des Trav. Chim. Des Pays-Bas 1935, 54, 680–700. [Google Scholar] [CrossRef]
- Keir, G.; Jegatheesan, V. A Review of Computational Fluid Dynamics Applications in Pressure-Driven Membrane Filtration. Rev. Environ. Sci. Bio/Technol. 2014, 13, 183–201. [Google Scholar] [CrossRef]
- Chen, J.; Elimelech, M.; Kim, A. Monte Carlo Simulation of Colloidal Membrane Filtration: Model Development with Application to Characterization of Colloid Phase Transition. J. Membr. Sci. 2005, 255, 291–305. [Google Scholar] [CrossRef]
- Cai, X.; Zhang, M.J.; Yang, L.N.; Lin, H.J.; Wu, X.L.; He, Y.M.; Shen, L.G. Quantification of Interfacial Interactions between a Rough Sludge Floc and Membrane Surface in a Membrane Bioreactor. J. Colloid Interface Sci. 2017, 490, 710–718. [Google Scholar] [CrossRef] [PubMed]
- Ghidossi, R.; Veyret, D.; Moulin, P. Computational Fluid Dynamics Applied to Membranes: State of the Art and Opportunities. Chem. Eng. Process. 2006, 45, 437–454. [Google Scholar] [CrossRef]
- Niu, C.; Li, X.; Dai, R.; Wang, Z. Artificial Intelligence-Incorporated Membrane Fouling Prediction for Membrane-Based Processes in the Past 20 Years: A Critical Review. Water Res. 2022, 216, 118299. [Google Scholar] [CrossRef]
- Liu, J.X.; Zhao, Y.X.; Fan, Y.Q.; Yang, H.Y.; Wang, Z.H.; Chen, Y.L.; Tang, C.Y.Y. Dissect the Role of Particle Size through Collision-Attachment Simulations for Colloidal Fouling of RO/NF Membranes. J. Membr. Sci. 2021, 638, 119679. [Google Scholar] [CrossRef]
- Kim, S.; Hoek, E.M.V. Modeling Concentration Polarization in Reverse Osmosis Processes. Desalination 2005, 186, 111–128. [Google Scholar] [CrossRef]
- Kostoglou, M.; Karabelas, A.J. Modeling Scale Formation in Flat-Sheet Membrane Modules During Water Desalination. AIChE J. 2013, 59, 2917–2927. [Google Scholar] [CrossRef]
- Liu, J.X.; Fan, Y.Q.; Sun, Y.H.; Wang, Z.H.; Zhao, D.S.; Li, T.; Dong, B.Z.; Tang, C.Y.Y. Modelling the Critical Roles of Zeta Potential and Contact Angle on Colloidal Fouling with a Coupled XDLVO-Collision Attachment Approach. J. Membr. Sci. 2021, 623, 119048. [Google Scholar] [CrossRef]
- Hong, S.; Elimelech, M. Chemical and Physical Aspects of Natural Organic Matter (NOM) Fouling of Nanofiltration Membranes. J. Membr. Sci. 1997, 132, 159–181. [Google Scholar] [CrossRef]
- Meng, F.; Zhang, H.; Yang, F.; Liu, L. Characterization of Cake Layer in Submerged Membrane Bioreactor. Environ. Sci. Technol. 2007, 41, 4065–4070. [Google Scholar] [CrossRef] [PubMed]
- Quideau, S.; Deffieux, D.; Douat-Casassus, C.; Pouysegu, L. Plant Polyphenols: Chemical Properties, Biological Activities, and Synthesis. Angew. Chem. Int. Ed. Engl. 2011, 50, 586–621. [Google Scholar] [CrossRef]
- Teng, J.; Shen, L.; Xu, Y.; Chen, Y.; Wu, X.L.; He, Y.; Chen, J.; Lin, H. Effects of Molecular Weight Distribution of Soluble Microbial Products (SMPs) on Membrane Fouling in a Membrane Bioreactor (MBR): Novel Mechanistic Insights. Chemosphere 2020, 248, 126013. [Google Scholar] [CrossRef]
- Carman, P.C. Fluid Flow through Granular Beds. Chem. Eng. Res. Des. 1997, 75, S32–S48. [Google Scholar] [CrossRef]
- Tang, C.Y.; Kwon, Y.-N.; Leckie, J.O. Characterization of Humic Acid Fouled Reverse Osmosis and Nanofiltration Membranes by Transmission Electron Microscopy and Streaming Potential Measurements. Environ. Sci. Technol. 2007, 41, 942–949. [Google Scholar] [CrossRef]
- Iritani, E.; Hattori, K.; Murase, T. Analysis of Dead-End Ultrafiltration Based on Ultracentrifugation Method. J. Membr. Sci. 1993, 81, 1–13. [Google Scholar] [CrossRef]
- Sioutopoulos, D.C.; Yiantsios, S.G.; Karabelas, A.J. Relation between Fouling Characteristics of RO and UF Membranes in Experiments with Colloidal Organic and Inorganic Species. J. Membr. Sci. 2010, 350, 62–82. [Google Scholar] [CrossRef]
- Sioutopoulos, D.C.; Karabelas, A.J. Evolution of Organic Gel Fouling Resistance in Constant Pressure and Constant Flux Dead-End Ultrafiltration: Differences and Similarities. J. Membr. Sci. 2016, 511, 265–277. [Google Scholar] [CrossRef]
- Belfort, G.; Davis, R.H.; Zydney, A.L. The Behavior of Suspensions and Macromolecular Solutions in Crossflow Microfiltration. J. Membr. Sci. 1994, 96, 1–58. [Google Scholar] [CrossRef]
- Hamachi, M.; Mietton-Peuchot, M. Experimental Investigations of Cake Characteristics in Crossflow Microfiltration. Chem. Eng. Sci. 1999, 54, 4023–4030. [Google Scholar] [CrossRef]
- Singh, G.; Song, L.F. Cake Compressibility of Silica Colloids in Membrane Filtration Processes. Ind. Eng. Chem. Res. 2006, 45, 7633–7638. [Google Scholar] [CrossRef]
- Hoek, E.M.; Elimelech, M. Cake-Enhanced Concentration Polarization: A New Fouling Mechanism for Salt-Rejecting Membranes. Environ. Sci. Technol. 2003, 37, 5581–5588. [Google Scholar] [CrossRef]
- Chong, T.H.; Fane, A.G. Implications of Critical Flux and Cake Enhanced Osmotic Pressure (CEOP) on Colloidal Fouling in Reverse Osmosis: Modeling Approach. Desalination Water Treat. 2009, 8, 68–90. [Google Scholar] [CrossRef]
- Park, M.; Lee, J.; Boo, C.; Hong, S.; Snyder, S.A.; Kim, J.H. Modeling of Colloidal Fouling in Forward Osmosis Membrane: Effects of Reverse Draw Solution Permeation. Desalination 2013, 314, 115–123. [Google Scholar] [CrossRef]
- Abbasi-Garravand, E.; Mulligan, C.N.; Laflamme, C.B.; Clairet, G. Investigation of the Fouling Effect on a Commercial Semi-Permeable Membrane in the Pressure Retarded Osmosis (PRO) Process. Sep. Purif. Technol. 2018, 193, 81–90. [Google Scholar] [CrossRef] [Green Version]
- Iritani, E.; Katagiri, N.; Takenaka, T.; Yamashita, Y. Membrane Pore Blocking During Cake Formation in Constant Pressure and Constant Flux Dead-End Microfiltration of Very Dilute Colloids. Chem. Eng. Sci. 2015, 122, 465–473. [Google Scholar] [CrossRef]
- Said, M.; Ahmad, A.; Mohammad, A.W.; Nor, M.T.M.; Abdullah, S.R.S. Blocking Mechanism of PES Membrane During Ultrafiltration of Pome. J. Ind. Eng. Chem. 2015, 21, 182–188. [Google Scholar] [CrossRef]
- Zhang, W.X.; Ding, L.H. Investigation of Membrane Fouling Mechanisms Using Blocking Models in the Case of Shear-Enhanced Ultrafiltration. Sep. Purif. Technol. 2015, 141, 160–169. [Google Scholar] [CrossRef]
- Iritani, E. A Review on Modeling of Pore-Blocking Behaviors of Membranes During Pressurized Membrane Filtration. Dry. Technol. 2013, 31, 146–162. [Google Scholar] [CrossRef]
- Teng, J.H.; Chen, Y.F.; Ma, G.C.; Hong, H.C.; Sun, T.Y.; Liao, B.Q.; Lin, H.J. Membrane Fouling by Alginate in Polyaluminum Chloride (PACL) Coagulation/Microfiltration Process: Molecular Insights. Sep. Purif. Technol. 2020, 236, 116294. [Google Scholar] [CrossRef]
- Wang, N.; Li, X.; Yang, Y.L.; Zhou, Z.W.; Shang, Y.; Zhuang, X.X. Photocatalysis-Coagulation to Control Ultrafiltration Membrane Fouling Caused by Natural Organic Matter. J. Clean. Prod. 2020, 265, 121790. [Google Scholar] [CrossRef]
- Zhang, M.J.; Leung, K.T.; Lin, H.J.; Liao, B.Q. Characterization of Foaming and Non-Foaming Sludge Relating to Aeration and the Implications for Membrane Fouling Control in Submerged Membrane Bioreactors. J. Water Process. Eng. 2019, 28, 250–259. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhang, W.; Tang, B.; Ding, J.; Zheng, Y.; Zhang, Z. Membrane Fouling Mechanism of Biofilm-Membrane Bioreactor (BF-MBR): Pore Blocking Model and Membrane Cleaning. Bioresour. Technol. 2018, 250, 398–405. [Google Scholar] [CrossRef]
- Monfared, M.A.; Kasiri, N.; Mohammadi, T. A Cfd Model for Prediction of Critical Electric Potential Preventing Membrane Fouling in Oily Waste Water Treatment. J. Membr. Sci. 2017, 539, 320–328. [Google Scholar] [CrossRef]
- Yan, X.; Wu, Q.; Sun, J.; Liang, P.; Zhang, X.; Xiao, K.; Huang, X. Hydrodynamic Optimization of Membrane Bioreactor by Horizontal Geometry Modification Using Computational Fluid Dynamics. Bioresour. Technol. 2016, 200, 328–334. [Google Scholar] [CrossRef]
- Salafi, M.; Asasian-Kolur, N.; Sharifian, S.; Ghadimi, A. A Flat-Plate Spiral-Channeled Membrane Heat Exchanger for Methane Dehumidification: Comparison of Kraft Paper and Thin-Film Composite Membrane. Int. J. Therm. Sci. 2021, 167, 107046. [Google Scholar] [CrossRef]
- Asasian-Kolur, N.; Sharifian, S.; Haddadi, B.; Pourhoseinian, M.; Mousazadeh Shekarbaghani, Z.; Harasek, M. Membrane-Based Enthalpy Exchangers for Coincident Sensible and Latent Heat Recovery. Energy Convers. Manag. 2022, 253, 115144. [Google Scholar] [CrossRef]
- Jahed Mogharrab, A.; Sharifian, S.; Asasian-Kolur, N.; Ghadimi, A.; Haddadi, B.; Harasek, M. Air-to-Air Heat and Moisture Recovery in a Plate-Frame Exchanger Using Composite and Asymmetric Membranes. Membranes 2022, 12, 484. [Google Scholar] [CrossRef]
- Damak, K.; Ayadi, A.; Zeghmati, B.; Schmitz, P. A New Navier-Stokes and Darcy’s Law Combined Model for Fluid Flow in Crossflow Filtration Tubular Membranes. Desalination 2004, 161, 67–77. [Google Scholar] [CrossRef]
- Kahrizi, M.; Lin, J.Y.; Ji, G.Z.; Kong, L.X.; Song, C.W.; Dumee, L.F.; Sahebi, S.; Zhao, S.F. Relating Forward Water and Reverse Salt Fluxes to Membrane Porosity and Tortuosity in Forward Osmosis: CFD Modelling. Sep. Purif. Technol. 2020, 241, 116727. [Google Scholar] [CrossRef]
- Liu, J.X.; Liu, Z.J.; Xu, X.F.; Wei, W.; Wang, X.J.; Liu, F.X. Numerical Investigation of the Membrane Fouling During Microfiltration of Semiconductor Wastewater. Desalination Water Treat. 2016, 57, 4756–4768. [Google Scholar]
- Chan, F.S.; Tan, C.K.; Ratnayake, P.; Junaidi, M.U.M.; Liang, Y.Y. Reduced-Order Modelling of Concentration Polarization with Varying Permeation: Analysis of Electro-Osmosis in Membranes. Desalination 2020, 495, 114677. [Google Scholar] [CrossRef]
- Lim, S.Y.; Liang, Y.Y.; Weihs, G.A.F.; Wiley, D.E.; Fletcher, D.F. A CFD Study on the Effect of Membrane Permeance on Permeate Flux Enhancement Generated by Unsteady Slip Velocity. J. Membr. Sci. 2018, 556, 138–145. [Google Scholar] [CrossRef]
- Cui, Z.; Wang, J.; Zhang, H.; Ngo, H.H.; Jia, H.; Guo, W.; Gao, F.; Yang, G.; Kang, D. Investigation of Backwashing Effectiveness in Membrane Bioreactor (MBR) Based on Different Membrane Fouling Stages. Bioresour. Technol. 2018, 269, 355–362. [Google Scholar] [CrossRef]
- Shirazi, M.M.A.; Kargari, A.; Ismail, A.F.; Matsuura, T. Computational Fluid Dynamic (CFD) Opportunities Applied to the Membrane Distillation Process: State-of-the-Art and Perspectives. Desalination 2016, 377, 73–90. [Google Scholar] [CrossRef]
- Zhang, Y.G.; Peng, Y.L.; Ji, S.L.; Wang, S.B. Numerical Simulation of 3d Hollow-Fiber Vacuum Membrane Distillation by Computational Fluid Dynamics. Chem. Eng. Sci. 2016, 152, 172–185. [Google Scholar] [CrossRef]
- Pourhoseinian, M.; Asasian-Kolur, N.; Sharifian, S. CFD Investigation of Heat and Moisture Recovery from Air with Membrane Heat Exchanger. Appl. Therm. Eng. 2021, 191, 116911. [Google Scholar] [CrossRef]
- Schwaller, C.; Fokkens, K.; Helmreich, B.; Drewes, J.E. CFD Simulations of Flow Fields During Ultrafiltration: Effects of Hydrodynamic Strain Rates with and without a Particle Cake Layer on the Permeation of Mobile Genetic Elements. Chem. Eng. Sci. 2022, 254, 117606. [Google Scholar] [CrossRef]
- Rahimi, M.; Madaeni, S.S.; Abbasi, K. CFD Modeling of Permeate Flux in Cross-Flow Microfiltration Membrane. J. Membr. Sci. 2005, 255, 23–31. [Google Scholar] [CrossRef]
- Lou, J.; Vanneste, J.; DeCaluwe, S.C.; Cath, T.Y.; Tilton, N. Computational Fluid Dynamics Simulations of Polarization Phenomena in Direct Contact Membrane Distillation. J. Membr. Sci. 2019, 591, 117150. [Google Scholar] [CrossRef]
- Afsari, M.; Ghorbani, A.H.; Asghari, M.; Shon, H.K.; Tijing, L.D. Computational Fluid Dynamics Simulation Study of Hypersaline Water Desalination Via Membrane Distillation: Effect of Membrane Characteristics and Operational Parameters. Chemosphere 2022, 305, 135294. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.Y.; Chapman, M.B.; Weihs, G.A.F.; Wiley, D.E. CFD Modelling of Electro-Osmotic Permeate Flux Enhancement on the Feed Side of a Membrane Module. J. Membr. Sci. 2014, 470, 378–388. [Google Scholar] [CrossRef]
- Yang, M.; Wei, Y.; Zheng, X.; Wang, F.; Yuan, X.; Liu, J.; Luo, N.; Xu, R.; Yu, D.; Fan, Y. CFD Simulation and Optimization of Membrane Scouring and Nitrogen Removal for an Airlift External Circulation Membrane Bioreactor. Bioresour. Technol. 2016, 219, 566–575. [Google Scholar] [CrossRef]
- Qamar, A.; Bucs, S.; Picioreanu, C.; Vrouwenvelder, J.; Ghaffour, N. Hydrodynamic Flow Transition Dynamics in a Spacer Filled Filtration Channel Using Direct Numerical Simulation. J. Membr. Sci. 2019, 590, 117264. [Google Scholar] [CrossRef]
- El Kadi, K.; Adeyemi, I.; Janajreh, I. Application of Directional Freezing for Seawater Desalination: Parametric Analysis Using Experimental and Computational Methods. Desalination 2021, 520, 115339. [Google Scholar] [CrossRef]
- Tsai, H.Y.; Huang, A.; Soesanto, J.F.; Luo, Y.L.; Hsu, T.Y.; Chen, C.H.; Hwang, K.J.; Ho, C.D.; Tung, K.L. 3d Printing Design of Turbulence Promoters in a Cross-Flow Microfiltration System for Fine Particles Removal. J. Membr. Sci. 2019, 573, 647–656. [Google Scholar] [CrossRef]
- Radu, A.I.; Vrouwenvelder, J.S.; van Loosdrecht, M.C.M.; Picioreanu, C. Modeling the Effect of Biofilm Formation on Reverse Osmosis Performance: Flux, Feed Channel Pressure Drop and Solute Passage. J. Membr. Sci. 2010, 365, 1–15. [Google Scholar] [CrossRef]
- Shang, W.T.; Li, X.Y.; Liu, W.J.; Yue, S.F.; Li, M.; von Eiff, D.; Sun, F.Y.; An, A.K. Effective Suppression of Concentration Polarization by Nanofiltration Membrane Surface Pattern Manipulation: Numerical Modeling Based on Lif Visualization. J. Membr. Sci. 2021, 622, 119021. [Google Scholar] [CrossRef]
- Pankaj, S.; Sajikumar, N.; Kaimal, R. Simulation of Forward Osmosis Using CFD. Procedia Technol. 2016, 24, 70–76. [Google Scholar] [CrossRef]
- Guan, K.; Liu, Y.; Yin, X.Q.; Zhu, W.Y.; Chu, Y.H.; Peng, C.; Lv, M.; Sun, Q.; Rao, P.G.; Wu, J.Q. Influence of Operation Conditions on Cake Structure in Dead-End Membrane Filtration: Monte Carlo Simulations and a Force Model. Chem. Eng. Res. Des. 2017, 124, 124–133. [Google Scholar] [CrossRef]
- Chen, Y.B.; Kim, H. Monte Carlo Simulation of Pore Blocking and Cake Formation by Interfacial Interactions During Membrane Filtration. Desalination 2008, 233, 258–266. [Google Scholar] [CrossRef]
- Chen, Y.; Hu, X.; Kim, H. Monte Carlo Simulation of Pore Blocking Phenomena in Cross-Flow Microfiltration. Water Res. 2011, 45, 6789–6797. [Google Scholar] [CrossRef]
- Kawakatsu, T.; Nakajima, M.; Nakao, S.I.; Kimura, S. Three-Dimensional Simulation of Random Packing and Pore Blocking Phenomena During Microfiltration. Desalination 1995, 101, 203–209. [Google Scholar] [CrossRef]
- Petrosino, F.; Hallez, Y.; De Luca, G.; Curcio, S. Osmotic Pressure and Transport Coefficient in Ultrafiltration: A Monte Carlo Study Using Quantum Surface Charges. Chem. Eng. Sci. 2020, 224, 115762. [Google Scholar] [CrossRef]
- Khayet, M.; Cojocaru, C. Artificial Neural Network Modeling and Optimization of Desalination by Air Gap Membrane Distillation. Sep. Purif. Technol. 2012, 86, 171–182. [Google Scholar] [CrossRef]
- Xu, C.; Chen, Y. Understanding Water and Solute Transport in Thin Film Nanocomposite Membranes by Resistance-in-Series Theory Combined with Monte Carlo Simulation. J. Membr. Sci. 2021, 626, 119106. [Google Scholar] [CrossRef]
- Ulbricht, M. Advanced Functional Polymer Membranes. Polymer 2006, 47, 2217–2262. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Gabinet, U.R.; Ritt, C.L.; Feng, X.; Deshmukh, A.; Kawabata, K.; Kaneda, M.; Hashmi, S.M.; Osuji, C.O.; Elimelech, M. Relating Selectivity and Separation Performance of Lamellar Two-Dimensional Molybdenum Disulfide (MoS2) Membranes to Nanosheet Stacking Behavior. Environ. Sci. Technol. 2020, 54, 9640–9651. [Google Scholar] [CrossRef]
- Ritt, C.L.; Werber, J.R.; Deshmukh, A.; Elimelech, M. Monte Carlo Simulations of Framework Defects in Layered Two Dimensional Nanomaterial Desalination Membranes: Implications for Permeability and Selectivity. Environ. Sci. Technol. 2019, 53, 6214–6224. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Tang, Z.; Yang, H.; Li, X.; Yu, X.; Wang, Z.; Huang, T.; Tang, C.Y. Dissecting the Role of Membrane Defects with Low-Energy Barrier on Fouling Development through a Collision Attachment-Monte Carlo Approach. J. Membr. Sci. 2022, 663, 120981. [Google Scholar] [CrossRef]
- Khayet, M.; Imdakm, A.O.; Matsuura, T. Monte Carlo Simulation and Experimental Heat and Mass Transfer in Direct Contact Membrane Distillation. Int. J. Heat Mass Transfer 2010, 53, 1249–1259. [Google Scholar] [CrossRef]
- Imdakm, A.O.; Khayet, M.; Matsuura, T. A Monte Carlo Simulation Model for Vacuum Membrane Distillation Process. J. Membr. Sci. 2007, 306, 341–348. [Google Scholar] [CrossRef]
- Seminario, L.; Rozas, R.; Bórquez, R.; Toledo, P.G. Pore Blocking and Permeability Reduction in Cross-Flow Microfiltration. J. Membr. Sci. 2002, 209, 121–142. [Google Scholar] [CrossRef]
- Yoon, S.H.; Lee, C.H.; Kim, K.J.; Fane, A.G. Three-Dimensional Simulation of the Deposition of Multi-Dispersed Charged Particles and Prediction of Resulting Flux During Cross-Flow Microfiltration. J. Membr. Sci. 1999, 161, 7–20. [Google Scholar] [CrossRef]
- Boyle, P.M.; Houchens, B.C.; Kim, A.S. Simulation of Colloidal Fouling by Coupling a Dynamically Updating Velocity Profile and Electric Field Interactions with Force Bias Monte Carlo Methods for Membrane Filtration. J. Colloid Interface Sci. 2013, 399, 77–86. [Google Scholar] [CrossRef]
- Guadix, A.; Zapata, J.E.; Almecija, M.C.; Guadix, E.M. Predicting the Flux Decline in Milk Cross-Flow Ceramic Ultrafiltration by Artificial Neural Networks. Desalination 2010, 250, 1118–1120. [Google Scholar] [CrossRef]
- Corbaton-Baguena, M.J.; Vincent-Vela, M.C.; Gozalvez-Zafrilla, J.M.; Alvarez-Blanco, S.; Lora-Garcia, J.; Catalan-Martinez, D. Comparison between Artificial Neural Networks and Hermia’s Models to Assess Ultrafiltration Performance. Sep. Purif. Technol. 2016, 170, 434–444. [Google Scholar] [CrossRef] [Green Version]
- Madaeni, S.S.; Hasankiadeh, N.T.; Kurdian, A.R.; Rahimpour, A. Modeling and Optimization of Membrane Fabrication Using Artificial Neural Network and Genetic Algorithm. Sep. Purif. Technol. 2010, 76, 33–43. [Google Scholar] [CrossRef]
- Barello, M.; Manca, D.; Patel, R.; Mujtaba, I.M. Neural Network Based Correlation for Estimating Water Permeability Constant in RO Desalination Process under Fouling. Desalination 2014, 345, 101–111. [Google Scholar] [CrossRef]
- Chellam, S. Artificial Neural Network Model for Transient Crossflow Microfiltration of Polydispersed Suspensions. J. Membr. Sci. 2005, 258, 35–42. [Google Scholar] [CrossRef]
- Mirbagheri, S.A.; Bagheri, M.; Bagheri, Z.; Kamarkhani, A.M. Evaluation and Prediction of Membrane Fouling in a Submerged Membrane Bioreactor with Simultaneous Upward and Downward Aeration Using Artificial Neural Network-Genetic Algorithm. Process. Saf. Environ. Prot. 2015, 96, 111–124. [Google Scholar] [CrossRef]
- Razavi, M.A.; Mortazavi, A.; Mousavi, M. Application of Neural Networks for Crossflow Milk Ultrafiltration Simulation. Int. Dairy J. 2004, 14, 69–80. [Google Scholar] [CrossRef]
- Purkait, M.K.; Kumar, V.D.; Maity, D. Treatment of Leather Plant Effluent Using Nf Followed by Ro and Permeate Flux Prediction Using Artificial Neural Network. Chem. Eng. J. 2009, 151, 275–285. [Google Scholar] [CrossRef]
- Aish, A.M.; Zaqoot, H.A.; Abdeljawad, S.M. Artificial Neural Network Approach for Predicting Reverse Osmosis Desalination Plants Performance in the Gaza Strip. Desalination 2015, 367, 240–247. [Google Scholar] [CrossRef]
- Roehl, E.A.; Ladner, D.A.; Daamen, R.C.; Cook, J.B.; Safarik, J.; Phipps, D.W.; Xie, P. Modeling Fouling in a Large RO System with Artificial Neural Networks. J. Membr. Sci. 2018, 552, 95–106. [Google Scholar] [CrossRef]
- Park, S.; Baek, S.S.; Pyo, J.; Pachepsky, Y.; Park, J.; Cho, K.H. Deep Neural Networks for Modeling Fouling Growth and Flux Decline During NF/RO Membrane Filtration. J. Membr. Sci. 2019, 587, 117164. [Google Scholar] [CrossRef]
- Khaouane, L.; Ammi, Y.; Hanini, S. Modeling the Retention of Organic Compounds by Nanofiltration and Reverse Osmosis Membranes Using Bootstrap Aggregated Neural Networks. Arab. J. Sci. Eng. 2017, 42, 1443–1453. [Google Scholar] [CrossRef]
- Hu, J.H.; Kim, C.S.; Halasz, P.; Kim, J.F.; Kim, J.; Szekely, G. Artificial Intelligence for Performance Prediction of Organic Solvent Nanofiltration Membranes. J. Membr. Sci. 2021, 619, 118513. [Google Scholar] [CrossRef]
- Peleato, N.M.; Legge, R.L.; Andrews, R.C. Continuous Organic Characterization for Biological and Membrane Filter Performance Monitoring. J. Am. Water Work. Assoc. 2017, 109, E86–E98. [Google Scholar] [CrossRef]
- Chew, C.M.; Aroua, M.K.; Hussain, M.A. A Practical Hybrid Modelling Approach for the Prediction of Potential Fouling Parameters in Ultrafiltration Membrane Water Treatment Plant. J. Ind. Eng. Chem. 2017, 45, 145–155. [Google Scholar] [CrossRef]
- Nandi, B.K.; Moparthi, A.; Uppaluri, R.; Purkait, M.K. Treatment of Oily Wastewater Using Low Cost Ceramic Membrane: Comparative Assessment of Pore Blocking and Artificial Neural Network Models. Chem. Eng. Res. Des. 2010, 88, 881–892. [Google Scholar] [CrossRef]
- Ghandehari, S.; Montazer-Rahmati, M.M.; Asghari, M. A Comparison between Semi-Theoretical and Empirical Modeling of Cross-Flow Microfiltration Using ANN. Desalination 2011, 277, 348–355. [Google Scholar] [CrossRef]
- Viet, N.D.; Jang, A. Development of Artificial Intelligence-Based Models for the Prediction of Filtration Performance and Membrane Fouling in an Osmotic Membrane Bioreactor. J. Environ. Chem. Eng. 2021, 9, 105337. [Google Scholar] [CrossRef]
- Zhao, Z.T.; Lou, Y.; Chen, Y.F.; Lin, H.J.; Li, R.J.; Yu, G.Y. Prediction of Interfacial Interactions Related with Membrane Fouling in a Membrane Bioreactor Based on Radial Basis Function Artificial Neural Network (ANN). Bioresour. Technol. 2019, 282, 262–268. [Google Scholar] [CrossRef]
- Mittal, S.; Gupta, A.; Srivastava, S.; Jain, M. Artificial Neural Network Based Modeling of the Vacuum Membrane Distillation Process: Effects of Operating Parameters on Membrane Fouling. Chem. Eng. Process. 2021, 164, 108403. [Google Scholar] [CrossRef]
Membranes | Aims | Highlights | References |
---|---|---|---|
RO |
|
| [91] |
|
| [96] | |
|
| [97] | |
|
| [98] | |
NF |
|
| [99] |
|
| [100] | |
UF |
|
| [101] |
|
| [102] | |
MF |
|
| [103,104] |
MBR |
|
| [105] |
|
| [106] | |
MD |
|
| [77] |
|
| [107] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Yu, X.; Liu, J.; Tang, Z.; Huang, T.; Wang, Z.; Zhong, Q.; Long, Z.; Wang, L. A Concise Review of Theoretical Models and Numerical Simulations of Membrane Fouling. Water 2022, 14, 3537. https://doi.org/10.3390/w14213537
Yang H, Yu X, Liu J, Tang Z, Huang T, Wang Z, Zhong Q, Long Z, Wang L. A Concise Review of Theoretical Models and Numerical Simulations of Membrane Fouling. Water. 2022; 14(21):3537. https://doi.org/10.3390/w14213537
Chicago/Turabian StyleYang, Haiyan, Xuri Yu, Junxia Liu, Zhiwei Tang, Tianyi Huang, Zhihong Wang, Qiyun Zhong, Zhihong Long, and Lin Wang. 2022. "A Concise Review of Theoretical Models and Numerical Simulations of Membrane Fouling" Water 14, no. 21: 3537. https://doi.org/10.3390/w14213537
APA StyleYang, H., Yu, X., Liu, J., Tang, Z., Huang, T., Wang, Z., Zhong, Q., Long, Z., & Wang, L. (2022). A Concise Review of Theoretical Models and Numerical Simulations of Membrane Fouling. Water, 14(21), 3537. https://doi.org/10.3390/w14213537