Ambient-Visible-Light-Mediated Enhanced Degradation of UV Stabilizer Bis(4-hydroxyphenyl)methanone by Nanosheet-Assembled Cobalt Titanium Oxide: A Comparative and DFT-Assisted Investigation
Abstract
1. Introduction
2. Experimental
3. Results and Discussions
3.1. Physical and Chemical Properties of CTO
3.2. Degradation of BHPM and Decomposition of Oxone by CTO
3.3. Influence of Catalysts/Oxone Dosages on BHPM Elimination
3.4. Influences of Temperature and pH to BHPM Elimination
3.5. Reusability of CTO for Degradation of BHPM
3.6. Mechanistic Insights into BHPM Elimination by CTO-Activated Oxone
3.7. Possible BHPM Degradation Pathways and Computational Calculation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Pintado-Herrera, M.G.; Lara-Martín, P.A.; González-Mazo, E.; Allan, I.J. Determination of silicone rubber and low-density polyethylene diffusion and polymer/water partition coefficients for emerging contaminants. Environ. Toxicol. Chem. 2016, 35, 2162–2172. [Google Scholar] [CrossRef] [PubMed]
- Tsui, M.M.P.; Leung, H.W.; Wai, T.-C.; Yamashita, N.; Taniyasu, S.; Liu, W.; Lam, P.K.S.; Murphy, M.B. Occurrence, distribution and ecological risk assessment of multiple classes of UV filters in surface waters from different countries. Water Res. 2014, 67, 55–65. [Google Scholar] [CrossRef] [PubMed]
- Parker, D.; Bussink, J.; van de Grampel, H.T.; Wheatley, G.W.; Dorf, E.-U.; Ostlinning, E.; Reinking, K. Polymers, High-Temperature. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH: Hoboken, NJ, USA, 1914. [Google Scholar]
- Eddine, A.N.; von Kries, J.P.; Podust, M.V.; Warrier, T.; Kaufmann, S.H.E.; Podust, L.M. X-ray Structure of 4,4′-Dihydroxybenzophenone Mimicking Sterol Substrate in the Active Site of Sterol 14α-Demethylase (CYP51)*♦. J. Biol. Chem. 2008, 283, 15152–15159. [Google Scholar] [CrossRef] [PubMed]
- Fast, S.A.; Gude, V.G.; Truax, D.D.; Martin, J.; Magbanua, B.S. A Critical Evaluation of Advanced Oxidation Processes for Emerging Contaminants Removal. Environ. Process. 2017, 4, 283–302. [Google Scholar] [CrossRef]
- Andrew Lin, K.-Y.; Hsu, F.-K.; Lee, W.-D. Magnetic cobalt-graphene nanocomposite derived from self-assembly of MOFs with graphene oxide as an activator for peroxymonosulfate. J. Mater. Chem. A 2015, 3, 9480–9490. [Google Scholar] [CrossRef]
- Li, M.-C.; Ghanbari, F.; Chang, F.-C.; Hu, C.; Lin, K.-Y.A.; Du, Y. Enhanced degradation of 5-sulfosalicylic acid using peroxymonosulfate activated by ordered porous silica-confined Co3O4 prepared via a solvent-free confined space strategy. Sep. Purif. Technol. 2020, 249, 116972. [Google Scholar] [CrossRef]
- Trang, N.H.; Kwon, E.; Lisak, G.; Hu, C.; Andrew Lin, K.-Y. Cobalt ferrite nanoparticle-loaded nitrogen-doped carbon sponge as a magnetic 3D heterogeneous catalyst for monopersulfate-based oxidation of salicylic acid. Chemosphere 2021, 267, 128906. [Google Scholar] [CrossRef]
- Yang, Q.; Choi, H.; Al-Abed, S.R.; Dionysiou, D.D. Iron–cobalt mixed oxide nanocatalysts: Heterogeneous peroxymonosulfate activation, cobalt leaching, and ferromagnetic properties for environmental applications. Appl. Catal. B Environ. 2009, 88, 462–469. [Google Scholar] [CrossRef]
- Cai, C.; Zhang, H.; Zhong, X.; Hou, L. Ultrasound enhanced heterogeneous activation of peroxymonosulfate by a bimetallic Fe–Co/SBA-15 catalyst for the degradation of Orange II in water. J. Hazard. Mater. 2015, 283, 70–79. [Google Scholar] [CrossRef]
- Anipsitakis, G.P.; Stathatos, E.; Dionysiou, D.D. Heterogeneous Activation of Oxone Using Co3O4. J. Phys. Chem. B 2005, 109, 13052–13055. [Google Scholar] [CrossRef]
- Tuan, D.D.; Hu, C.; Kwon, E.; Du, Y.; Lin, K.-Y.A. Coordination polymer-derived porous Co3O4 nanosheet as an effective catalyst for activating peroxymonosulfate to degrade sulfosalicylic acid. Appl. Surf. Sci. 2020, 532, 147382. [Google Scholar] [CrossRef]
- Chen, X.; van Gog, H.; van Huis, M.A. Transformation of Co3O4 nanoparticles to CoO monitored by in situ TEM and predicted ferromagnetism at the Co3O4/CoO interface from first principles. J. Mater. Chem. C 2021, 9, 5662–5675. [Google Scholar] [CrossRef]
- Chen, X.; Chen, J.; Qiao, X.; Wang, D.; Cai, X. Performance of nano-Co3O4/peroxymonosulfate system: Kinetics and mechanism study using Acid Orange 7 as a model compound. Appl. Catal. B 2008, 80, 116–121. [Google Scholar] [CrossRef]
- Guan, Z.-Y.; Kwon, E.; Lee, J.; Lin, Y.-F.; Lin, K.-Y.A. Electrospun cobalt ferrite nanofiber as a magnetic and effective heterogeneous catalyst for activating peroxymonosulfate to degrade sulfosalicylic acid. Sep. Purif. Technol. 2021, 259, 118163. [Google Scholar] [CrossRef]
- Yun, W.-C.; Lin, K.-Y.A.; Tong, W.-C.; Lin, Y.-F.; Du, Y. Enhanced degradation of paracetamol in water using sulfate radical-based advanced oxidation processes catalyzed by 3-dimensional Co3O4 nanoflower. Chem. Eng. J. 2019, 373, 1329–1337. [Google Scholar] [CrossRef]
- Sun, H.; Ullah, R.; Chong, S.; Ang, H.M.; Tadé, M.O.; Wang, S. Room-light-induced indoor air purification using an efficient Pt/N-TiO2 photocatalyst. Appl. Catal. B 2011, 108, 127–133. [Google Scholar] [CrossRef]
- Matalkeh, M.; Nasrallah, G.K.; Shurrab, F.M.; Al-Absi, E.S.; Mohammed, W.; Elzatahry, A.; Saoud, K.M. Visible Light Photocatalytic Activity of Ag/WO3 Nanoparticles and its Antibacterial Activity Under Ambient Light and in The Dark. Results Eng. 2022, 13, 100313. [Google Scholar] [CrossRef]
- Rahimi-Nasrabadi, M.; Ghaderi, A.; Banafshe, H.R.; Eghbali-Arani, M.; Akbari, M.; Ahmadi, F.; Pourmasoud, S.; Sobhani-Nasab, A. Preparation of Co2TiO4/CoTiO3/Polyaniline ternary nano-hybrids for enhanced destruction of agriculture poison and organic dyes under visible-light irradiation. J. Mater. Sci. Mater. Electron. 2019, 30, 15854–15868. [Google Scholar] [CrossRef]
- Ramezani, M.; Hosseinpour-Mashkani, S.M. Controlled Synthesis, Characterization, and Photocatalytic Application of Co2TiO4 Nanoparticles. J. Electron. Mater. 2017, 46, 1371–1377. [Google Scholar] [CrossRef]
- Zhang, L.; Yu, J.C.; Yip, H.Y.; Li, Q.; Kwong, K.W.; Xu, A.-W.; Wong, P.K. Ambient Light Reduction Strategy to Synthesize Silver Nanoparticles and Silver-Coated TiO2 with Enhanced Photocatalytic and Bactericidal Activities. Langmuir 2003, 19, 10372–10380. [Google Scholar] [CrossRef]
- Andrew Lin, K.-Y.; Zhang, Z.-Y. α-Sulfur as a metal-free catalyst to activate peroxymonosulfate under visible light irradiation for decolorization. RSC Adv. 2016, 6, 15027–15034. [Google Scholar] [CrossRef]
- Lin, K.-Y.A.; Zhang, Z.-Y. Metal-free activation of Oxone using one-step prepared sulfur-doped carbon nitride under visible light irradiation. Sep. Purif. Technol. 2017, 173, 72–79. [Google Scholar] [CrossRef]
- Zhang, M.-W.; Lin, K.-Y.A.; Huang, C.-F.; Tong, S. Enhanced degradation of toxic azo dye, amaranth, in water using Oxone catalyzed by MIL-101-NH2 under visible light irradiation. Sep. Purif. Technol. 2019, 227, 115632. [Google Scholar] [CrossRef]
- Guo, X.; Liang, J.; Wang, L.; Feng, Z.; Yu, T.; Zhang, Z.; Shao, Y.; Hao, C.; Li, G. Synthesis of Cobalt–Glycerate hierarchical structure and their conversion into hierarchical CoP nanospheres for the hydrogen evolution reaction. Int. J. Hydrogen Energy 2018, 43, 2034–2042. [Google Scholar] [CrossRef]
- Yang, Z.K.; Song, L.X.; Teng, Y.; Xia, J. Ethylenediamine-modulated synthesis of highly monodisperse copper sulfide microflowers with excellent photocatalytic performance. J. Mater. Chem. A 2014, 2, 20004–20009. [Google Scholar] [CrossRef]
- Lai, H.-K.; Chou, Y.-Z.; Lee, M.-H.; Lin, K.-Y.A. Coordination polymer-derived cobalt nanoparticle-embedded carbon nanocomposite as a magnetic multi-functional catalyst for energy generation and biomass conversion. Chem. Eng. J. 2018, 332, 717–726. [Google Scholar] [CrossRef]
- Lin, K.-Y.A.; Chang, H.-A.; Chen, R.-C. MOF-derived magnetic carbonaceous nanocomposite as a heterogeneous catalyst to activate oxone for decolorization of Rhodamine B in water. Chemosphere 2015, 130, 66–72. [Google Scholar] [CrossRef]
- Khiem, T.C.; Tuan, D.D.; Kwon, E.; Thanh, B.X.; Tsang, Y.F.; Munagapati, V.S.; Wen, J.-C.; Hu, C.; Lin, K.-Y. Hollow and Oval-Configured Ultrafine Co3O4 as a Highly-Efficient Activator of Monopersulfate for Catalytic Elimination of Azorubin S. Sustain. Environ. Res. 2022. [Google Scholar] [CrossRef]
- Liu, W.-J.; Kwon, E.; Huy, N.N.; Khiem, T.C.; Lisak, G.; Wi-Afedzi, T.; Wu, C.-C.; Ghanbari, F.; Lin, K.-Y.A. Facilely-prepared sulfide-doped Co3O4 nanocomposite as a boosted catalyst for activating Oxone to degrade a sunscreen agent. J. Taiwan Inst. Chem. Eng. 2022, 133, 104253. [Google Scholar] [CrossRef]
- Shafiee, M.R.M.; Parhizkar, J.; Radfar, S. Removal of Rhodamine B by g-C3N4/Co3O4/MWCNT composite stabilized in hydrogel via the synergy of adsorption and photocatalysis under visible light. J. Mater. Sci. Mater. Electron. 2019, 30, 12475–12486. [Google Scholar] [CrossRef]
- Tai, J.Y.; Leong, K.H.; Saravanan, P.; Aziz, A.A.; Sim, L.C. Dopant-free oxygen-rich titanium dioxide: LED light-induced photocatalysis and mechanism insight. J. Mater. Sci. 2017, 52, 11630–11642. [Google Scholar] [CrossRef]
- Kaewkam, P.; Kanchanapaetnukul, A.; Khamyan, J.; Phadmanee, N.; Lin, K.-Y.A.; Kobwittaya, K.; Sirivithayapakorn, S. UV-assisted TiO2 photocatalytic degradation of virgin LDPE films: Effect of UV-A, UV-C, and TiO2. J. Environ. Chem. Eng. 2022, 10, 108131. [Google Scholar] [CrossRef]
- Ningsih, L.A.; Yoshida, M.; Sakai, A.; Lin, K.-Y.A.; Wu, K.C.; Catherine, H.N.; Ahamad, T.; Hu, C. Ag-modified TiO2/SiO2/Fe3O4 sphere with core-shell structure for photo-assisted reduction of 4-nitrophenol. Environ. Res. 2022, 214, 113690. [Google Scholar] [CrossRef]
- Khanahmadzadeh, S.; Enhessari, M.; Solati, Z.; Mohebalizadeh, A.; Alipouramjad, A. Synthesis, characterization and optical band gap of the Co2TiO4 nanoparticles. Mater. Sci. Semicond. Process. 2015, 31, 599–603. [Google Scholar] [CrossRef]
- Jiang, Z.; Lu, W.; Li, Z.; HO, K.H.; Li, X.; Jiao, X.; Chen, D. Synthesis of amorphous cobalt sulfide polyhedral nanocages for high performance supercapacitors. J. Mater. Chem. A 2014, 2, 8603–8606. [Google Scholar] [CrossRef]
- Li, Y.; Li, F.-M.; Meng, X.-Y.; Li, S.-N.; Zeng, J.-H.; Chen, Y. Ultrathin Co3O4 Nanomeshes for the Oxygen Evolution Reaction. ACS Catal. 2018, 8, 1913–1920. [Google Scholar] [CrossRef]
- Hu, P.D.; Long, M.C. Cobalt-catalyzed sulfate radical-based advanced oxidation: A review on heterogeneous catalysts and applications. Appl. Catal. B-Environ. 2016, 181, 103–117. [Google Scholar] [CrossRef]
- Thota, S.; Reehuis, M.; Maljuk, A.; Hoser, A.; Hoffmann, J.U.; Weise, B.; Waske, A.; Krautz, M.; Joshi, D.; Nayak, S.; et al. Neutron diffraction study of the inverse spinels Co2 TiO4 and Co2 SnO4. Phys. Rev. B 2017, 96, 144104. [Google Scholar] [CrossRef]
- Yan, S.C.; Li, Z.S.; Zou, Z.G. Photodegradation of Rhodamine B and Methyl Orange over Boron-Doped g-C3N4 under Visible Light Irradiation. Langmuir 2010, 26, 3894–3901. [Google Scholar] [CrossRef]
- Chen, X.; Wang, W.; Xiao, H.; Hong, C.; Zhu, F.; Yao, Y.; Xue, Z. Accelerated TiO2 photocatalytic degradation of Acid Orange 7 under visible light mediated by peroxymonosulfate. Chem. Eng. J. 2012, 193, 290–295. [Google Scholar] [CrossRef]
- Othman, I.; Hisham Zain, J.; Abu Haija, M.; Banat, F. Catalytic activation of peroxymonosulfate using CeVO4 for phenol degradation: An insight into the reaction pathway. Appl. Catal. B 2020, 266, 118601. [Google Scholar] [CrossRef]
- Tang, W.; Zhang, Y.; Guo, H.; Liu, Y. Heterogeneous activation of peroxymonosulfate for bisphenol AF degradation with BiOI0.5Cl0.5. RSC Adv. 2019, 9, 14060–14071. [Google Scholar] [CrossRef]
- Guo, S.; Zhang, L.; Chen, M.; Ahmad, F.; Fida, H.; Zhang, H. Heterogeneous Activation of Peroxymonosulfate by a Spinel CoAl2O4 Catalyst for the Degradation of Organic Pollutants. Catalysts 2022, 12, 847. [Google Scholar] [CrossRef]
- Liu, W.-J.; Park, Y.-K.; Chen, W.-H.; Bui, H.M.; Munagapati, V.S.; Tuan, D.D.; Wen, J.-C.; You, S.; Da Oh, W.; Lin, K.-Y.A. Highly-efficient degradation of ensulizole using monopersulfate activated by nanostructured cobalt oxide: A comparative study on effects of different nanostructures. J. Environ. Chem. Eng. 2022, 10, 107137. [Google Scholar] [CrossRef]
- Yin, J.-Y.; Oh, W.D.; Kwon, E.; Thanh, B.X.; You, S.; Wang, H.; Lin, K.-Y.A. Cobalt sulfide nanofilm-assembled cube as an efficient catalyst for activating monopersulfate to degrade UV filter, 4,4′-dihydroxybenzophenone, in water. Colloids Surf. A Physicochem. Eng. Asp. 2021, 625, 126891. [Google Scholar] [CrossRef]
- Lin, K.-Y.A.; Lin, J.-T.; Jochems, A.P. Oxidation of amaranth dye by persulfate and peroxymonosulfate activated by ferrocene. J. Chem. Technol. Biotechnol. 2017, 92, 163–172. [Google Scholar] [CrossRef]
- Lin, K.-Y.A.; Lin, T.-Y. Degradation of Acid Azo Dyes Using Oxone Activated by Cobalt Titanate Perovskite. Water Air Soil Pollut. 2017, 229, 10. [Google Scholar] [CrossRef]
- Lin, K.-Y.A.; Lin, J.-T.; Lin, Y.-F. Heterogeneous catalytic activation of percarbonate by ferrocene for degradation of toxic amaranth dye in water. J. Taiwan Inst. Chem. Eng. 2017, 78, 144–149. [Google Scholar] [CrossRef]
- Tan, C.; Gao, N.; Deng, Y.; Deng, J.; Zhou, S.; Li, J.; Xin, X. Radical induced degradation of acetaminophen with Fe3O4 magnetic nanoparticles as heterogeneous activator of peroxymonosulfate. J. Hazard. Mater. 2014, 276, 452–460. [Google Scholar] [CrossRef]
- Imamović, B.; Trebše, P.; Omeragić, E.; Bečić, E.; Pečet, A.; Dedić, M. Stability and Removal of Benzophenone-Type UV Filters from Water Matrices by Advanced Oxidation Processes. Molecules 2022, 27, 1874. [Google Scholar] [CrossRef]
- Kang, S.; Hwang, J. CoMn2O4 embedded hollow activated carbon nanofibers as a novel peroxymonosulfate activator. Chem. Eng. J. 2021, 406, 127158. [Google Scholar] [CrossRef]
- Guo, W.; Su, S.; Yi, C.; Ma, Z. Degradation of antibiotics amoxicillin by Co3O4-catalyzed peroxymonosulfate system. Environ. Prog. Sustain. Energy 2013, 32, 193–197. [Google Scholar] [CrossRef]
- Xu, L.J.; Chu, W.; Gan, L. Environmental application of graphene-based CoFe2O4 as an activator of peroxymonosulfate for the degradation of a plasticizer. Chem. Eng. J. 2015, 263, 435–443. [Google Scholar] [CrossRef]
- Liang, P.; Zhang, C.; Duan, X.; Sun, H.; Liu, S.; Tade, M.O.; Wang, S. An insight into metal organic framework derived N-doped graphene for the oxidative degradation of persistent contaminants: Formation mechanism and generation of singlet oxygen from peroxymonosulfate. Environ. Sci. Nano 2017, 4, 315–324. [Google Scholar] [CrossRef]
- Luo, R.; Li, M.; Wang, C.; Zhang, M.; Nasir Khan, M.A.; Sun, X.; Shen, J.; Han, W.; Wang, L.; Li, J. Singlet oxygen-dominated non-radical oxidation process for efficient degradation of bisphenol A under high salinity condition. Water Res. 2019, 148, 416–424. [Google Scholar] [CrossRef]
- Yang, S.; Wu, P.; Liu, J.; Chen, M.; Ahmed, Z.; Zhu, N. Efficient removal of bisphenol A by superoxide radical and singlet oxygen generated from peroxymonosulfate activated with Fe0-montmorillonite. Chem. Eng. J. 2018, 350, 484–495. [Google Scholar] [CrossRef]
- Hailili, R.; Wang, C.; Lichtfouse, E. Perovskite nanostructures assembled in molten salt based on halogen anions KX (X = F, Cl and Br): Regulated morphology and defect-mediated photocatalytic activity. Appl. Catal. B 2018, 232, 531–543. [Google Scholar] [CrossRef]
- Latch, D.E.; McNeill, K. Microheterogeneity of singlet oxygen distributions in irradiated humic acid solutions. Science 2006, 311, 1743–1747. [Google Scholar] [CrossRef]
- Waclawek, S.; Grubel, K.; Cernik, M. Simple spectrophotometric determination of monopersulfate. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 149, 928–933. [Google Scholar] [CrossRef]
- Tuan, D.D.; Kwon, E.; Phattarapattamawong, S.; Thanh, B.X.; Khiem, T.C.; Lisak, G.; Wang, H.; Lin, K.-Y.A. Nitrogen-containing carbon hollow nanocube-confined cobalt nanoparticle as a magnetic and efficient catalyst for activating monopersulfate to degrade a UV filter in water. J. Environ. Chem. Eng. 2022, 10, 106989. [Google Scholar] [CrossRef]
- Ma, J.; Feng, Y.; Yang, X.; Wu, Y.; Wang, S.; Zhang, C.; Shi, Q. Sulphate radical oxidation of benzophenone: Kinetics, mechanisms and influence of water matrix anions. Environ. Technol. 2021, 42, 4324–4332. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, P.-H.; Khiem, T.C.; Kwon, E.; Chang, H.-C.; Bui, H.M.; Duan, X.; Yang, H.; Ghotekar, S.; Chen, W.-H.; Tsai, Y.-C.; et al. Ambient-Visible-Light-Mediated Enhanced Degradation of UV Stabilizer Bis(4-hydroxyphenyl)methanone by Nanosheet-Assembled Cobalt Titanium Oxide: A Comparative and DFT-Assisted Investigation. Water 2022, 14, 3318. https://doi.org/10.3390/w14203318
Mao P-H, Khiem TC, Kwon E, Chang H-C, Bui HM, Duan X, Yang H, Ghotekar S, Chen W-H, Tsai Y-C, et al. Ambient-Visible-Light-Mediated Enhanced Degradation of UV Stabilizer Bis(4-hydroxyphenyl)methanone by Nanosheet-Assembled Cobalt Titanium Oxide: A Comparative and DFT-Assisted Investigation. Water. 2022; 14(20):3318. https://doi.org/10.3390/w14203318
Chicago/Turabian StyleMao, Po-Hsin, Ta Cong Khiem, Eilhann Kwon, Hou-Chien Chang, Ha Manh Bui, Xiaoguang Duan, Hongta Yang, Suresh Ghotekar, Wei-Hsin Chen, Yu-Chih Tsai, and et al. 2022. "Ambient-Visible-Light-Mediated Enhanced Degradation of UV Stabilizer Bis(4-hydroxyphenyl)methanone by Nanosheet-Assembled Cobalt Titanium Oxide: A Comparative and DFT-Assisted Investigation" Water 14, no. 20: 3318. https://doi.org/10.3390/w14203318
APA StyleMao, P.-H., Khiem, T. C., Kwon, E., Chang, H.-C., Bui, H. M., Duan, X., Yang, H., Ghotekar, S., Chen, W.-H., Tsai, Y.-C., & Lin, K.-Y. A. (2022). Ambient-Visible-Light-Mediated Enhanced Degradation of UV Stabilizer Bis(4-hydroxyphenyl)methanone by Nanosheet-Assembled Cobalt Titanium Oxide: A Comparative and DFT-Assisted Investigation. Water, 14(20), 3318. https://doi.org/10.3390/w14203318