Capacity of River Valleys to Retain Nutrients from Surface Runoff in Urban and Rural Areas (Southern Poland)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Area
2.2. Examined Indices of Surface Water and Rainwater Quality
2.3. Apparatus and Methods for Determination of Studied Indices
2.4. Land Use and Development
2.5. Hydromorphological Evaluation of Fresh Waters for Nature-Based Solution
- (1)
- The Habitat Quality Score (HQS), based on a presence and diversity of natural elements of the course and the river valley;
- (2)
- The Habitat Modification Score (HMS) determining the range of modifications in the watercourse morphology [47].
- Flow type (waterfall, spill, boil, torrential, chaotic, rapid, rising, smooth, invisible, or dry bed);
- Bed bottom material (rock outcrop, boulders, stones, small stones/gravel, sand, mud, clay/loess, peat/muck, concrete, mesh and stone gabions, claddings and pavings, riprap, or synthetic covering);
- Natural morphological elements of the bed (rock outcrop, exposed boulders, rock outcrops/boulders covered with vegetation, a central bar not stabilised by vegetation, a central bar stabilised by vegetation, an island, a natural dam);
- Natural morphological elements of banks (lateral erosion, stable bank erosion, a meander fluvial bar not stabilised by vegetation, a meander fluvial bar stabilised by vegetation, a point bar not stabilised by vegetation, a point bar stabilised by vegetation and natural embankment);
- Structure of bank vegetation (none, uniform, simple, or complex);
- Meander fluvial bars (stabilised and not stabilised by vegetation);
- Groups of water plants (liverworts and mosses, emergent broad-leaf plants, emergent narrow-leaf plants, submerged plants with floating leaves, free-floating plants and plants rooted on the bank with stems floating on the water, submerged broad-leaf plants and submerged plants with narrow and with strongly lobed leaves),
- The use of the land within a belt of 50 m from the bank top (deciduous/mixed forests, coniferous forests, wetlands);
- Tree stands and elements morphologically accompanying them (isolated/dispersed, regularly distributed, continuous and semi-continuous);
- Valuable elements of the river environment (waterfall, side channel, leaf heaps, natural reservoir, reed bed, peat bog, or bog).
- The value of the Habitat Modification Score, HMS, is based on a sum of partial values for the following categories listed below:
- Modifications observed in control points (bank stabilisation; bed stabilisation; bank or bed profiling; braided channel; an embankment on a river bank slope; a culvert; a damming structure; a crossing; a bank trampled by livestock);
- Structures not observed in control profiles (a pedestrian crossing; a road or railway bridge; a groyne; a damming structure; a crossing; a culvert);
- Modifications observed during a synthetic evaluation not registered in the control profiles (bed bottom material of anthropogenic origin; a stabilised entire bank profile; a profiled bank; a sectional bank profile; an embankment on a river bank slope; an embankment outside a river bank slope; plants removed from the bed; bank mowing) [48].
2.6. Statistical Analyses
3. Results
3.1. Physical and Chemical Properties of Surface Waters
3.2. Catchment Retention Capacity
4. Discussion
4.1. Relationship between a Land Use and Physical and Chemical Quality of Running Waters
4.2. Hydrochemical Evaluation of Rainwater
4.3. Modelling of Surface Runoff
4.4. Catchment Retention Capacity
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- La Rosa, D.; Pappalardo, V. Planning for spatial equity—A performance based approach for sustainable urban drainage systems. Sustain. Cities Soc. 2020, 53, 101885. [Google Scholar] [CrossRef]
- Goh, K. Urban Waterscapes: The Hydro-Politics of Flooding in a Sinking City. Int. J. Urban Reg. 2019, 43, 250–272. [Google Scholar] [CrossRef]
- Kelleher, C.; Golden, H.E.; Burkholder, S.; Shuster, W. Urban vacant lands impart hydrological benefits across city landscapes. Nat. Commun. 2020, 11, 1563. [Google Scholar] [CrossRef] [Green Version]
- Halecki, W.; Stachura, T. Evaluation of soil hydrophysical parameters along a semiurban small river: Soil ecosystem services for enhancing water retention in urban and suburban green areas. Catena 2021, 196, 104910. [Google Scholar] [CrossRef]
- Walton, C.R.; Zak, D.; Audet, J.; Petersen, R.J.; Lange, J.; Oehmke, C.; Wichtmann, W.; Kreyling, J.; Grygoruk, M.; Jablonska, E.; et al. Wetland buffer zones for nitrogen and phosphorus retention: Impacts of soil type, hydrology and vegetation. Sci. Total Environ. 2020, 727, 138709. [Google Scholar] [CrossRef] [PubMed]
- Sylla, M.; Solecka, I. Highly valued agricultural landscapes and their ecosystem services in the urban-rural fringe—An integrated approach. J Environ. Plann. Manag. 2020, 63, 883–911. [Google Scholar] [CrossRef]
- Sylla, M.; Hagemann, N.; Szewranski, S. Mapping trade-offs and synergies among peri-urban ecosystem services to address spatial policy. Environ. Sci. Policy 2020, 112, 79–90. [Google Scholar] [CrossRef]
- Zheng, W.; Shen, C.; Wang, L.P.; Jin, Y. An empirical soil water retention model based on probability laws for pore-size distribution. Vadose Zone J. 2020, 19, e20065. [Google Scholar] [CrossRef]
- Wu, Y.Y.; He, G.J.; Ouyang, W.; Huang, L. Differences in soil water content and movement drivers of runoff under climate variations in a high-altitude catchment. J. Hydrol. 2020, 587, 125024. [Google Scholar] [CrossRef]
- McFarland, A.R.; Larsen, L.; Yeshitela, K.; Engida, A.N.; Love, N.G. Guide for using green infrastructure in urban environments for stormwater management. Environ. Sci. Water Res. Technol. 2019, 5, 643–659. [Google Scholar] [CrossRef]
- Uygun, B.S.; Albek, M. Determination of Climate Change Effects of Impervious Areas in Urban Watershed. Water Air Soil. Pollut. 2020, 231, 1–12. [Google Scholar] [CrossRef]
- Wang, P.J.; Zheng, H.F.; Ren, Z.B.; Zhang, D.; Zhai, C.; Mao, Z.X.; Tang, Z.; He, X.Y. Effects of Urbanization, Soil Property and Vegetation Configuration on Soil Infiltration of Urban Forest in Changchun, Northeast China. Chin. Geogr. Sci 2018, 28, 482–494. [Google Scholar] [CrossRef] [Green Version]
- Yu, Q.; Wu, C.; Qiao, S.; Wu, B.; Wang, J. The Application of Watershed System Strategy on Urban Water Environment Treatment. J. Water Resour. Res. 2019, 08, 191–198. [Google Scholar] [CrossRef]
- Mgelwa, A.S.; Hu, Y.L.; Ngaba, M.Y. Patterns of nitrogen concentrations and their controls in two southern China urban river ecosystems. Glob. Ecol. Conserv. 2020, 23, e01112. [Google Scholar] [CrossRef]
- Teurlincx, S.; Kuiper, J.J.; Hoevenaar, E.C.M.; Lurling, M.; Brederveld, R.J.; Veraart, A.J.; Janssen, A.B.G.; Mooij, W.M.; Domis, L.N.D. Towards restoring urban waters: Understanding the main pressures. Curr. Opin. Environ. Sustain. 2019, 36, 49–58. [Google Scholar] [CrossRef]
- Shifflett, S.D.; Newcomer-Johnson, T.; Yess, T.; Jacobs, S. Interdisciplinary Collaboration on Green Infrastructure for Urban Watershed Management: An Ohio Case Study. Water 2019, 11, 738. [Google Scholar] [CrossRef] [Green Version]
- Wise, J.L.; Van Horn, D.J.; Diefendorf, A.F.; Regier, P.J.; Lowell, T.V.; Dahm, C.N. Dissolved organic matter dynamics in storm water runoff in a dryland urban region. J. Arid Environ. 2019, 165, 55–63. [Google Scholar] [CrossRef]
- McClymont, K.; Fernandes Cunha, D.G.; Maidment, C.; Ashagre, B.; Vasconcelos, A.F.; De Macedo, M.B.; Nobrega dos Santos, M.F.; Gomes Junior, M.N.; Mendiondo, E.M.; Barbassa, A.P.; et al. Towards urban resilience through Sustainable Drainage Systems: A multi-objective optimisation problem. J. Environ. Manag. 2020, 275, 111173. [Google Scholar] [CrossRef]
- Verol, A.P.; Battemarco, B.P.; Merlo, M.L.; Machado, A.C.M.; Haddad, A.N.; Miguez, M.G. The urban river restoration index (URRIX)—A supportive tool to assess fluvial environment improvement in urban flood control projects. J. Clean. Prod. 2019, 239, 118058. [Google Scholar] [CrossRef]
- Xiong, W.; Li, Y.; Pfister, S.; Zhang, W.L.; Wang, C.; Wang, P.F. Improving water ecosystem sustainability of urban water system by management strategies optimization. J. Environ. Manag. 2020, 254, 109766. [Google Scholar] [CrossRef]
- Reyes, B.; Hogue, T.S.; Maxwell, R.M. Urban irrigation in the modeling of a semi-arid urban environment: Ballona Creek watershed, Los Angeles, California. Hydrol. Sci. J. 2020, 65, 1344–1357. [Google Scholar] [CrossRef]
- Tang, J.F.; Wang, W.D.; Yang, L.; Qiu, Q.L.L.; Lin, M.X.; Cao, C.L.; Li, X.H. Seasonal variation and ecological risk assessment of dissolved organic matter in a peri-urban critical zone observatory watershed. Sci. Total Environ. 2020, 707, 136093. [Google Scholar] [CrossRef]
- Xia, F.; Zhang, C.; Qu, L.Y.; Song, Q.J.; Ji, X.L.; Mei, K.; Dahlgren, R.A.; Zhang, M.H. A comprehensive analysis and source apportionment of metals in riverine sediments of a rural-urban watershed. J. Hazard. Mater. 2020, 381, 121230. [Google Scholar] [CrossRef]
- Ruan, X.F.; Huang, J.Y.; Williams, D.A.R.; Harker, K.J.; Gergel, S.E. High spatial resolution landscape indicators show promise in explaining water quality in urban streams. Ecol. Indic. 2019, 103, 321–330. [Google Scholar] [CrossRef]
- Sinha, J.; Jha, S.; Goyal, M.K. Influences of watershed characteristics on long-term annual and intra-annual water balances over India. J. Hydrol. 2019, 577, 123970. [Google Scholar] [CrossRef]
- Shao, Z.F.; Fu, H.Y.; Li, D.R.; Altan, O.; Cheng, T. Remote sensing monitoring of multi-scale watersheds impermeability for urban hydrological evaluation. Remote Sens. Environ. 2019, 232, 111338. [Google Scholar] [CrossRef]
- Favreau, G.; Cappelaere, B.; Massuel, S.; Leblanc, M.; Boucher, M.; Boulain, N.; Leduc, C. Land clearing, climate variability, and water resources increase in semiarid southwest Niger: A review. Water Resour. Res. 2009, 45, L16402. [Google Scholar] [CrossRef] [Green Version]
- Rost, S.; Gerten, D.; Hoff, H.; Lucht, W.; Falkenmark, M.; Rockstrom, J. Global potential to increase crop production through water management in rainfed agriculture. Environ. Res. Lett. 2009, 4, 044002. [Google Scholar] [CrossRef]
- Peter, K.T.; Hou, F.; Tian, Z.Y.; Wu, C.; Goehring, M.; Liu, F.M.; Kolodziej, E.P. More Than a First Flush: Urban Creek Storm Hydrographs Demonstrate Broad Contaminant Pollutographs. Environ. Sci. Technol. 2020, 54, 6152–6165. [Google Scholar] [CrossRef]
- Sarkar, K.; Majumder, M. Application of AHP-based water quality index for quality monitoring of peri-urban watershed. Environ. Dev. Sustain. 2021, 23, 1780–1798. [Google Scholar] [CrossRef]
- Luo, L.L.; Mei, K.; Qua, L.Y.; Zhang, C.; Chen, H.; Wang, S.Y.; Di, D.; Huang, H.; Wang, Z.F.; Xia, F.; et al. Assessment of the Geographical Detector Method for investigating heavy metal source apportionment in an urban watershed of Eastern China. Sci. Total Environ. 2019, 653, 714–722. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.T.; Ngo, H.H.; Guo, W.S.; Wang, X.C.C.; Ren, N.Q.; Li, G.B.; Ding, J.; Liang, H. Implementation of a specific urban water management—Sponge City. Sci. Total Environ. 2019, 652, 147–162. [Google Scholar] [CrossRef]
- Oral, H.V.; Carvalho, P.; Gajewska, M.; Ursino, N.; Masi, F.; Hullebusch, E.D.V.; Kazak, J.K.; Exposito, A.; Cipolletta, G.; Andersen, T.R.; et al. A review of nature-based solutions for urban water management in European circular cities: A critical assessment based on case studies and literature. Blue-Green Syst. 2020, 2, 112–136. [Google Scholar] [CrossRef] [Green Version]
- Rigotti, J.A.; Pasqualini, J.P.; Rodrigues, L.R. Nature-based solutions for managing the urban surface runoff: An application of a constructed floating wetland. Limnetica 2020, 39, 441–454. [Google Scholar] [CrossRef]
- Oliver, S.; Corburn, J.; Ribeiro, H. Challenges Regarding Water Quality of Eutrophic Reservoirs in Urban Landscapes: A Mapping Literature Review. Int. J. Environ. Res. 2019, 16, 40. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.H.; Shao, W.W.; Xiang, C.Y.; Mei, C.; Li, Z.J. Uncertainties of urban flood modeling: Influence of parameters for different underlying surfaces. Environ. Res. 2020, 182, 108929. [Google Scholar] [CrossRef]
- Parajulee, A.; Wania, F.; Mitchell, C.P.J. Hydrological transit times in nested urban and agricultural watersheds in the Greater Toronto Area, Canada. Hydrol. Process. 2019, 33, 350–360. [Google Scholar] [CrossRef]
- Park, H.; Beom, J.; Jeung, M.; Choi, W.; Her, Y.; Shirmohammadi, A.; Yoon, K.S. Identifying feasible nonpoint source pollutant sampling intervals for watersheds with paddy field and urban land uses. Water Supply 2020, 21, 780–790. [Google Scholar] [CrossRef]
- Porse, E.; Pincetl, S. Effects of Stormwater Capture and Use on Urban Streamflows. Water Resour. Manag. 2019, 33, 713–723. [Google Scholar] [CrossRef]
- Paredes, I.; Otero, N.; Soler, A.; Green, A.J.; Soto, D.X. Agricultural and urban delivered nitrate pollution input to Mediterranean temporary freshwaters. Agric. Ecosyst. Environ. 2020, 294, 106859. [Google Scholar] [CrossRef]
- Pistocchi, A. A preliminary pan-European assessment of pollution loads from urban runoff. Environ. Res. 2020, 182, 109129. [Google Scholar] [CrossRef]
- Kondracki, J. Geografia Regionalna Polski; Wydawn Naukowe PWN: Warsaw, Poland, 2009. [Google Scholar]
- Bednarek, R.; Prusinkiewicz, Z. Geografia Gleb; PWN: Warsaw, Poland, 1999. [Google Scholar]
- Hermanowicz, W.; Dojlido, J.R.; Dożańska, W.; Koziorowski, B.; Zerbe, J. Fizyczno-Chemiczne Badanie Wody i Ścieków; Wydawnictwo Arkady: Warsaw, Poland, 1999. [Google Scholar]
- Baiamonte, G. SCS Curve Number and Green-Ampt Infiltration Models. J. Hydrol. Eng. 2019, 24, 04019034. [Google Scholar] [CrossRef]
- Jusik, S.; Szoszkiewicz, K. Możliwości wykorzystania systemu River Habitat Survey (RHS) na potrzeby wdrażania Ramowej Dyrektywy Wodnej w Polsce. Possibilities of use of the River Habitat Survey to the needs of Water Framework Directive in Poland. Acta Sci. Polonorum. Form. Circumiectus 2010, 9, 23–34. [Google Scholar]
- Raven, P.; Holmes; Dawson, F.; Fox, P.J.A.; Everard, M.; Fozzard, K.J.R. River Habitat Quality: The Physical Character of Rivers and Stream in the UK and Isle of Man; River Habitat Survey Report No. 2; Environment Agency: Bristol, UK, 1998. [Google Scholar]
- Szoszkiewicz, K.; Jusik, S.; Lawniczak, A.E.; Zgola, T. Macrophyte development in unimpacted lowland rivers in Poland. Hydrobiologia 2010, 656, 117–131. [Google Scholar] [CrossRef] [Green Version]
- StatSoft. Elektroniczny Podręcznik Statystyki PL, Kraków. 2006. Available online: http://www.statsoft.pl/textbook/stathome.html (accessed on 30 September 2022).
- Rangel, T.F.; Diniz, J.A.F.; Bini, L.M. SAM: A comprehensive application for Spatial Analysis in Macroecology. Ecography 2010, 33, 46–50. [Google Scholar] [CrossRef]
- Kincaid, D.W.; Seybold, E.C.; Adair, E.C.; Bowden, W.B.; Perdrial, J.N.; Vaughan, M.C.H.; Schroth, A.W. Land Use and Season Influence Event-Scale Nitrate and Soluble Reactive Phosphorus Exports and Export Stoichiometry from Headwater Catchments. Water Resour. Res. 2020, 56, e2020WR027361. [Google Scholar] [CrossRef]
- Lepeska, T.; Wojkowski, J.; Walega, A.; Mlynski, D.; Radecki-Pawlik, A.; Olah, B. Urbanization-Its Hidden Impact on Water Losses: Pradnik River Basin, Lesser Poland. Water 2020, 12, 1958. [Google Scholar] [CrossRef]
- Aboelnour, M.; Gitau, M.W.; Engel, B.A. Hydrologic Response in an Urban Watershed as Affected by Climate and Land-Use Change. Water 2019, 11, 1603. [Google Scholar] [CrossRef] [Green Version]
- Kanownik, W.; Rajda, W. Źródła zanieczyszczenia wód powierzchniowych w zlewni potoku Sudół Dominikański. Sources of surface water pollution in Sudol Dominikanski stream catchment. Acta Sci. Pol. Form. Circumiectus 2008, 7, 3–14. [Google Scholar]
- Miler, A.; Liberacki, D.; Plewiński, D. Ilościowa i jakościowa ocena odpływu z dwu kontrastowych pod względem zalesienia mikrozlewni nizinnych. Zesz. Nauk. AR Kraków 2000, 365, 435–444. [Google Scholar]
- Yi, L.; Xiaolan, Y.; Hongbing, C.; Weili, L.; Jie, T.; Shufeng, W. Chemical characteristics of precipitation at three Chinese regional background stations from 2006 to 2007. Atmos. Res. 2010, 96, 173–183. [Google Scholar] [CrossRef]
- Ozeki, T.; Ihara, T.; Ogawa, N. Study of pollutants in precipitation (rain and snow) transported long distance to west coasts of Japan Islands using oblique rotational factor analysis with partially non-negative constraint. Chemom. Intell. Lab. Syst. 2006, 82, 15–23. [Google Scholar] [CrossRef]
- Butler, T.J.; Likens, G.E.; Vermeylen, F.M.; Stunder, B.J.B. The relation between NOx emissions and precipitation NO3− in the eastern USA. Atmos. Environ. 2003, 37, 2093–2104. [Google Scholar] [CrossRef]
- Durkowski, T.; Wesolowski, P. Kształtowanie się odpływu wody i zanieczyszczeń z małych zlewni rolniczych. Zesz. Probl. Postępów Nauk Rol. 2008, 528, 41–47. [Google Scholar]
- Olszewska, B.; Krzeminska, A. Jakość wód rzeki Jeziorki w latach 1995–2003. Jeziorka stream water quality in the years 1995–2003. Zesz. Probl. Postępów. Nauk. Rol. 2008, 528, 105–114. [Google Scholar]
- Szoszkiewicz, K.; Gebler, D. Ocena warunków hydromorfologicznych rzek w Polsce metodą River Habitat Survey. Ochr. Sr. Zasobów Nat. 2011, 47, 70–81. [Google Scholar]
- Misztal, A.; Kuczera, M. An Impact Assessment of Built-Up Residential Areas on Selected Water Quality Indexes. Pol. J. Environ. Stud. 2008, 17, 985–991. [Google Scholar]
- Chang, H. Spatial analysis of water quality trends in the Han River basin, South Korea. Water Res. 2008, 42, 3285–3304. [Google Scholar] [CrossRef]
- Liu, M.; Han, G.L.; Li, X.Q. Comparative analysis of soil nutrients under different land-use types in the Mun River basin of Northeast Thailand. J. Soils Sediments 2021, 21, 1136–1150. [Google Scholar] [CrossRef]
- Blaszczak, J.R.; Delesantro, J.M.; Urban, D.L.; Doyle, M.W.; Bernhardt, E.S. Scoured or suffocated: Urban stream ecosystems oscillate between hydrologic and dissolved oxygen extremes. Limnol. Ocean. 2019, 64, 877–894. [Google Scholar] [CrossRef] [Green Version]
- Puckett, L.J. Identifying the major sources of nutrient water-pollution. Environ. Sci. Technol. 1995, 29, 408A–414A. [Google Scholar] [CrossRef]
- Parry, R. Agricultural phosphorus and water quality: A US Environmental Protection Agency perspective. J. Environ. Qual. 1998, 27, 258–261. [Google Scholar] [CrossRef]
- Banasik, K.; Rudzka, E.; Smietanka, A. Eutroficzne wskaźniki zanieczyszczeń w odpływie rzecznym z małej zlewni rolniczej. Przegląd Nauk. Wydziału Melior. Inżynierii Sr. 1996, 11, 23–28. [Google Scholar]
- Kopeć, S.; Krzanowski, S. Ocena udziału zanieczyszczeń rolniczych Beskidu Wyspowego i Żywieckiego w zanieczyszczeniach rzek tego regionu. In Rolnicza Przestrzeń Produkcyjna Beskidu Wyspowego i Żywieckiego, a Jakość Wody; Wydawnictwo AR Kraków: Krakow, Poland, 1994; pp. 143–156. [Google Scholar]
- Pekarova, P.; Pekar, J. The impact of land use on stream water quality in Slovakia. J. Hydrol. 1996, 180, 333–350. [Google Scholar] [CrossRef]
- Arheimer, B.; Liden, R. Nitrogen and phosphorus concentrations from agricultural catchments—Influence of spatial and temporal variables. J. Hydrol. 2000, 227, 140–159. [Google Scholar] [CrossRef]
- Choo, Y.M.; Jo, D.J.; Yun, G.S.; Lee, E.H. A Study on the Improvement of Flood Forecasting Techniques in Urban Areas by Considering Rainfall Intensity and Duration. Water 2019, 11, 1883. [Google Scholar] [CrossRef] [Green Version]
- Balthazard-Accou, K.; Emmanuel, E.; Agnamey, P.; Raccurt, C. Pollution of Water Resources and Environmental Impacts in Urban Areas of Developing Countries: Case of the City of Les Cayes (Haiti). In Environmental Health—Management and Prevention Practices; Makan, A., Ed.; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef] [Green Version]
- Faridatul, M.I.; Wu, B.; Zhu, X.L. Assessing long-term urban surface water changes using multi-year satellite images: A tale of two cities, Dhaka and Hong Kong. J. Environ. Manag. 2019, 243, 287–298. [Google Scholar] [CrossRef]
- De Figueiredo, H.P.; De Figueiredo, C.R.P.; Barros, J.H.D.; Constantino, M.; Magalhaes, F.J.C.; De Moraes, P.M.; Da Costa, R.B. Water quality in an urban environmental protection area in the Cerrado Biome, Brazil. Environ. Monit. Assess. 2019, 191, 117. [Google Scholar] [CrossRef]
- Alamdari, N.; Sample, D.J.; Ross, A.C.; Easton, Z.M. Evaluating the Impact of Climate Change on Water Quality and Quantity in an Urban Watershed Using an Ensemble Approach. Estuaries Coasts 2020, 43, 56–72. [Google Scholar] [CrossRef]
- Bao, L.L.; Li, X.Y.; Su, J.J. Alteration in the potential of sediment phosphorus release along series of rubber dams in a typical urban landscape river. Sci. Rep. 2020, 10, 2714. [Google Scholar] [CrossRef] [Green Version]
- Blaszczak, J.R.; Delesantro, J.M.; Zhong, Y.; Urban, D.L.; Bernhardt, E.S. Watershed urban development controls on urban streamwater chemistry variability. Biogeochemistry 2019, 144, 61–84. [Google Scholar] [CrossRef]
- Alamdari, N.; Sample, D.J. A multiobjective simulation-optimization tool for assisting in urban watershed restoration planning. J. Clean. Prod. 2019, 213, 251–261. [Google Scholar] [CrossRef]
- Rajda, W.; Natkaniec, J. Jakość wody odpływającej z mikrozlewni podgórskiej o zróżnicowanym użytkowaniu. Quality of water drain from differently managed submontane watershed. Zesz. Nauk. Akad. Rol. Krakowie. Inżynieria Sr. 2001, 21, 33–40. [Google Scholar]
- Ostrowski, K.; Bogdal, A.; Natkaniec, J. Wybrane cechy fizykochemiczne wód opadowych. Selected physicochemical properties of rainwaters. Zesz. Nauk. Akad. Rol. Krakowie. Inżynieria Sr. 2000, 20, 15–27. [Google Scholar]
- Fernandes, A.C.P.; Fernandes, L.F.S.; Cortes, R.M.V.; Pacheco, F.A.L. The Role of Landscape Configuration, Season, and Distance from Contaminant Sources on the Degradation of Stream Water Quality in Urban Catchments. Water 2019, 11, 2025. [Google Scholar] [CrossRef] [Green Version]
- Baek, S.S.; Ligaray, M.; Pyo, J.; Park, J.P.; Kang, J.H.; Pachepsky, Y.; Chun, J.A.; Cho, K.H. A novel water quality module of the SWMM model for assessing low impact development (LID) in urban watersheds. J. Hydrol. 2020, 586, 124886. [Google Scholar] [CrossRef]
- Gao, W.; Duan, Z.Z.; Yan, C.A.; Liu, C.G. Influence of nutrient mitigation measures on the fractional export of watershed inputs in an urban watershed. Environ. Sci. Pollut. Res. 2020, 27, 18521–18529. [Google Scholar] [CrossRef]
- Beal, L.; Senison, J.; Banner, J.; Musgrove, M.; Yazbek, L.; Bendik, N.; Herrington, C.; Reyes, D. Stream and Spring Water Evolution in a Rapidly Urbanizing Watershed, Austin, TX. Water Resour. Res. 2020, 56, e2019WR025623. [Google Scholar] [CrossRef]
- Bradshaw, J.L.; Osorio, M.; Schmitt, T.G.; Luthy, R.G. System Modeling, Optimization, and Analysis of Recycled Water and Dynamic Storm Water Deliveries to Spreading Basins for Urban Groundwater Recharge. Water Resour. Res. 2019, 55, 2446–2463. [Google Scholar] [CrossRef]
- Abdi, R.; Endreny, T.; Nowak, D. A model to integrate urban river thermal cooling in river restoration. J. Environ. Manag. 2020, 258, 110023. [Google Scholar] [CrossRef]
- Forrest, N.; Stein, Z.; Wiek, A. Transferability and scalability of sustainable urban water solutions—A case study from the Colorado River Basin. Resour. Conserv. Recycl. 2020, 157, 104790. [Google Scholar] [CrossRef]
- Jarosińska, E.; Gołda, K. Increasing natural retention—Remedy for current climate change in urban area. Urban Clim. 2020, 34, 100695. [Google Scholar] [CrossRef]
- Fashae, O.A.; Ayorinde, H.A.; Olusola, A.O.; Obateru, R.O. Landuse and surface water quality in an emerging urban city. Appl. Water Sci. 2019, 9, 25. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Wang, S.; Liu, H.; Nguyen, V.; Han, W. The critical curve for shallow saturated zone in soil slope under rainfall and its prediction for landslide characteristics. Bull. Eng. Geol. Environ. 2021, 80, 1927–1945. [Google Scholar] [CrossRef]
- Frazar, S.; Gold, A.J.; Addy, K.; Moatar, F.; Birgand, F.; Schroth, A.W.; Kellogg, D.Q.; Pradhanang, S.M. Contrasting behavior of nitrate and phosphate flux from high flow events on small agricultural and urban watersheds. Biogeochemistry 2019, 145, 141–160. [Google Scholar] [CrossRef]
- De Jesus-Crespo, R.; Ramirez, A. The use of a Stream Visual Assessment Protocol to determine ecosystem integrity in an urban watershed in Puerto Rico. Phys. Chem. Earth 2011, 36, 560–566. [Google Scholar] [CrossRef]
- Huang, Y.J.; Tian, Z.; Ke, Q.; Liu, J.G.; Irannezhad, M.; Fan, D.L.; Hou, M.F.; Sun, L.X. Nature-based solutions for urban pluvial flood risk management. WIREs Water 2020, 7, e1421. [Google Scholar] [CrossRef]
- Cipoletti, N.; Jorgenson, Z.G.; Banda, J.A.; Hummel, S.L.; Kohno, S.; Schoenfuss, H.L. Land Use Contributions to Adverse Biological Effects in a Complex Agricultural and Urban Watershed: A Case Study of the Maumee River. Environ. Toxicol. Chem. 2019, 38, 1035–1051. [Google Scholar] [CrossRef]
- Kang, J.H.; Park, M.H.; Ha, S.J.; Stenstrom, M.K. An empirical modeling approach to predicting pollutant loads and developing cost-effective stormwater treatment strategies for a large urban watershed. Sci. Total Environ. 2020, 760, 143388. [Google Scholar] [CrossRef]
- Chen, Z.; Wu, G.; Wu, Y.; Wu, Q.; Shi, Q.; Ngo, H.H.; Vargas Saucedo, O.A.; Hu, H.Y. Water Eco-Nexus Cycle System (WaterEcoNet) as a key solution for water shortage and water environment problems in urban areas. Water Cycle 2020, 1, 71–77. [Google Scholar] [CrossRef]
- Yu, W.Y.; Zhao, L.S.; Fang, Q.; Hou, R. Contributions of runoff from paved farm roads to soil erosion in karst uplands under simulated rainfall conditions. Catena 2021, 196, 104887. [Google Scholar] [CrossRef]
- Jebamalar, A.; Sudharsanan, R.; Ravikumar, G.; Eslamian, S. Rainwater Harvesting Impact on Urban Groundwater. In Handbook of Water Harvesting and Conservation: Basic Concepts and Fundamentals; Eslamian, S., Eslamian, F., Eds.; John Wiley and Sons: Hoboken, NJ, USA, 2021; pp. 207–224. [Google Scholar]
- Choi, J.; Kim, K.; Sim, I.; Lee, O.; Kim, S. Cost-Effectiveness Analysis of Low-Impact Development Facilities to Improve Hydrologic Cycle and Water Quality in Urban Watershed. J. Korean Soc. Water Environ. 2020, 36, 206–219. [Google Scholar] [CrossRef]
- Hosseiny, H.; Crimmins, M.; Smith, V.B.; Kremer, P. A Generalized Automated Framework for Urban Runoff Modeling and Its Application at a Citywide Landscape. Water 2020, 12, 357. [Google Scholar] [CrossRef] [Green Version]
- Grimley, L.E.; Quintero, F.; Krajewski, W.F. Streamflow Predictions in a Small Urban-Rural Watershed: The Effects of Radar Rainfall Resolution and Urban Rainfall-Runoff Dynamics. Atmosphere 2020, 11, 774. [Google Scholar] [CrossRef]
- Frot, E.; van Wesemael, B.; Benet, A.S.; House, M.A. Water harvesting potential in function of hillslope characteristics: A case study from the Sierra de Gador (Almeria province, south-east Spain). J. Arid Environ. 2008, 72, 1213–1231. [Google Scholar] [CrossRef]
- Frot, E.; Van Wesemael, B. Predicting runoff from semi-arid hillslopes as source areas for water harvesting in the Sierra de Gador, southeast Spain. Catena 2009, 79, 83–92. [Google Scholar] [CrossRef]
- Jimenez, M.; Perez-Belmont, P.; Schewenius, M.; Lerner, A.M.; Mazari-Hiriart, M. Assessing the historical adaptive cycles of an urban social-ecological system and its potential future resilience: The case of Xochimilco, Mexico City. Reg. Environ. Chang. 2020, 20, 7. [Google Scholar] [CrossRef]
- Kozak, D.; Henderson, H.; Mazarro, A.D.; Rotbart, D.; Aradas, R. Blue-Green Infrastructure (BGI) in Dense Urban Watersheds. The Case of the Medrano Stream Basin (MSB) in Buenos Aires. Sustainability 2020, 12, 2163. [Google Scholar] [CrossRef] [Green Version]
- Song, S.; Albert, C.; Prominski, M. Exploring integrated design guidelines for urban wetland parks in China. Urban For. Urban Green. 2020, 53, 26712. [Google Scholar] [CrossRef]
Parameter | Urban Area | Suburban Area | Rural Area | |
---|---|---|---|---|
pH | - | 7.90 | 8.10 | 8.17 |
EC | µS∙cm−1 | 811 | 454 | 236 |
DO | mg∙dm−3 | 8.38 | 10.47 | 11.40 |
PO43− | mg∙dm−3 | 0.84 | 0.03 | 0.04 |
NH4+ | mg∙dm−3 | 6.85 | 0.01 | <0.001 |
NO2− | mg∙dm−3 | 0.20 | 0.04 | 0.01 |
NO3− | mg∙dm−3 | 8.3 | 1.9 | 1.8 |
SO42− | mg∙dm−3 | 70.4 | 40.9 | 17.9 |
Cl− | mg∙dm−3 | 54.2 | 9.5 | 2.1 |
Ca2+ | mg∙dm−3 | 107.0 | 65.0 | 44.0 |
Mg2+ | mg∙dm−3 | 20.8 | 18.2 | 5.42 |
Na+ | mg∙dm−3 | 28.3 | 9.8 | 5.2 |
K+ | mg∙dm−3 | 9.9 | 2.1 | 1.5 |
FeTot | mg∙dm−3 | 0.43 | 0.55 | 0.13 |
Mn2+ | mg∙dm−3 | 0.14 | 0.09 | 0.02 |
TDS | mg∙dm−3 | 605 | 324 | 166 |
TSS | mg∙dm−3 | 18.2 | 6.2 | 4.5 |
Parameter | Urban Area | Suburban Area | Rural Area | |
---|---|---|---|---|
pH | - | 5.5 | 5.0 | 4.9 |
EC | µS∙cm−1 | 33.0 | 19.0 | 19.0 |
DO | mg∙dm−3 | - | - | - |
PO43− | mg∙dm−3 | 0.43 | 0.19 | 0.15 |
NH4+ | mg∙dm−3 | 1.77 | 1.04 | 0.95 |
NO2− | mg∙dm−3 | 0.10 | 0.04 | 0.03 |
NO3− | mg∙dm−3 | 3.20 | 2.10 | 2.60 |
SO42− | mg∙dm−3 | 3.30 | 5.00 | 2.60 |
Cl− | mg∙dm−3 | 1.70 | 0.80 | 0.70 |
Ca2+ | mg∙dm−3 | 2.10 | 0.80 | 1.00 |
Mg2+ | mg∙dm−3 | 0.30 | 0.10 | 0.10 |
Na+ | mg∙dm−3 | 0.30 | 0.20 | 0.20 |
K+ | mg∙dm−3 | 0.50 | 0.60 | 0.20 |
FeTot | mg∙dm−3 | 0.40 | 0.20 | 0.10 |
Mn2+ | mg∙dm−3 | 0.05 | 0.03 | 0.02 |
TDS | mg∙dm−3 | 26.0 | 21.0 | 21.0 |
TSS | mg∙dm−3 | 2.90 | 3.10 | 3.40 |
Variable | OLS Coefficient | SAR Coefficient | Standard Coefficient | Standard Error | t | p |
---|---|---|---|---|---|---|
Urban area | ||||||
Constant | 12.532 | −23.082 | 2.452 | 0.241 | 0.923 | 0.834 |
NO3− | 23.792 | 7.862 | 1.313 | 0.271 | 6.722 | 0.013 |
SO42− | 4.552 | 16.972 | 0.883 | 1.341 | 2.562 | 0.045 |
PO4− | 11.432 | 5.252 | 0.123 | 1.893 | 1.003 | 0.039 |
Cl− | 0.342 | 0.762 | 0.021 | 0.631 | 0.232 | 0.032 |
Suburban area | ||||||
Constant | 53.382 | −85.981 | 0.831 | - | - | 0.643 |
NO3− | 1.723 | 1.252 | 1.311 | 0.273 | 6.721 | <0.001 |
Mg2+ | 24.933 | −02.973 | −0.741 | - | - | 0.041 |
Ca2+ | −32.553 | 22.891 | 0.883 | - | - | 0.021 |
PO4− | 0.073 | 0.0253 | <0.001 | 5.162 | 0.005 | 0.009 |
Cl− | <0.001 | <0.001 | −0.042 | <0.001 | −0.24 | 0.079 |
Rural area | ||||||
Constant | 12.942 | 56.342 | 0.132 | 0.042 | 1.092 | 0.028 |
NO3− | 11.052 | 2.752 | 0.092 | 0.272 | 6.642 | 0.002 |
Mg2+ | 14.683 | −1.083 | −0.972 | 0.033 | 3.973 | 0.007 |
Ca2+ | −2.542 | 1.893 | −0.782 | 0.363 | 2.673 | 0.043 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Halecki, W.; Stachura, T.; Fudała, W. Capacity of River Valleys to Retain Nutrients from Surface Runoff in Urban and Rural Areas (Southern Poland). Water 2022, 14, 3259. https://doi.org/10.3390/w14203259
Halecki W, Stachura T, Fudała W. Capacity of River Valleys to Retain Nutrients from Surface Runoff in Urban and Rural Areas (Southern Poland). Water. 2022; 14(20):3259. https://doi.org/10.3390/w14203259
Chicago/Turabian StyleHalecki, Wiktor, Tomasz Stachura, and Wioletta Fudała. 2022. "Capacity of River Valleys to Retain Nutrients from Surface Runoff in Urban and Rural Areas (Southern Poland)" Water 14, no. 20: 3259. https://doi.org/10.3390/w14203259
APA StyleHalecki, W., Stachura, T., & Fudała, W. (2022). Capacity of River Valleys to Retain Nutrients from Surface Runoff in Urban and Rural Areas (Southern Poland). Water, 14(20), 3259. https://doi.org/10.3390/w14203259