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Abstract: This research presents a fully automated framework for runoff estimation, applied to
Philadelphia, Pennsylvania, a major urban area. Trends in global urbanization are exacerbating
stormwater runoff, making it an increasingly critical challenge in urban areas. Understanding the
fine-scale spatial distribution of local flooding is difficult due to the complexity of the urban landscape
and lack of measured data, but it is critical for urban management and development. A one-meter
resolution Digital Elevation Model (DEM) was used in conjunction with a model developed by using
ArcGIS Pro software to create urban micro-subbasins. The DEM was manipulated to account for
roof drainage and stormwater infrastructure, such as inlets. The generated micro-subbasins paired
with 24-h storm data with a 10-year return period taken from the National Resources Conservation
Service (NRCS) for the Philadelphia area was used to estimate runoff. One-meter land-cover and
land-use data were used to estimate pervious and impervious areas and the runoff coefficients for
each subbasin. Peak runoff discharge and runoff depth for each subbasin were then estimated by
the rational and modified rational methods and the NRCS method. The inundation depths from
the NRCS method and the modified rational method models were compared and used to generate
percent agreement, maximum, and average of inundation maps of Philadelphia. The outcome of this
research provides a clear picture of the spatial likelihood of experiencing negative effects of excessive
precipitation, useful for stormwater management agencies, city managers, and citizen.
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1. Introduction

Urban development directly impacts the hydraulic function of watersheds due to changes in land
cover and land use and is characterized by increases in impervious areas. Such changes are reflected
in alterations to hydrological parameters in watersheds including inundation depth, runoff volume,
and the peak discharge of runoff, since impervious areas are the main contributors to surface runoff

in urban areas [1,2]. Specifically, increases in impervious areas reduce water travel time through the
watershed, thus changing the hydrograph of the watershed, increasing the volume and peak runoff [3]
linearly and exponentially, respectively [4].

Urban areas are growing globally, and it is now estimated that 70% of the world’s population will
reside in urban areas by 2050 [5]. Alteration of hydrographs due to urban growth makes urban areas
increasingly susceptible to disruption of key city features and may adversely impact the economy, as
well as the health of the environment [6,7].
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Estimation of precipitation runoff in urban areas is a major challenge and critically important to
city planners, as it affects the daily life of many residents directly and indirectly [8]. For instance, heavy
precipitation and high runoff adversely impact traffic flow and the sustainability of city infrastructure.

Quantification of storm runoff is a key factor in the assessment of many environmental processes, such
as sediment and pollution transport, and erosion or deposition of the sediment in the watershed [9–12].
Measuring runoff data at large geographic scales is expensive and challenging. As a result, availability of
large-scale runoff data is limited. Hence, there is growing interest in developing surface runoff models
for current and future scenarios [13,14], allowing for a comprehensive analysis over a large continuous
area. Model automation is crucial in such scenarios to allow for processing over large geographic areas by
reducing the computation required, potential for error, and work time. Streamlining the processes enables
analysis over large continuous spaces, with high-resolution topographic data, previously unattainable.

Subbasins are the preferred hydrological unit for runoff estimation because urban hydraulics is
limited by stormwater inlets. Previous studies have shown that spatial processing of high-resolution
topographic data is a powerful tool for subbasin delineation [15–17]. Hans et al. [18] demonstrated that
identified streams and subbasins are quite sensitive to topographic data resolution. More specifically,
low-resolution topographic data do not capture the effects of roads and small drains on flow lines in
small watersheds [18,19]. Ji and Qiuwen [16] used modified elevation data to account for the effects of
roads, buildings, and conduits on main flow paths in small urban areas. They assumed that the roads
and conduits are the main flow path of runoff [16]. The subbasin delineation in these studies are based
solely on topographic data, and urban inlets are not considered.

Runoff estimation for large scale watersheds in urban areas is challenging due to the dynamics of
parameters affecting surface runoff, including elevation, land cover, and land use. However, simple
models for runoff estimation can accurately predict daily event runoff [20,21]. The rational [22]
and National Resources Conservation Service (NRCS) methods [3] are two simple, widely accepted,
empirically-based models for runoff estimation [23–25]. The rational method was originally developed
to assist with the design of sewer and drainage structures by providing an estimated maximum runoff

discharge [22,25]. The modified rational method [26] can convert the peak discharge into the volume of
runoff by simplifying hydrographs to either a triangular or rectangular runoff hydrograph associated
with a design storm [25]. Alternatively, the NRCS method directly estimates runoff depth. The NRCS
method is based on the land and soil characteristics of a basin, presented by a curve number (CN).
The CN represents the capacity of the soil to absorb generated runoff.

This manuscript presents a fully automated framework to (1) delineate micro-subbasins in a fully
urbanized watershed and to (2) estimate the surface runoff for those subbasins by using both the (a)
rational and modified rational and (b) NRCS methods. The framework was applied and tested on
Philadelphia, a major urban area with frequent flooding issues [27]. In addition, a framework was
defined to create runoff base maps for the study area. Such maps aid city managers and residents with
identifying critical areas in their local watershed(s), to prioritize required services during flood events.
However, the novelty of this work is the integrated methodology and type of data used in this study.
The delineated micro-subbasins in the urban environment for each individual stormwater inlet at a
citywide scale, coupled with multiple runoff models, result in a unique runoff simulation for the whole
city. While such data are scarce, the current framework provides an approach and output required for
many other research topics, including social and environmental vulnerability throughout the city to
flooding, and green stormwater infrastructure (GSI) effects on runoff reduction.

2. Methodology

The primary goal of this research was to estimate runoff in a fully urbanized watershed. Subbasins
are the hydrologic units in runoff estimation, and, therefore, the first step is to identify them. This was
accomplished through a model developed in Esri’s ArcGIS Pro 2.4 software [28], using Arc Hydro
extension [29].
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The model incorporated high-resolution topography, building footprints, green infrastructure,
and stormwater inlets to delineate micro-subbasins for each individual inlet [30,31]. Once subbasins
were delineated, the NRCS [32] and modified rational [33] methods were used to estimate surface
runoff for each subbasin. To identify areas in the city vulnerable to runoff, runoff depths obtained from
both models were integrated and mapped for the whole study area.

2.1. Study Area

The study area for this research is the administrative boundaries of Philadelphia, Pennsylvania,
a metropolitan city located in the Mid-Atlantic region on the east coast of the US, with a population of
more than 1.5 million [34]. The city is highly urbanized, with paved areas accounting for more than
61% of its land cover. Table 1 shows land cover types and the percentage of each class in the study
area, based on the one-meter land-cover data [35,36].

Table 1. Land types and their coverages within the city of Philadelphia.

Land Type Area (km2) Coverage (%)

Tree Canopy 74.4 20.2

Grass/Shrub 34.8 9.5

Bare Soil 24.4 6.6

Water 22.5 6.1

Buildings 103.7 28.2

Roads/Railroads 65.0 17.7

Other Paved Surfaces 42.8 11.6

The mean annual precipitation in the city exceeds 1000 mm (40 inches) [37], causing major flooding
in the city at least 12 days per year [27,38]. However, the flooding in the city is predicted to increase up
to 30–105 days per year by 2050 [27].

In June 2019, a 12 cm precipitation event and flash flood occurred in Philadelphia. As a result,
many people were stranded and required assistance from first responders and rescue personnel [39].
As heavy precipitation events in Philadelphia become more prevalent [27] and urban area increases [5],
there is expected to be an increase in social demand for flood protection and rescue. This emphasizes
the importance of identifying areas vulnerable to flood inundation in urban settings and working
toward more efficient stormwater-management strategies for such areas.

The city has a cutting-edge stormwater-management program that promotes research, design,
implementation, and maintenance of GSI in urban areas. In addition, there are strict design requirements
for stormwater mitigation projects in the city [35]. Nevertheless, urban areas in the city have increased
by 11% from 2008 to 2015, while natural areas have decreased by 15%. Philadelphia has a robust and
relatively comprehensive online open data platform, which allows access to data necessary for this
research. The study area for this research is confined to the city boundary, as shown in Figure 1, due to
data availability restrictions.
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Figure 1. The study area of this research is limited to the City of Philadelphia, PA. 

2.2. Input Data 

High-resolution topographic data, preferably one-meter DEM, are required to properly detect 
flow lines in urban areas [31]. Required data for this study were obtained and integrated from 
multiple sources, including OpenDataPhilly and the Pennsylvania Spatial Data Access (PASDA) 
database [40,41]. A summary of the datasets used in this analysis is provided in Table 2. 
  

Figure 1. The study area of this research is limited to the City of Philadelphia, PA.

2.2. Input Data

High-resolution topographic data, preferably one-meter DEM, are required to properly detect
flow lines in urban areas [31]. Required data for this study were obtained and integrated from multiple
sources, including OpenDataPhilly and the Pennsylvania Spatial Data Access (PASDA) database [40,41].
A summary of the datasets used in this analysis is provided in Table 2.

Table 2. Summary of study datasets.

Data Type Spatial Resolution (m) Created by Source

Digital Elevation
Model (DEM) 2015 Raster 1 City of Philadelphia PASDA [42]

Drainage Inlets Shape file - Philadelphia Water
Department

OpenDataPhilly
[43]

Municipal
Boundary Shape file - Philadelphia Department of

Planning and Development
OpenDataPhilly

[43]
Hydrologic

Features Shape file - Philadelphia Water
Department

OpenDataPhilly
[43]

Building Footprints Shape file -

Philadelphia Department of
Licenses and Inspections and

Office of Innovation and
Technology

OpenDataPhilly
[43]

Land cover 2015 Raster 1 Villanova University [35,36]
Curve Number Raster 1 Villanova University [36]

GSI Locations Shape file - Philadelphia Water
Department

OpenDataPhilly
[43]
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2.3. Micro-Subbasin Delineation

Previous research has demonstrated proof-of-concept for delineating micro-subbasins by using
high-resolution DEMs [30]. However, such studies did not account for drainage inlet location when
delineating subbasins [30]. This research builds upon the methodology established in past research but
goes one step further by delineating a subbasin for each drainage inlet in Philadelphia. Using ArcPro,
the one-meter DEM of Philadelphia was preprocessed in order to create a hydrologically correct DEM.
First, the “Fill Sinks” tool was used to smooth the base DEM surface. Drainage inlet and GSI features
were buffered by 1 and 0.3 m (3 and 1 feet), respectively. The buffered features and a building footprint
feature class were then assigned elevation values and converted to separate raster files. The resulting
rasters were then mosaicked with the smoothed base DEM. Inlet and GSI features were sunk into the
DEM by 1.5 m (5 feet), while buildings were raised by 9.1 m (30 feet).

Next, the mosaicked DEM was processed by using the “Dendritic Terrain with Unknown Stream
Location” workflow in the ArcHydro toolbox. This workflow generates numerous hydrologic outputs,
including flow direction and accumulation rasters, stream lines, drainage lines, and drainage catchment
polygons. The resulting flow-accumulation raster was used as an input into the “Snap Pour Points”
tool, to snap to the highest flow accumulation value within a given distance of each drainage inlet.
The selected snapping distance was determined by Equation (1):

D = x
√

2, (1)

where D is the snapping distance, and x is the cell size of the flow accumulation raster. The D in
Equation (1) is also equivalent to the hypotenuse of a triangle bounded by two adjacent sides of a
raster cell. Using this snap distance ensures that each pour point will be snapped to the cell with the
highest flow accumulation value within a one-cell radius of each inlet. The “Watershed” tool was used
to delineate watersheds for each snapped inlet pour point in a raster file, which was subsequently
converted to a polygon feature class. It should be noted that subbasins were delineated based on
the identified flow direction within each subbasin and, therefore, did not account for the waterflow
between subbasins. The inlet feature class attribute table was then combined with the newly created
inlet watershed feature class, using a series of joins. Finally, a building footprint feature class was used
to erase all buildings from the inlet watershed polygons. Runoff related to buildings is removed in this
analysis because it is assumed that most roof drainage systems in Philadelphia capture runoff from
rooftops and route it directly into the stormwater drainage system via roof gutters.

2.4. Surface Runoff

Estimating surface runoff at a citywide scale can be carried out via computation within microscale
sub-watersheds. This implies the need for use of high-resolution topographic data (less than or equal
to one meter) to capture the flow lines within the urban areas.

2.4.1. Design Storm

A standard NRCS 10-year design storm for Philadelphia was selected for this study based on
Philadelphia Water Department guidelines [44] for the city inlet and sewer system design. The rainfall
distribution of a 24-h storm is presented in Table 3.
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Table 3. NRCS 10-year, 24-h design storm for Philadelphia, PA.

Duration 10-year Precipitation (mm) Intensity (mm/h)

5 min 14.7 176.8
10 min 22.9 137.2
15 min 28.2 112.8
30 min 39.6 79.2

1 h 51.6 51.6
2 h 62.5 31.2
3 h 68.8 22.9
6 h 86.4 14.4

12 h 106.7 8.9
24 h 125.7 5.2

2.4.2. Modified Rational Method

The rational method formula is an empirical relation that estimates the peak runoff discharge
associated with a specific storm, and it is defined as follows:

Qp = m C i A, (2)

where Qp is the peak discharge, m is the unit adjustment coefficient, C is the runoff coefficient, i is
the rainfall intensity, and A is the area [25]. The runoff coefficient shows how much of the rainfall is
converted to surface runoff and is defined as the ratio of the runoff depth to the precipitation depth,
varying from zero to one [45]. In urban areas, the majority of rainfall is converted to runoff due to the
prevalence of impervious surfaces, suggesting a C value typically closer to one.

In this research, one-meter land-cover data of Philadelphia were used to reclassify the surface of
each subbasin into two categories: pervious and impervious. Then, two runoff coefficients of 0.95 and
0.35 were assigned for impervious and pervious areas, respectively, as required by the Philadelphia
Water Department [44] for a conservative inlet design. These coefficients concur with the values used
in previous studies [46–48]. To account for the effective impervious areas [2] in the city for runoff

coefficient estimation, it was assumed that all the buildings footprints were not hydraulically connected
to the surface runoff, and, therefore, they were excluded from calculations. Eventually, the peak runoff

discharge was estimated by the following equation:

Qp =
[(

0.95 × Aimp
)
+

(
0.35 × Aper

)]
× i, (3)

where Aimp and Aper are impervious and pervious areas in each subbasin. In order to convert the peak
discharge into the volume of the runoff, a trapezoidal hydrograph with constant peak discharge for the
event duration was constructed. The time of concentration for inlets was considered five minutes [44]
and, therefore, less than the duration of the event. The volume of the runoff was estimated by the
following equation:

V = Qp D, (4)

where V is the volume of the runoff, and D is the duration of the storm [25]. GSIs slow water flow and
act as a buffer between impervious areas and urban grey infrastructure [49]. Hence, they can play a
crucial role in mitigating increased surface runoff [50]. The GSI watersheds in Philadelphia account for
0.7% of the total delineated area in the city. In this research, the rational method is used to show the
effects of GSIs on peak runoff discharge reduction by defining two scenarios of considering GSIs as (1)
pervious and (2) impervious. The difference between these scenarios quantifies and shows the effects
of GSIs on peak runoff reduction.
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2.4.3. NRCS Method

The NRCS method is a well-known and verified approach to predict runoff depth [14,24,51].
The runoff depth in this method is based on the rainfall, soil type, land use, and land cover characteristics,
which are encapsulated in NRCS curve numbers (CN). The curve number for a watershed inherits the
effects of soil type, vegetation cover, impervious areas, interception, and surface storage on runoff [3].
A higher curve number for a watershed indicates a greater likelihood that a watershed will generate
more runoff.

In this research, a one-meter resolution curve number raster file was used to estimate the average
curve number for each subbasin as follows:

CNAvg =
∑

CNi ×Ai /A, (5)

where CNi and Ai are the curve numbers and area, respectively, in each subbasin [3]. The CN raster file
was derived from the USDA’s TR-55 (1986) [3] based on soil type, land use, and land cover. The CN of
a few specific features in the urban landscape (i.e., community gardens and GSI installations) were
derived from the published literature [35,36]. The curve numbers were assumed to remain constant
through the event. Once the average CN was estimated for each subbasin, the maximum water
retention in each subbasin could be estimated as follows:

S =
1000

CNAvg
− 10, (6)

where S is the maximum water retention in a subbasin, in inches. The runoff depth for the event was
estimated by Equation (7):

Q =
(P− Ia)

2

(P− Ia) + S
, (7)

where Q and P are the runoff and precipitation depths in inches, respectively, and Ia is the initial
abstraction. By assuming initial abstraction on each subbasin is equal to 0.2 S [3], the runoff depth can
be estimated as follows:

Q =
(P− 0.2 S)2

(P + 0.8 S)
. (8)

2.5. Runoff Analysis Map

In this research, two different models—the modified rational and NRCS methods—were used to
estimate surface runoff depths within delineated subbasins (the waterflow between subbasins was not
considered). Since both models are widely used and verified, an integrative approach was used to
combine both model results, to show different aspects of estimated runoff depths. To do this, three
indices of ‘Agreement’, ‘Maximum’, and ‘Average’ were defined.

2.5.1. Agreement Index

The agreement index intends to show the probability of the surface runoff exceeding a given
threshold (Thr) predicted by the two models. The conditions used for defining the agreement index are
shown in Table 4.
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Table 4. The agreement index indicates the agreement between the modified rational and NRCS models.
The HRtl and HNRCS are the runoff depths estimated by the rational and NRCS methods, respectively,
and Thr is the threshold depth equal to 5 centimeters.

Condition Agreement (%)

(HRtl >Thr) AND (HNRCS > Thr) 100
(HRtl) OR (HNRCS) < Thr 50

(HRtl < Thr) AND (HNRCS < Thr) 0

A higher agreement between two models indicates greater confidence that surface runoff will
exceed the threshold. The threshold for surface runoff in this research was set to 5 centimeters,
indicating the initiation of flood conditions, supported by other literature [52].

2.5.2. Maximum Index

To show the highest possible runoff depth and the worst-case scenario for each subbasin, the
maximum factor was defined as the maximum water depth between two models:

Maximum = Maximum(HRtl , HNRCS) (9)

The maximum factor is an important index for situations where the consequences of excessive
runoff are dire. For instance, the maximum index can be used to find areas in the city that are dangerous
for driving through during the storm, due to high inundation levels.

2.5.3. Average Index

The average index combines the results of both models and was defined as the average runoff

depth predicted by both models:

Average = 0.5× (HRtl + HNRCS) (10)

Areas with higher average index indicate that both models, on average, predict high levels of
surface runoff.

3. Results

In total, 80,453 subbasins were identified in Philadelphia, with mean and median areas of 2935
and 204 square meters, respectively. More than 76 percent of the subbasins fall below the average area,
while about 50 percent of the subbasins are below the median. This implies that the area of subbasins
is positively skewed, with a large number of small subbasins.

3.1. Modified Rational vs NRCS Runoff Depths

The runoff depths for different durations of the design storm (Table 3) were estimated by both the
modified rational and NRCS methods and presented in Figure 2.

The NRCS model incorporates land-cover data to assess initial abstraction and runoff depth
consequently. The modified rational model, however, is based on the percentage of impervious area.
The comparison between runoff depths for different storm durations, varying from five minutes to
24 h, obtained from both models showed that, for lower storms, the runoff depths estimated by the
NRCS method are lower than the ones estimated by the rational method (Figure 3A,B). However,
as the duration of the storm increases, the surface runoff depths estimated by both models converge.
As a result, both models performed relatively similar for the 24-h design storm. Therefore, the 24-h
storm was selected for further analysis in this research. The points in Figure 3 are partially transparent
so that higher point densities are shown in darker colors. The outlier points result from clipping
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buildings out of the watershed feature class and from extremely flat areas in the DEM surface due to
terrain smoothing.Water 2020, 12, 357 9 of 20 
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The difference in runoff depths between two models was estimated for all subbasins by subtracting
the runoff depth of the NRCS model from the runoff depth obtained by the modified rational method.
The results showed that the difference between estimated runoff depths of the two models is less than
0.88 cm for the majority of subbasins (Figure 4).Water 2020, 12, 357 11 of 20 
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3.2. Effects of GSIs on Runoff Reduction

GSIs in Philadelphia account for 0.7% of all delineated watershed area. Runoff estimation showed
that 0.65% to 0.70% of runoff from a 24-h, 10-year storm in Philadelphia can be mitigated by current
GSIs. To show the effects of GSIs on the reduction of peak runoff discharge, the rational method was
used to estimate the peak discharge for two scenarios. In the first scenario, the GSIs throughout the city
were assumed to be entirely impervious with a runoff coefficient of 0.95. Then, the peak discharges for
subbasins were estimated. In the second scenario, all GSIs were assumed completely pervious with the
runoff coefficient of 0.35, and peak discharges were estimated. The difference in the peak discharge
values of each scenario showed the effects of GSIs on attenuating the peak runoff discharge. The results
showed that GSIs are capable of reducing the peak runoff discharge from 0.01% to 63.2%, depending
upon the ratio of the area of the GSI to the area of subbasin (Figure 5). This is in line with the findings
of Lord [53], and Traver and Ebrahimian [54].Water 2020, 12, 357 12 of 20 
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Figure 5. The relation between area of GSI and reduction in peak runoff discharge.

3.3. Runoff Analysis Map

3.3.1. Agreement Index Map

The agreement between models to predict the surface runoff depth of a 10-year, 24-h storm
exceeding five centimeters was estimated for the City of Philadelphia and mapped in Figure 6.
The results showed that for a 24-h storm, the majority of the subbasins experienced runoff depths more
than the threshold depth (Section 2.5.1).
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Figure 6. The Agreement index map of the surface runoff depth resulted from the 10-year, 24-h storm
is depicted for city of Philadelphia (A) and Center City (B). Red areas show where both the modified
rational and NRCS methods agree on surface runoff depth exceeding the threshold of 5 cm.

3.3.2. Maximum Index Map

The maximum index map aims to display the highest runoff depth (worst-case scenario), resulting
from the 10-year, 24-h storm. Figure 7 shows the maximum possible runoff depths estimated by the
modified rational or NRCS methods for Philadelphia (Section 2.5.2). The results showed that, for the
24-h, 10-year storm in Philadelphia, GSIs can collect 0.3% of the maximum predicted runoff depths.



Water 2020, 12, 357 13 of 20

Water 2020, 12, 357 13 of 20 

 

3.3.2. Maximum Index Map 

The maximum index map aims to display the highest runoff depth (worst-case scenario), 
resulting from the 10-year, 24-hour storm. Figure 7 shows the maximum possible runoff depths 
estimated by the modified rational or NRCS methods for Philadelphia (Section 2.5.2). The results 
showed that, for the 24-hour, 10-year storm in Philadelphia, GSIs can collect 0.3% of the maximum 
predicted runoff depths.  

 
Figure 7. Maximum estimated runoff depths for each subbasin, estimated by the NRCS or rational 
models for a 24-hour, 10-year storm for city of Philadelphia (A) and Center City (B). 

3.3.3. Average Index Map 

The average index map aims to incorporate the runoff depth results from both the modified 
rational and NRCS models, to represent an integral form of inundation (Figure 8). The average index 
parameter is the average runoff depths obtained from both models. In that way, in areas where the 
average index is higher, there is more confidence that both models predict higher runoff in such areas 
on average (Section 2.5.3). The results showed that subbasins with GSIs are capable of reducing the 
average index for the whole city (average inundation) up to 1.2%. 

A B 

Figure 7. Maximum estimated runoff depths for each subbasin, estimated by the NRCS or rational
models for a 24-h, 10-year storm for city of Philadelphia (A) and Center City (B).

3.3.3. Average Index Map

The average index map aims to incorporate the runoff depth results from both the modified
rational and NRCS models, to represent an integral form of inundation (Figure 8). The average index
parameter is the average runoff depths obtained from both models. In that way, in areas where the
average index is higher, there is more confidence that both models predict higher runoff in such areas
on average (Section 2.5.3). The results showed that subbasins with GSIs are capable of reducing the
average index for the whole city (average inundation) up to 1.2%.
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Figure 8. The average index map shows the average runoff depth estimated by the NRCS and modified
rational models for 24-h, 10-year storm for city of Philadelphia (A) and Center City (B).

4. Discussion

The results of the models agree that extensive parts of the city are prone to flooding. This, overall,
is in agreement with the extent and level of damage throughout the city reported following flash
flooding caused by 127 mm of rainfall (relatively close to rain depth used in this study, equal to 125.7
mm,) on June, 2019 in Philadelphia [38,55]. However, the exact extent of the flooding and inundation
of this event is not available to compare with the results of this study.

Efficient, well-designed GSIs are capable of reducing the volume and the peak of runoff up
to 85%–100% [56]. However, depending upon the GSI type and its characteristics, the volume of
runoff reduction can vary from 2% to 45% [57,58]. Many municipalities in the Mid-Atlantic region,
including Philadelphia, have set a goal to reduce runoff by 10%–20%, using GSIs [59]. The results from
this research showed that GSI watersheds in Philadelphia account for 0.71% of the total delineated
watershed area and can reduce the peak runoff discharge in subbasins from 0.01% to 63.2%, depending
upon the size of the GSI relative to the area of the subbasin in which it is located. However, for
the whole city, 0.65%–0.7% of the peak discharge can be reduced by GSIs on average. This helps
municipalities to quantify the required area of GSI needed to achieve desired runoff reductions.

The estimated runoff depths for the city of Philadelphia subbasins obtained by the modified
rational method were less divergent than those obtained by the NRCS methods in larger storms.
In contrast, the average difference between two models in small storms was greater (Figure 9). More
specifically, the NRCS method tended to underestimate the surface runoff depth in small storms
relative to the modified rational method. That shows that the NRCS method was more sensitive in
small storms, in agreement with the findings of Grove et al. [23] and Hawkins [60]. Small storms
have higher intensity (Table 3) which impacted peak runoff and runoff depth in the modified rational
method (Equations (2) and (4)). Conversely, the rainfall intensity in larger storms decreases while the
precipitation increases. This caused the runoff depths estimated by the NRCS method to increase.
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Figure 9. The mean and median runoff depths (A) and standard deviation (B) of all subbasins in
Philadelphia, estimated by the NRCS and rational models for a 24-h, 10-year storm.

Initial abstraction in the NRCS method represents all losses before the runoff initiates, and this
includes evapotranspiration, surface depression, and infiltration [3].

In this research, the initial abstraction was assumed to be 0.2 S (Ia in Equation (7)), as suggested
by the NRCS runoff estimation manual [3]. However, a value of 0.05 S for Ia in urban watersheds is
also suggested in some literature, and this implies a higher rate of runoff [36,51]. For this research,
runoff depths for both initial abstractions were estimated. The results showed that, by decreasing Ia to
0.05 S, the maximum runoff depths in watersheds increased slightly. However, changes in mean runoff

depth and the resulting runoff analysis maps were negligible. On the other side, the storm duration for
this research was set to 24-h, based on the NRCS runoff manual suggestion [3]. These analyses showed
that, for 24-h storm, change in initial abstraction caused a minimal difference between runoff depths
estimated by the NRCS and modified rational methods.

Histograms of estimated runoff depths for the 10-year, 24-h storm obtained by both models
(Figure 10) showed that the highest runoff depths were approximately five times more frequent than
smaller runoff depths in Philadelphia. This implies that there is a substantial number of large subbasins
within Philadelphia that potentially are flooded simultaneously. The standard deviation of the runoff

depths from the NRCS method was slightly higher than that of the modified rational method, implying
greater variability in runoff depths estimated by the NRCS method. This is likely due to variations in
curve numbers throughout the watershed.

In the absence of measured runoff-depth data for model verification, the sensitivity of the models
relative to the CN and precipitation depth values was analyzed (Figure 11). The runoff depth obtained
from the NRCS method is a monotonic, nonlinear function of CN. Figure 11 shows the sensitivity of the
NRCS model with respect to precipitation and CN. On the other hand, the runoff depth obtained from
the modified rational method is linearly corelated to C, the area of the watershed and the precipitation
intensity. That implies that any percent of change in C, area, or precipitation intensity results in the
same percent of change in runoff depth.
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5. Model Limitations

Limitations of this study include elements in subbasin delineation methodology and runoff

estimation, such as substantially flat areas, relatively large subbasins, or the presence of large water
bodies in a watershed. In addition, a lack of measured runoff-depth data is a great challenge for
model verification. The rational method is limited to watersheds less than 200 acres in area. Therefore,
any subbasins exceeding this threshold were not included in this analysis. Additionally, subbasins
that intersected bodies of water, particularly rivers and streams, tended to be excessively large and
did not appear to accurately represent drainage characteristics in these areas. These subbasins were
also excluded from this analysis. The total area of removed subbasins was estimated to be 43 square
kilometers (eleven percent of the study area), including rivers, creeks, and extremely large subbasins.
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Subbasins in extremely flat areas often appeared unnatural, forming extremely small or very long and
narrow shapes. These subbasins remained in the analysis, but this issue should be further investigated
in future research. In addition, there were some GSI shape files in the data (polygons) that were not
connected to any inlet which needs further investigation. Finally, the current model needs further
adjustment to account for the interconnection of the water flow between subbasins.

6. Conclusions

In this research, we developed an automated framework which uses high-resolution topographic
data to delineate micro-subbasins in citywide-scale watersheds. The model was applied to Philadelphia,
PA, a fully urbanized watershed. The modified rational and NRCS models were used to estimate
surface runoff depth for each micro-subbasin. The comparison between model results showed that,
for a 24-h, 10-year storm, both models performed fairly similarly. The effect of green stormwater
infrastructure (GSI) on peak runoff reduction was tested by using the rational method and in two
separate scenarios. In the first scenario, GSI in subbasins were assumed to be fully impervious. In the
second scenario, the GSI was treated as fully pervious.

The differences in peak discharge for these two scenarios quantified the effects of GSI on peak
runoff reduction. The results showed that 13 km2 (0.71%) of the Philadelphia area drains into the GSIs,
resulting in peak runoff mitigation that varies from 0.01% to 63.2% in GSI subbasins. However, only
less than 1% of the peak runoff discharge can be reduced by GSIs for the whole city on average.

To identify areas prone to excessive runoff and flooding, a framework was defined to generate
runoff analysis maps depicting model agreement, maximum runoff depth, and average runoff depth
for the study area. The agreement map shows the agreement between the rational and NRCS models
in predicting runoff depth exceeding a predetermined threshold value. The results showed that both
models predicted that the majority of Philadelphia will experience at least 5 cm of runoff during a
24-h, 10-year storm. The maximum map was intended to show the maximum runoff depth for each
subbasin and can be used to identify locations where particularly damaging levels of inundation could
occur. Finally, the average index was defined as the mean runoff depth estimated by both models.
The average map identified critical areas throughout the city, with a particularly high concentration
occurring in Center City, Philadelphia. Runoff analysis maps provide critical information that can be
coupled with demographic data to identify particularly vulnerable areas in the City of Philadelphia.

This work also creates an opportunity for deepening the science and engineering community’s
knowledge of urban stormwater dynamics and can be used toward the applications of the surface-runoff

modeling in urban management. The integrated methodology and type of data used in this study create
a framework for analyzing stormwater systems on a city-scale. Moreover, the output of the current
framework, including delineated micro-subbasins, can be complimentary to existing stormwater
management methods, through integration with a wide range of spatial hydrologic and hydraulic
models. Future work can incorporate an assessment of the impact of GSI in terms of agreement,
maximum, or average maps, to investigate the relationship between surface runoff in small-scale
watersheds, and demographic and socioeconomic characteristics, as well as other environmental
phenomena, such as surface temperature on ecosystem services in the City of Philadelphia.
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