Assessments of Roof-Harvested Rainwater in Disctrict Dir Lower, Khyber Pakhtunkhwa Pakistan
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection
2.3. Physicochemical Analysis
2.4. Quantity Assessment
2.5. Health Risk
3. Results
3.1. Qualitative Assessment
Statistic | PH | Turbidity NTU | EC µS/cm | TDS mg/L | Cl mg/L | SO4 mg/L | F mg/L | |
---|---|---|---|---|---|---|---|---|
Locations | WHO | 6.5–8.5 | 5 | 400 | 1000 | 250 | 250 | 1.5 |
Site SI | Mean | 5.18 | 1.05 | 2.62 | 1.28 | 2.12 | 1.04 | 0.3 |
SD | 1.27 | 6.17 | 2.66 | 1.26 | 8.58 | 0.12 | 0.14 | |
Site HA | Mean | 5.82 | 5.77 | 1.82 | 9.62 | 2.01 | 1.07 | 0.39 |
SD | 0.91 | 5.76 | 1.01 | 4.93 | 6.35 | 0.19 | 0.13 | |
Site LA | Mean | 6.05 | 5.45 | 1.52 | 7.45 | 1.92 | 0.84 | 0.29 |
SD | 0.88 | 6.95 | 1.23 | 5.78 | 1.01 | 0.16 | 0.13 | |
Site SA | Mean | 6.22 | 4.27 | 1.25 | 6.26 | 2.18 | 0.91 | 0.3 |
SD | 0.73 | 5.96 | 1.04 | 5.16 | 9.09 | 0.21 | 0.15 | |
Site KO | Mean | 6.26 | 4.29 | 1.32 | 6.61 | 2.2 | 0.99 | 0.21 |
SD | 0.39 | 4.68 | 2.11 | 8.32 | 4.72 | 0.19 | 0.12 |
3.2. Heavy Metals Analysis
Locations | Statistic | Fe mg/L | Zn mg/L | Cu mg/L | Pb mg/L |
---|---|---|---|---|---|
WHO | 0.3 | 5 | 1.3 | 0.015 | |
Site SI | Range | 0.16–0.93 | 0.08–0.29 | 0.03–0.01 | 0.01–0.10 |
Mean ± SD | 0.51 ± 0.27 | 0.17 ± 0.074 | 0.07 ± 0.021 | 0.05 ± 0.035 | |
Site HA | Range | 0.05–0.40 | 0.16–0.44 | 0.01–0.05 | 0.003–0.04 |
Mean ± SD | 0.15 ± 0.11 | 0.31 ± 0.098 | 0.03 ± 0.014 | 0.02 ± 0.014 | |
Site LA | Range | 0.49–1.20 | 0.12–0.40 | 0.01–0.05 | 0.01–0.08 |
Mean ± SD | 0.71 ± 0.23 | 0.24 ± 0.097 | 0.03 ± 0.013 | 0.03 ± 0.022 | |
Site SA | Range | 0.57–1.27 | 0.19–0.62 | 0.01–0.07 | 0.006–0.07 |
Mean ± SD | 0.95 ± 0.24 | 0.36 ± 0.14 | 0.03 ± 0.021 | 0.02 ± 0.021 | |
Site KO | Range | 0.91–0.97 | 0.29–0.48 | 0.02–0.06 | 0.01–0.03 |
Mean ± SD | 0.95 ± 0.021 | 0.42 ± 0.066 | 0.04 ± 0.015 | 0.01 ± 0.005 |
3.3. Health Risk Assessment
3.3.1. Maximum Daily Intake (MDI)
Locations | Statistic | Fe | Zn | Cu | Pb |
---|---|---|---|---|---|
Site SI | Range | 0.004–0.02 | 0.002–0.008 | 0.001–0.003 | 0.0005–0.003 |
Mean | 0.01 | 0.005 | 0.002 | 0.001 | |
Site HA | Range | 0.001–0.02 | 0.002–0.001 | 0.0004–0.001 | 0.0004–0.001 |
Mean | 0.006 | 0.008 | 0.001 | 0.0008 | |
Site LA | Range | 0.003–0.021 | 0.003–0.01 | 0.0007–0.001 | 0.0001–0.002 |
Mean | 0.01 | 0.006 | 0.001 | 0.0008 | |
Site SA | Range | 0.01–0.03 | 0.005–0.01 | 0.0004–0.002 | 0.0002–0.002 |
Mean | 0.02 | 0.01 | 0.0008 | 0.0009 | |
Site KO | Range | 0.02–0.028 | 0.008–0.01 | 0.0007–0.001 | 0.0004–0.0009 |
Mean | 0.02 | 0.01 | 0.001 | 0.0006 |
3.3.2. Health Risk Index (HRI)
Locations | Statistic | Fe | Zn | Cu | Pb |
---|---|---|---|---|---|
Site SI | Range | 6.7 − 03–3.8 − 02 | 8.2 − 03–2.7 − 02 | 5.0 − 03–8.0 − 03 | 4.6 − 02–3.01 − 01 |
Mean ± SD | 1.9 ± 02 | 1.7 ± 02 | 7.0 ± 03 | 1.6 ± 01 | |
Site HA | Range | 2.4 − 03–3.0 − 02 | 9.6 − 03–4.2 − 02 | 1.2 − 03–3.7 − 03 | 3.7 − 02–1.3 − 01 |
Mean ± SD | 9.7 ± 02 | 2.6 ± 02 | 2.7 ± 03 | 8.0 ± 02 | |
Site LA | Range | 5.1 − 03–3.0 − 02 | 1.2 − 02–3.5 − 02 | 1.9 − 03–4.6 − 03 | 9.4 − 03–2.2 − 01 |
Mean ± SD | 2.2 ± 02 | 2.3 ± 02 | 3.0 ± 03 | 7.9 ± 02 | |
Site SA | Range | 2.3 − 02–5.2 − 02 | 1.8 − 02–5.9 − 02 | 1.0 − 03–5.9 − 03 | 1.8 − 02–1.9 − 01 |
Mean ± SD | 4.1 ± 02 | 3.3 ± − 02 | 2.2 ± 03 | 8.6 ± 02 | |
Site KO | Range | 3.3 − 02–3.9 − 02 | 2.8 − 02–4.6 − 02 | 1.9 − 03–5.2 − 03 | 3.9 − 02–8.5 − 02 |
Mean ± SD | 3.8 ± 02 | 4.1 ± 02 | 3.4 ± 03 | 5.5 ± 02 |
3.4. Quantitative Assessment
Months | Average Monthly Rainfall (mm) | Average Roof Area (m2) | Runoff Coefficient | Monthly Harvested Rainwater (L/month) |
---|---|---|---|---|
Jan | 38 | 80 | 0.8 | 2432 |
Feb | 181.66 | 80 | 0.8 | 11,626.24 |
Mar | 98.35 | 80 | 0.8 | 6294.4 |
Apr | 99.66 | 80 | 0.8 | 6378.24 |
May | 33.25 | 80 | 0.8 | 2128 |
June | 40.83 | 80 | 0.8 | 2613.12 |
July | 120.86 | 80 | 0.8 | 7735.04 |
Aug | 120.16 | 80 | 0.8 | 7690.24 |
Sept | 53.3 | 80 | 0.8 | 3411.2 |
Oct | 54 | 80 | 0.8 | 3456 |
Nov | 30.33 | 80 | 0.8 | 1941.12 |
Dec | 17.16 | 80 | 0.8 | 1098.24 |
Total | 887.56 | - | - | 56,803.84 |
Average | 73.96 | - | - | 4733.65 |
3.4.1. Monthly Rainfall
3.4.2. Annual Rainfall
3.4.3. Rainwater-Harvesting Potential
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lasage, R.; Verburg, P.H. Evaluation of small scale water harvesting techniques for semi-arid environments. J. Arid Environ. 2015, 118, 48–57. [Google Scholar] [CrossRef]
- Campisano, A.; Butler, D.; Ward, S.; Burns, M.J.; Friedler, E.; DeBusk, K.; Fisher-Jeffes, L.N.; Ghisi, E.; Rahman, A.; Furumai, H.; et al. Urban rainwater harvesting systems: Research, implementation and future perspectives. Water Res. 2017, 115, 195–209. [Google Scholar] [CrossRef] [PubMed]
- Asadi, E.; Isazadeh, M.; Samadianfard, S.; Ramli, M.F.; Mosavi, A.; Nabipour, N.; Shamshirband, S.; Hajnal, E.; Chau, K.W. Groundwater quality assessment for sustainable drinking and irrigation. Sustainability 2020, 12, 177. [Google Scholar] [CrossRef]
- Liaw, C.H.; Chiang, Y.C. Dimensionless analysis for designing domestic rainwater harvesting systems at the regional level in Northern Taiwan. Water 2014, 6, 3913–3933. [Google Scholar] [CrossRef]
- Mays, L.W. Survey of ancient water technologies in semi-arid and arid regions: Traditional knowledge for the future. Water Supply 2017, 17, 1278–1286. [Google Scholar] [CrossRef]
- Ahmed, W.; Gardner, T.; Toze, S. Microbiological quality of roof-harvested rainwater and health risks: A review. J. Environ. Qual. 2011, 40, 13–21. [Google Scholar] [CrossRef]
- Krishna, H.J.; Brown, C.; Gerston, J.; Colley, S. The Texas Manual on Rainwater Harvesting, 3rd ed.; Texas Water Development Board: Austin, TX, USA, 2005. [Google Scholar]
- Kus, B.; Kandasamy, J.; Vigneswaran, S.; Shon, H.K. Analysis of first flush to improve the water quality in rainwater tanks. Water Sci. Technol. 2010, 61, 421–428. [Google Scholar] [CrossRef]
- Jamal, R.; Kamel, A.Z.; Adnan, A.H.; Rida, A.A. Quality Assessment of Harvested Roof Top Rainwater for Domestic Uses. Environ. Earth Sci. 2008, 6, 149–155. [Google Scholar]
- Quality_Assessment_of_Harvested_Rainwater_for_Domestic_Uses. Available online: https://www.researchgate.net/publication/268047323_ (accessed on 15 June 2022).
- Ubuoh, E.A. Susceptibility of Roofing Sheets to Atmospheric-Borne Corrosive Agents in Owerri, Nigeria. Int. People-Ware Appl. Gatew. Anal. Learn. 2012, 1, 1–10. [Google Scholar]
- Susceptibility of Roofing Sheets to Atmospheric-Borne Corrosive Agents in Owerri, Nigeria. International People-ware Appliance for Gateway to Analytical Learning (Pakistan). Available online: https://www.bing.com/search?q=Ubuoh%2C+E.+A.+(2012).+Susceptibility+of+Roofing+Sheets+to+Atmospheric-Borne+Corrosive+Agents+in+Owerri%2C+Nigeria‖.+International+People-ware+Appliance+for+Gateway+to+Analytical+Learning+(Pakistan)%2C+1%2C+1-10.&cvid=bc3ae91 (accessed on 15 June 2022).
- Cheng, C.L.; Liao, M.C. Regional rainfall level zoning for rainwater harvesting systems in northern Taiwan. Resour. Conserv. Recycl. 2009, 53, 421–428. [Google Scholar] [CrossRef]
- Igbinosa, I.H.; Osemwengie, O.V. On-site assessment of environmental and sanitary qualities of Rainwater Harvesting System (RWH) in a rural community in Benin City, Nigeria. J. Appl. Sci. Environ. Manag. 2016, 20, 320–324. [Google Scholar] [CrossRef]
- Meera, V.; Ahammed, M.M. Factors Affecting the Quality of Roof-Harvested Rainwater; Springer: Cham, Switzerland, 2018; pp. 195–202. [Google Scholar] [CrossRef]
- Li, Z.; Boyle, F.; Reynolds, A. Rainwater harvesting and greywater treatment systems for domestic application in Ireland. Desalination 2010, 260, 1–8. [Google Scholar] [CrossRef]
- Abbasi, T.; Abbasi, S.A. Sources of pollution in rooftop rainwater harvesting systems and their control. Crit. Rev. Environ. Sci. Technol. 2011, 41, 2097–2167. [Google Scholar] [CrossRef]
- Flues, M.; Hama, P.; Lemes, M.J.L.; Dantas, E.S.K.; Fornaro, A. Evaluation of the rainwater acidity of a rural region due to a coal-fired power plant in Brazil. Atmos. Environ. 2002, 36, 2397–2404. [Google Scholar] [CrossRef]
- Magyar, M.I.; Mitchell, V.G.; Ladson, A.; Diaper, C. Determining the sediment dynamics in a rainwater tank. In Novatech 2007-6ème Conférence sur les techniques et stratégies durables pour la gestion des eaux urbaines par temps de pluie/Sixth International Conference on Sustainable Techniques and Strategies in Urban Water Management; GRAIE: Lyon, France, 2007. [Google Scholar]
- Han, M.Y.; Mun, J.S. Particle behaviour consideration to maximize the settling capacity of rainwater storage tanks. Water Sci. Technol. 2007, 56, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Schets, F.M.; Italiaander, R.; Van Den Berg, H.H.J.L.; de Roda Husman, A.M. Rainwater harvesting: Quality assessment and utilization in The Netherlands. J. Water Health 2010, 8, 224–235. [Google Scholar] [CrossRef]
- Chang, M.; McBroom, M.W.; Beasley, R.S. Roofing as a source of nonpoint water pollution. J. Environ. Manag. 2004, 73, 307–315. [Google Scholar] [CrossRef]
- Hamilton, K.A.; Parrish, K.; Ahmed, W.; Haas, C.N. Assessment of water quality in roof-harvested rainwater barrels in greater Philadelphia. Water 2018, 10, 92. [Google Scholar] [CrossRef]
- Lei, X.; Chen, W.; Avand, M.; Janizadeh, S.; Kariminejad, N.; Shahabi, H.; Costache, R.; Shahabi, H.; Shirzadi, A.; Mosavi, A. GIS-based machine learning algorithms for gully erosion susceptibility mapping in a semi-arid region of Iran. Remote Sens. 2020, 12, 2478. [Google Scholar] [CrossRef]
- Band, S.S.; Janizadeh, S.; Chandra Pal, S.; Saha, A.; Chakrabortty, R.; Melesse, A.M.; Mosavi, A. Flash flood susceptibility modeling using new approaches of hybrid and ensemble tree-based machine learning algorithms. Remote Sens. 2020, 12, 3568. [Google Scholar] [CrossRef]
- Choubin, B.; Mosavi, A.; Alamdarloo, E.H.; Hosseini, F.S.; Shamshirband, S.; Dashtekian, K.; Ghamisi, P. Earth fissure hazard prediction using machine learning models. Environ. Res. 2019, 179, 108770. [Google Scholar] [CrossRef]
- Qasem, S.N.; Samadianfard, S.; Sadri Nahand, H.; Mosavi, A.; Shamshirband, S.; Chau, K.W. Estimating daily dew point temperature using machine learning algorithms. Water 2019, 11, 582. [Google Scholar] [CrossRef]
- Mosavi, A.; Sajedi Hosseini, F.; Choubin, B.; Goodarzi, M.; Dineva, A.A.; Rafiei Sardooi, E. Ensemble boosting and bagging based machine learning models for groundwater potential prediction. Water Resour. Manag. 2021, 35, 23–37. [Google Scholar] [CrossRef]
- Shabani, S.; Samadianfard, S.; Sattari, M.T.; Mosavi, A.; Shamshirband, S.; Kmet, T.; Várkonyi-Kóczy, A.R. Modeling pan evaporation using Gaussian process regression K-nearest neighbors’ random forest and support vector machines; comparative analysis. Atmosphere 2020, 11, 66. [Google Scholar] [CrossRef]
- Adeniyi, I.F.; Olabanji, I.O. The physico-chemical and bacteriological quality of rainwater collected over different roofing materials in Ile-Ife, southwestern Nigeria. Chem. Ecol. 2005, 21, 149–166. [Google Scholar] [CrossRef]
- Stewart, C.; Kim, N.D.; Johnston, D.M.; Nayyerloo, M. Health Hazards Associated with Consumption of Roof-Collected Rainwater in Urban Areas in Emergency Situations. Int. J. Environ. Res. Public Health 2016, 13, 1012. [Google Scholar] [CrossRef]
- Gikas, G.D.; Tsihrintzis, V.A. Assessment of water quality of first-flush roof runoff and harvested rainwater. J. Hydrol. 2012, 466–467, 115–126. [Google Scholar] [CrossRef]
- Abdulla, F.A.; Al-Shareef, A.W. Roof rainwater harvesting systems for household water supply in Jordan. Desalination 2009, 243, 195–207. [Google Scholar] [CrossRef]
- McCuen, R.H. Hydrologic Analysis and Design; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2004; p. 790. [Google Scholar]
- Viessman, W.J., Jr.; Lewis, G.L. (Eds.) Introduction to Hydrology; Harper Collins College: New York, NY, USA, 1996; ISBN 9780673993373. Available online: https://www.amazon.com/Introduction-Hydrology-5th-Warren-Viessman/dp/067399337X (accessed on 15 June 2022).
- Angrill, S.; Petit-Boix, A.; Morales-Pinzón, T.; Josa, A.; Rieradevall, J.; Gabarrell, X. Urban rainwater runoff quantity and quality—A potential endogenous resource in cities? J. Environ. Manag. 2017, 189, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Aladenola, O.O.; Adeboye, O.B. Assessing the potential for rainwater harvesting. Water Resour. Manag. 2010, 24, 2129–2137. [Google Scholar] [CrossRef]
- Briscoe, J.; Qamar, U.; Contijoch, M.; Amir, P.; Blackmore, D. Pakistan’s Water Economy: Running Dry; World Bank: Washington, DC, USA, 2005. [Google Scholar]
- Islam, M.A.; Akber, M.A.; Rahman, M.A.; Islam, M.A.; Kabir, M.P. Evaluation of harvested rainwater quality at primary schools of southwest coastal Bangladesh. Environ. Monit. Assess. 2019, 191, 80. [Google Scholar] [CrossRef] [PubMed]
- Igbinosa, I.H.; Aighewi, I.T. Quality assessment and public health status of harvested rainwater in a peri-urban community in Edo State of Nigeria. Environ. Monit. Assess. 2017, 189, 1–12. [Google Scholar] [CrossRef]
- Baguma, D.; Loiskandl, W.; Jung, H. Water Management, Rainwater Harvesting and Predictive Variables in Rural Households. Water Resour. Manag. 2010, 24, 3333–3348. [Google Scholar] [CrossRef]
- Ullah, S.; Hasan, Z.; Li, Z.; Zuberi, A.; Zorriehzahra, M.J.; Nabi, G. Diversity and community composition of ichthyofauna at Konhaye Stream, district Dir Lower, Pakistan. Iran. J. Fish. Sci. 2020, 19, 2322–2339. [Google Scholar] [CrossRef]
- Akmal, M. Hand Pumps’ Water Quality Analysis for Drinking and Irrigation Purposes at District Dir Lower, Khyber Pakhtunkhwa Pakistan. Eur. Acad. Res. 2014, 2, 1560–1571. [Google Scholar]
- American Public Health Association; American Water Works Association; Water Environment Federation. Standard Methods for the Examination of Water and Wastewater, 20th ed.; No. 6000; American Public Health Association: Washington, DC, USA, 1998. [Google Scholar]
- Ghisi, E.; Montibeller, A.; Schmidt, R.W. Potential for potable water savings by using rainwater: An analysis over 62 cities in southern Brazil. Build. Environ. 2006, 41, 204–210. [Google Scholar] [CrossRef]
- Lee, J.Y.; Bak, G.; Han, M. Quality of roof-harvested rainwater—Comparison of different roofing materials. Environ. Pollut. 2012, 162, 422–429. [Google Scholar] [CrossRef]
- Thomas, T.H.; Martinson, D.B. Roofwater Harvesting: A Handbook for Practitioners; International Water and Sanitation Centre: The Hague, The Netherlands, 2007. [Google Scholar]
- Muhammad, S.; Shah, M.T.; Khan, S. Health risk assessment of heavy metals and their source apportionment in drinking water of Kohistan region, northern Pakistan. Microchem. J. 2011, 98, 334–343. [Google Scholar] [CrossRef]
- Scope, C. Guidance for Performing Aggregate Exposure and Risk Assessments; No. 202; Office of Pesticide Programs-Environmental Protection Agency: Arlington, VA, USA, 1999.
- Shittu, O.B.; Olaitan, J.O.; Amusa, T.S. Physico-chemical and bacteriological analyses of water used for drinking and swimming purposes in Abeokuta, Nigeria. Afr. J. Biomed. Res. 2010, 11, 285–290. [Google Scholar] [CrossRef]
- Salam, M.; Alam, F.; Hossain, M.; Saeed, M.A.; Khan, T.; Zarin, K.; Rwan, B.; Ullah, W.; Khan, W.; Khan, O. Assessing the drinking water quality of educational institutions at selected locations of district Swat, Pakistan. Environ. Earth Sci. 2021, 80, 322. [Google Scholar] [CrossRef]
- Mendez, C.B.; Klenzendorf, J.B.; Afshar, B.R.; Simmons, M.T.; Barrett, M.E.; Kinney, K.A.; Kirisits, M.J. The effect of roofing material on the quality of harvested rainwater. Water Res. 2011, 45, 2049–2059. [Google Scholar] [CrossRef]
- Duggal, K.N. Element of Environmental Engineering Water Quality Analysis, Ram Nagar, New Delhi; Channel and Company Ltd.: Westborough, MA, USA, 2004; Available online: https://pdfgoal.com/downloads/elements_of_environmental_engineering_pdf_by_k_duggal (accessed on 15 June 2022).
- Meera, V.; Ahammed, M.M. Water quality of rooftop rainwater harvesting systems: A review. J. Water Supply Res. Technol. 2006, 55, 257–268. [Google Scholar] [CrossRef]
- Zhu, K.; Zhang, L.; Hart, W.; Liu, M.; Chen, H. Quality issues in harvested rainwater in arid and semi-arid Loess Plateau of northern China. J. Arid Environ. 2004, 57, 487–505. [Google Scholar] [CrossRef]
- Nevondo, T.S.; Cloete, T.E. Bacterial and chemical quality of water supply in the Dertig village settlement. Water 1999, 25, 215–220. [Google Scholar]
- Al-Khatib, I.A.; Arafeh, G.A.; Al-Qutob, M.; Jodeh, S.; Hasan, A.R.; Jodeh, D.; van der Valk, M. Health risk associated with some trace and some heavy metals content of harvested rainwater in Yatta area, Palestine. Water 2019, 11, 238. [Google Scholar] [CrossRef]
- Eletta, O.A.A.; Oyeyipo, J.O. Rainwater harvesting: Effect of age of roof on water quality. Int. J. Appl. Chem. 2008, 4, 157–162. [Google Scholar]
- Lamprea, K.; Ruban, V. Characterization of atmospheric deposition and runoff water in a small suburban catchment. Environ. Technol. 2011, 32, 1141–1149. [Google Scholar] [CrossRef] [PubMed]
- Davis, A.P.; Shokouhian, M.; Ni, S. Loading estimates of lead, copper, cadmium, and zinc in urban runoff from specific sources. Chemosphere 2001, 44, 997–1009. [Google Scholar] [CrossRef]
- Islam, M.M.; Chou, F.N.F.; Kabir, M.R.; Liaw, C.H. Rainwater: A Potential Alternative Source for Scarce Safe Drinking and Arsenic Contaminated Water in Bangladesh. Water Resour. Manag. 2010, 24, 3987–4008. [Google Scholar] [CrossRef]
- Zhang, Y.; Lin, Y.P. Leaching of lead from new unplasticized polyvinyl chloride (uPVC) pipes into drinking water. Environ. Sci. Pollut. Res. 2014, 22, 8405–8411. [Google Scholar] [CrossRef]
- Gould, J. Is rainwater safe to drink? A review of recent findings. In Proceedings of the 9th International Rainwater Catchment Systems Conference, Petrolina, Brazil, 6–9 July 1999. [Google Scholar]
- ATSDR. Lead—ToxFAQs. 2007. Available online: https://wwwn.cdc.gov/dcs/ContactUs/Form (accessed on 15 June 2022).
- Yousaf, S.; Begum, S.; Afridi, I.; Shakil, M.; Tariq, M. Assessment of drinking water quality and human health risks in the tehsils of Jamrud and Landikotal, Khyber Agency, Pakistan. J. Himal. Earth Sci. 2016, 49, 58–67. [Google Scholar]
- Traboulsi, H.; Traboulsi, M. Rooftop level rainwater harvesting system. Appl. Water Sci. 2017, 7, 769–775. [Google Scholar] [CrossRef]
- Taher, T.M. Quantity and Quality Considerations of Rooftop Rainwater Harvesting as a Substantial Resource to Face Water Supply Shortages. Int. J. Water Resour. Arid Environ. 2014, 3, 1–10. Available online: https://www.researchgate.net/publication/306058157_Quantity_and_Quality_Considerations_of_Rooftop_Rainwater_Harvesting_as_a_Substantial_Resource_to_Face_Water_Supply_Shortages (accessed on 15 June 2022).
- Qin, M.M.; Chen, D.; Averyt, Z.R.; Miller, K.B.; Solomon, H.L.; Manning, S.C.; Marquis, M.R.; Tignor, M. IPCC, 2007: Summary for Policymakers. 2007. Available online: https://www.semanticscholar.org/paper/IPCC%2C-2007%3A-Summary-for-Policymakers-Qin-Chen/8109ccb13ca3c75354bbaaf9f7e0c825b438eb44 (accessed on 15 June 2022).
- Woltersdorf, L.; Liehr, S.; Döll, P. Rainwater Harvesting for Small-Holder Horticulture in Namibia: Design of garden variants and assessment of climate change impacts and adaptation. Water 2015, 7, 1402–1421. [Google Scholar] [CrossRef]
- Otti, V.I.; Ezenwaji, E.E. Enhancing community-driven initiative in rainwater harvesting in Nigeria. Int. J. Eng. Res. Technol. 2013, 3, 73–79. [Google Scholar]
- Biswas, B.K.; Mandal, B.H. Construction and Evaluation of Rainwater Harvesting System for Domestic Use in a Remote and Rural Area of Khulna. Bangladesh ISRN Otolaryngol. 2014, 2014, 751952. [Google Scholar] [CrossRef]
- Helmreich, B.; Horn, H. Opportunities in rainwater harvesting. Desalination 2009, 248, 118–124. [Google Scholar] [CrossRef]
- Shittu, O.I.; Okareh, O.T.; Coker, A.O. Development of rainwater harvesting technology for securing domestic water supply in Ibadan, Nigeria. Int. J. Eng. Res. Technol. 2015, 4, 32–37. [Google Scholar]
- Fernandes, L.F.S.; Terencio, D.P.S.; Racheco, F.A.L. Rainwater harvesting systems for low demanding applications. Sci. Total Environ. 2015, 529, 91–100. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rawan, B.; Ullah, W.; Ullah, R.; Akbar, T.A.; Ayaz, Z.; Javed, M.F.; Din, I.; Ullah, S.; Aziz, M.; Mohamed, A.; et al. Assessments of Roof-Harvested Rainwater in Disctrict Dir Lower, Khyber Pakhtunkhwa Pakistan. Water 2022, 14, 3270. https://doi.org/10.3390/w14203270
Rawan B, Ullah W, Ullah R, Akbar TA, Ayaz Z, Javed MF, Din I, Ullah S, Aziz M, Mohamed A, et al. Assessments of Roof-Harvested Rainwater in Disctrict Dir Lower, Khyber Pakhtunkhwa Pakistan. Water. 2022; 14(20):3270. https://doi.org/10.3390/w14203270
Chicago/Turabian StyleRawan, Bakht, Waheed Ullah, Rafi Ullah, Tahir Ali Akbar, Zainab Ayaz, Muhammad Faisal Javed, Islamud Din, Siddique Ullah, Mubashir Aziz, Abdullah Mohamed, and et al. 2022. "Assessments of Roof-Harvested Rainwater in Disctrict Dir Lower, Khyber Pakhtunkhwa Pakistan" Water 14, no. 20: 3270. https://doi.org/10.3390/w14203270
APA StyleRawan, B., Ullah, W., Ullah, R., Akbar, T. A., Ayaz, Z., Javed, M. F., Din, I., Ullah, S., Aziz, M., Mohamed, A., Khan, N. A., & Khan, O. (2022). Assessments of Roof-Harvested Rainwater in Disctrict Dir Lower, Khyber Pakhtunkhwa Pakistan. Water, 14(20), 3270. https://doi.org/10.3390/w14203270