Application of Rainfall Threshold for Sediment-Related Disasters in Malaysia: Status, Issues and Challenges
Abstract
:1. Introduction
2. Rainfall Threshold
3. Rainfall Threshold Development in Malaysia
4. Discussion
5. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Varnes, D.J. Slope Movement Types and Processes; Transportation Research Board: Washington, DC, USA, 1978. [Google Scholar]
- Guzzetti, F.; Peruccacci, S.; Rossi, M.; Stark, C.P. The rainfall intensity-duration control of shallow landslides and debris flows: An update. Landslides 2008, 5, 3–17. [Google Scholar] [CrossRef]
- Segoni, S.; Piciullo, L.; Gariano, S.L. A review of the recent literature on rainfall thresholds for landslide occurrence. Landslides 2018, 15, 1483–1501. [Google Scholar] [CrossRef]
- Piciullo, L.; Calvello, M.; Cepeda, J.M. Territorial early warning systems for rainfall-induced landslides. Earth-Sci. Rev. 2018, 179, 228–247. [Google Scholar] [CrossRef]
- Fell, R.; Ho, K.K.S.; Lacasse, S.; Leroi, E. A Framework for Landslide Risk Assessment and Management; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Chan, N.W. Responding to landslide hazards in rapidly developing Malaysia: A case of economics versus environmental protection. Disaster Prev. Manag. Int. J. 1996, 7, 14–27. [Google Scholar] [CrossRef]
- Shaluf, I.M.; Ahmadun, F.R. Disaster types in Malaysia: An overview. Disaster Prev. Manag. Int. J. 2006, 15, 286–298. [Google Scholar] [CrossRef]
- Kazmi, D.; Qasim, S.; Harahap, I.S.; Baharom, S.; Imran, M.; Moin, S. A Study on the Contributing Factors of Major Landslides in Malaysia. Civ. Eng. J. 2016, 2, 669–678. [Google Scholar] [CrossRef]
- Rahman, H.A. An overview of environmental disaster in Malaysia and preparedness strategies. Iran. J. Public Health 2014, 43, 17–24. [Google Scholar]
- Akter, A.; Megat Mohd Noor, M.J.M.; Goto, N.; Khanam, S.; Parvez, A.; Rasheduzzaman, M. Landslide Disaster in Malaysia: An Overview. Int. J. Innov. Res. Dev. 2019, 8, 292–302. [Google Scholar] [CrossRef]
- Lim, C.S.; Jamaluddin, T.A.; Komoo, I. Human-induced landslides at bukit antarabangsa, hulu kelang, Selangor. Bull. Geol. Soc. Malays. 2019, 2019, 9–20. [Google Scholar] [CrossRef]
- Majid, N.A.; Taha, M.R.; Selamat, S.N. Historical landslide events in Malaysia 1993–2019. Indian J. Sci. Technol. 2020, 13, 3387–3399. [Google Scholar] [CrossRef]
- Diana, M.I.N.; Muhamad, N.; Taha, M.R.; Osman, A.; Alam, M.M. Social vulnerability assessment for landslide hazards in Malaysia: A systematic review study. Land 2021, 10, 315. [Google Scholar] [CrossRef]
- Jamaludin, S.; Ali, F. An overview of some empirical correlations between rainfall and shallow landslides and their applications in Malaysia. Electron. J. Geotech. Eng. 2011, 16, 1429–1440. [Google Scholar]
- Papa, M.N.; Medina, V.; Ciervo, F.; Bateman, A. Derivation of critical rainfall thresholds for shallow landslides as a tool for debris flow early warning systems. Hydrol. Earth Syst. Sci. 2013, 17, 4095–4107. [Google Scholar] [CrossRef] [Green Version]
- Wilson, R.C.; Wieczorek, G.F. Rainfall thresholds for the initiation of debris flows at La Honda, California. Environ. Eng. Geosci. 1995, 1, 11–27. [Google Scholar] [CrossRef]
- Lin, G.; Kuo, H.; Chen, C.; Wei, L.; Zhang, J. Using a Tank Model to Determine Hydro-Meteorological Thresholds for Large-Scale Landslides in Taiwan. MDPI 2020, 12, 253. [Google Scholar] [CrossRef] [Green Version]
- Okada, K. Current state of disaster generation risk forecast by Soil Water Index. Tsuchi-to-kiso 2007, 55, 4–6. [Google Scholar]
- Yamazaki, Y.; Egashira, S.; Iwami, O. Method to develop critical rainfall conditions for occurrences of sediment-induced disasters and to identify areas prone to landslides. J. Disaster Res. 2016, 11, 1103–1111. [Google Scholar] [CrossRef]
- Keefer, D.K.; Wilson, R.C.; Mark, R.K.; Brabb, E.E.; Brown, W.M., III; Ellen, S.D.; Harp, E.L.; Wieczorek, G.F.; Alger, C.S.; Zatkin, S.R. Real-Time Landslide Warning During Heavy Rainfall. Science 1987, 238, 921–925. [Google Scholar] [CrossRef]
- Caine, N. The Rainfall Intensity: Duration Control of Shallow Landslides and Debris Flows. Geogr. Ann. Ser. A Phys. Geogr. 1980, 62, 23–27. [Google Scholar] [CrossRef]
- Jordanova, G.; Gariano, S.L.; Melillo, M.; Peruccacci, S.; Brunetti, M.T.; Auflič, M.J. Determination of empirical rainfall thresholds for shallow landslides in slovenia using an automatic tool. Water 2020, 12, 1449. [Google Scholar] [CrossRef]
- Guzzetti, F.; Peruccacci, S.; Rossi, M.; Stark, C.P. Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorol. Atmos. Phys. 2007, 98, 239–267. [Google Scholar] [CrossRef]
- Nikolopoulos, E.I.; Crema, S.; Marchi, L.; Marra, F.; Guzzetti, F.; Borga, M. Geomorphology Impact of uncertainty in rainfall estimation on the identification of rainfall thresholds for debris flow occurrence. Geomorphology 2014, 221, 286–297. [Google Scholar] [CrossRef]
- Chae, B.G.; Park, H.J.; Catani, F.; Simoni, A.; Berti, M. Landslide prediction, monitoring and early warning: A concise review of state-of-the-art. Geosci. J. 2017, 21, 1033–1070. [Google Scholar] [CrossRef]
- Brunetti, M.T.; Peruccacci, S.; Gariano, S.L.; Melillo, M.; Rossi, M.; Guzzetti, F. Rainfall thresholds for possible landslide occurrence in Italy. Geomorphology 2017, 290, 39–57. [Google Scholar] [CrossRef]
- Abraham, M.T.; Satyam, N.; Bulzinetti, M.A.; Pradhan, B.; Pham, B.T.; Segoni, S. Using field-based monitoring to enhance the performance of rainfall thresholds for landslide warning. Water 2020, 12, 3453. [Google Scholar] [CrossRef]
- Bezak, N.; Auflič, M.J.; Mikoš, M. Reanalysis of soil moisture used for rainfall thresholds for rainfall-induced landslides: The Italian case study. Water 2021, 13, 1977. [Google Scholar] [CrossRef]
- Dom, N.M.; Khan, N.; Yahya, E. Development and evaluation of debris and mudflow warning model in high risk hilly slopes in Malaysia. In Proceedings of the National Conference on Water for Sustainable Development Towards a Developed Nation, Port Dickson, Malaysia, 13 July 2006. [Google Scholar]
- Lee, M.L.; Ng, K.Y.; Huang, Y.F.; Li, W.C. Rainfall-induced landslides in Hulu Kelang area, Malaysia. Nat. Hazards 2014, 70, 353–375. [Google Scholar] [CrossRef]
- Jamaludin, S.; Abdullah, C.H.; Kasim, N. Rainfall Intensity and Duration for Debris Flow Triggering in Peninsular Malaysia; Springer: Cham, Switzerland, 2014. [Google Scholar]
- Mukhlisin, M.; Jahara, S.; Jaykhan, M.; Raihan, M. Jurnal Teknologi Analysis of Rainfall Effect to Slope Stability in Ulu Klang, Malaysia. J. Teknol. 2015, 3, 15–21. [Google Scholar]
- Abidin, M.R.Z.; Dom, N.M. Debris and mudflow warning modeling: Case study of Cameron Highlands, Malaysia. In Proceedings of the Strategic Strengthening for South-South Cooperation for Modelling and Managing Hydro-Hazards, Jakarta, Indonesia, 31 August 2015. [Google Scholar]
- Matlan, S.J.; Abdullah, S.; Alias, R.; Mukhlisin, M. Effect of working rainfall and soil water index on slope stability in Ranau, Sabah. Int. J. Civ. Eng. Technol. 2018, 9, 1331–1341. [Google Scholar]
- Kassim, N.; Taib, K.A.; Ghazali, N.A.A.; Azahar, W.N.A.W.; Masjuki, S.A.; Ibrahim, S.L. Rainfall Intensity (I)–Duration (D) Induced Debris Flow Occurrences in Peninsular Malaysia. In Proceedings of the AICCE’19, Penang, Malaysia, 21–22 August 2019; Volume 53, pp. 897–903. [Google Scholar] [CrossRef]
- International Conference and Field Workshop on Landslides, Japan Landslides Society. Landslides in soil debris cover triggered by rainstorm in Valtellina (Central Alps-Italy). In Proceedings of the 4th International Conference and Field Workshop on Landslides, Japan, 23-31 August; Japan Landslide Society: Tokyo, Japan, 1985; pp. 267–272.
- Wieczoreck, G.F. Effect of Rainfall Intensity and Duration on Debris Flows in Central Santa Cruz Mountains, California. In Debris Flows/Avalanches: Process, Recognition and Mitigation; Costa, J.E., Wieczorek, G.F., Eds.; Geological Society of America: Boulder, CO, USA, 1987; pp. 93–104. [Google Scholar]
- Ceriani, M.; Lauzi, S.; Padovan, N. Rainfalls and landslides in the Alpine area of Lombardia Region, central Alps, Italy. In Proceedings of the Interpraevent International Symposium 2, Bern, Switzerland, 29 June 1992; pp. 9–20. [Google Scholar]
- Aleotti, P. A warning system for rainfall-induced shallow failures. Eng. Geol. 2004, 73, 247–265. [Google Scholar] [CrossRef]
- Pereira, S.; Zêzere, J. Empirically-based rainfall thresholds for debris flow occurrence in the north of Portugal. In Proceedings of the XII National Conference of Geomorphology, Santander, Spain, 20 September 2012; Volume 2012, pp. 109–112. [Google Scholar]
- Muaz Abu Mansor Maturidi, A.; Kasim, N.; Taib, K.A.; Nur Aifa Binti Wan Azahar, W.; Husain, N.M.H. Rainfall-Induced Landslides in Cameron Highland Area, Malaysia. IOP Conf. Ser. Mater. Sci. Eng. 2020, 917, 012019. [Google Scholar] [CrossRef]
- Public Works Department (PWD). National Slope Master Plan 2009–2023; Ministry of Public Works: Kuala Lumpur, Malaysia, 2009. [Google Scholar]
- Crozier, M.J. The climate-landslide couple: A southern hemisphere prespective. In Rapid Mass Movement as a Source of Climatic Evidence for the Holocene; Matthews, J.A., Brunsden, D., Frenzel, B., Glaeser, B., Weiss, M.M., Eds.; Gustav Fischer Verlag: Stuttgart, Germany, 1997; pp. 333–354. [Google Scholar]
- Innes, J.L. Debris Flows/Avalanches; Progress in Physical Geography, Volume 7, issue 4; SAGE Publishing: Newbury Park, USA, 1987; Volume 7, pp. 469–501. [Google Scholar]
- Cannon, S.H. Rainfall conditions for abundant debris avalanches, San Francisco Bay region, California. Calif. Geol. 1985, 38, 267–272. Available online: http://ci.nii.ac.jp/naid/10015095312/en/ (accessed on 10 November 2021).
- Wilson, R.C.; Torikai, J.D.; Ellen, S.D. Development of rainfall warning thresholds for debris flows in the Honolulu District, Oahu; United States Department of the Interior, United States Geological Survey: Washington, DC, USA, 1992.
- Larsen, M.C.; Simon, A. A rainfall intensity-duration threshold for landslides in a humid-tropical environment, Puerto Rico. Geogr. Ann. Ser. A Phys. Geogr. 1993, 75, 13–23. [Google Scholar] [CrossRef]
- Montgomery, D.R.; Schmidt, K.M.; Greenberg, H.M.; Dietrich, W.E. Forest clearing and regional landsliding. Geology 2000, 28, 311–314. [Google Scholar] [CrossRef]
- Dom, N.M.; Ligong, S.; Baharom, A.R. Debris and Mudflow Computer Model. In Proceedings of the 37th IAHR World Congress, Kuala Lumpur, Malaysia, 13 August 2017; Volume 2023, pp. 1151–1160. [Google Scholar]
- Khalid, N.H.N. Effects of slope displacement on stability of transmission tower structure. PhD Thesis, Universiti Tenaga Nasional, Kajang, Malaysia, 2020. [Google Scholar]
- Naidu, S.; Sajinkumar, K.S.; Oommen, T.; Anuja, V.J.; Samuel, R.A.; Muraleedharan, C. Early warning system for shallow landslides using rainfall threshold and slope stability analysis. Geosci. Front. 2018, 9, 1871–1882. [Google Scholar] [CrossRef]
- Rahardjo, H.; Li, X.W.; Toll, D.G.; Leong, E.C. The effect of antecedent rainfall on slope stability. Geotech. Geol. Eng. 2001, 19, 371–399. [Google Scholar] [CrossRef] [Green Version]
- Rahimi, A.; Rahardjo, H.; Leong, E.C. Effect of hydraulic properties of soil on rainfall-induced slope failure. Eng. Geol. 2010, 114, 135–143. [Google Scholar] [CrossRef]
- Dahal, R.K.; Hasegawa, S. Representative rainfall thresholds for landslides in the Nepal Himalaya. Geomorphology 2008, 100, 429–443. [Google Scholar] [CrossRef]
- Piciullo, L.; Gariano, S.L.; Melillo, M.; Brunetti, M.T.; Peruccacci, S.; Guzzetti, F.; Calvello, M. Definition and performance of a threshold-based regional early warning model for rainfall-induced landslides. Landslides 2017, 14, 995–1008. [Google Scholar] [CrossRef]
- Winter, M.G.; Dent, J.; Macgregor, F.; Dempsey, P.; Motion, A.; Shackman, L. Debris flow, rainfall and climate change in Scotland. Q. J. Eng. Geol. Hydrogeol. 2010, 43, 429–446. [Google Scholar] [CrossRef]
- Althuwaynee, O.F.; Pradhan, B.; Ahmad, N. Estimation of rainfall threshold and its use in landslide hazard mapping of Kuala Lumpur metropolitan and surrounding areas. Landslides 2014, 12, 861–875. [Google Scholar] [CrossRef]
- Martelloni, G.; Segoni, S.; Fanti, R.; Catani, F. Rainfall thresholds for the forecasting of landslide occurrence at regional scale. Landslides 2012, 9, 485–495. [Google Scholar] [CrossRef] [Green Version]
- Rosi, A.; Segoni, S.; Catani, F.; Casagli, N. Statistical and environmental analyses for the definition of a regional rainfall threshold system for landslide triggering in Tuscany (Italy). J. Geogr. Sci. 2012, 22, 617–629. [Google Scholar] [CrossRef]
- Berti, M.; Martina, M.L.V.; Franceschini, S.; Pignone, S.; Simoni, A.; Pizziolo, M. Probabilistic rainfall thresholds for landslide occurrence using a Bayesian approach. J. Geophys. Res. Earth Surf. 2012, 117, 1–20. [Google Scholar] [CrossRef]
ID No. | Date | Disaster Type | Location | Death | Injury | Cost (Million RM) | Consequence |
---|---|---|---|---|---|---|---|
1 | October 2017 | Landslide | Tanjung Bungah, Penang Island | 11 | NA | NA | NA |
2 | October 2018 | Landslide | Bukit Kukus Road, Georgetown, Penang Island | 9 | NA | NA | NA |
3 | 31 December 1993 | Landslide | KM 59.5, East-West Highway | 1 | 3 | NA | Damaged one car |
4 | October 1973 | Landslide | Kampung Kacang Putih, Ipoh | 42 | NA | 64.78 | NA |
5 | June 2020 | Landslide | Taman Silibin Indah, Ipoh | 1 | NA | NA | NA |
6 | December 2004 | Rock fall | Limestone hill in Bercham, Ipoh | 2 | NA | NA | Buried back portion of illegal factory at the foot of a limestone hill |
7 | November 2020 | Landslide | The Banjaran Hotspring Retreat, Tambun | 2 | NA | NA | NA |
8 | 24 October 1993 | Landslide | KM 58, Kuala Lipis-Gua Musang Road | 1 | 15 | NA | NA |
9 | 6 January 1996 | Landslide | North-South Expressway (NSE) near Tempurung Cave, Gopeng | 1 | NA | 6.7 | NA |
10 | 29 August 1996 | Mud slide | Pos Dipang Kg. Sahom, Kampar | 44 | NA | 69 | NA |
11 | 28 November 1993 | Landslide | Kuala Lumpur-Karak Expressway | 2 | NA | NA | NA |
11 | 30 June 1995 | Landslide | Kuala Lumpur-Karak Expressway | 20 | 22 | 48.3 | Damaged 10 cars |
12 | December 2001 | Debris flow | Pulai Mount, Johor | 5 | NA | NA | Washed away settlements along the river bank |
13 | 18 October 1996 | Landslide | Gelang Patah, Johor | 1 | NA | NA | Six people evacuated |
14 | 28 January 2002 | Shallow rotational slide | Simunjan, Sarawak | 16 | NA | 28 | Buried a number of houses |
15 | 26 December 2000 | Landslide | Kampung Baru Cina, Kapit, Sarawak | 2 | NA | NA | Buried two villagers, destroyed nine wooden houses |
16 | 26 December 1996 | Debris flow | Keningau, Sabah | 302 | NA | NA | Wiped out several villages, destroyed 4925 houses |
17 | January 1999 | Shallow rotational slide | Squatters settlement, Sandakan, Sabah | 13 | NA | NA | Buried a number of house/huts |
18 | 8 February 1999 | Landslide | Kampung Gelam, Sandakan, Sabah | 17 | 2 | NA | Destroyed four houses |
19 | 1 May 1961 | Massive landslip | Ringlet, Cameron Highlands | 16 | 35 | 3.48 | |
19 | 4–7 December 1994 | Landslide | Cameron Highlands | 7 | NA | NA | |
19 | 24 October 1995 | Landslide | Tringkap, Cameron Highlands | 1 | NA | NA | Damaged one house |
19 | December 1995 | Landslide | Cameron Highlands | 7 | NA | NA | Damaged a few houses |
19 | 9 October 1996 | Landslide | Terla, Cameron Highlands | 3 | 2 | NA | Damaged a few houses |
19 | 9 January 2000 | Debris flow | KM 81.6, Tanah Rata—Brinchang Road | 6 | NA | NA | Washed away worker squatters |
19 | April 2006 | Landslide | KM 33, Simpang Pulai Road | 35 | NA | 4.6 | |
19 | 23 October 2013 | Mud flood | Bertam Valley, Cameron Highlands | 3 | Damaged 80 houses | ||
20 | December 2008 | Landslide | Bukit Antarabangsa, Hulu Kelang | 4 | 15 | NA | NA |
20 | 6 December 2008 | Landslide | Taman Bukit Mewah, Ampang | 5 | 7 | 7.6 | Damaged 14 bungalows |
20 | 22 May 2011 | Landslide | FELCRA Semungkis, Hulu Langat | 16 | NA | NA | NA |
20 | 11 December 1993 | Landslide | Highland Tower, Taman Hillview, Hulu Kelang | 2 | 184 | NA | Collapse of one block of a 12-storey high apartment |
2 May 1994 | Landslide | Puchong Perdana | 3 | NA | NA | 10 families evacuated | |
20 | 11 May 1997 | Landslide | Pantai Dalam, Kuala Lumpur | 2 | 4 | NA | 19 families evacuated |
20 | 15 May 1999 | Landslide | Bukit Antarabangsa, Hulu Kelang | NA | NA | 5.4 | 1000 people evacuated |
20 | 22 September 2001 | Landslide | Sg. Chinchin, Gombak | 1 | NA | NA | Partly destroyed one house |
20 | 20 November 2002 | Landslide | Taman Hillview, Ampang | 8 | 5 | 17.4 | Damaged one bungalow |
20 | November 2003 | Rock debris | New Klang Valley Expressway (NKVE) | 8 | NA | 36 | Expressway closed for more than 6 months |
20 | November 2004 | Debris flow | Taman Harmonis, Gombak | 1 | NA | NA | NA |
20 | 31 May 2006 | Landslide | Kampung Pasir, Hulu Kelang | 4 | NA | 21 | Damaged three blocks of longhouses |
References | Extent | Area | Landslide Type | Parameter | No of Events | Equation and Range | Remarks |
---|---|---|---|---|---|---|---|
Dom et al. [29] | Local | Cameron Highlands | DMF | Rainfall index | 2 | - | Pre-acquisition of the snake curve line/graph. |
Jamaludin and Ali [14] | Local | Ampang/ Hulu Kelang | Shallow Landslide | I-D | 16 | I = 11D–0.5317 | Very rough estimation. |
Penang | Shallow Landslide | I-D | 15 | I = 15.64D–0.81 | |||
Lee et al. [30] | Local | Hulu Kelang | Major landslide | E3-API30 | 6 | E3 = −0.762API30 + 295 | Reliability 97%. |
Medium landslide | E3-API30 | 15 | E3 = −0.762API30 + 194.3 | ||||
Jamaludin et al. [31] | Regional | Peninsular Malaysia | Shallow landslide and DMF | Ip-D | 4 | Ip = 121.4D−0.602 | Investigated the ID threshold and compared it to the selected worldwide threshold. |
Mukhilisin et al. [32] | Local | Hulu Kelang | Landslide | SWI | 15 | - | Confirmed that the SWI method is significant to identify the rainfall critical threshold. |
Abidin and Dom [33] | Local | Cameron Highlands | - | Rainfall index | 4 | - | Improved the critical line of the snake curve graph. |
Matlan et al. [34] | Local | Ranau | - | SWI | 10 | - | The SWI method can be used to predict the impending landslide. |
Kasim et al. [35] | Regional | Peninsular Malaysia | DMF | I-D | 8 | I = 42.30D−0.392 | Peninsular Malaysia threshold is higher than that used by Caine [21], Cancelli and Nova [36] Wieczorek [37], Ceriani et al. [38] Aleotti [39], and Pereira and Zezere [40] |
Maturidi et al. [41] | Local | Cameron Highlands | Shallow landside | I-D | 12 | I = 29.09D−0.075 | Rainfall intensity (25 mm/h) for a duration less than 10 h can trigger a shallow landslide. |
No | Rainfall Threshold | Modelling | Status | Issues |
---|---|---|---|---|
1 | Dom et al. [29] | Mathematical model | Preliminary assessment | No validation on the model itself |
2 | Jamaludin and Ali [14] | Mathematical model | Preliminary assessment | No information on the landslide source and no validation on the model itself |
3 | Lee et al. [30] | Mathematical model | Preliminary assessment with validation of the model | Did not discuss the rain gauge selection criteria and the data treatment of the observed data. |
4 | Jamaludin et al. [31] | Mathematical model | Preliminary assessment | No validation on the model itself |
5 | Mukhilisin et al. [32] | Conceptual model | Initial compilation | No threshold was established, but it was confirmed that the model was significant tools to predict sediment-related disaster |
6 | Abidin and Dom [33] | Mathematical model | Protype | No performance on the model to determine its effectiveness |
7 | Matlan, et al. [34]) | Conceptual model | Initial compilation | No threshold was established Missing information such as the time of the event and the criterion in selecting the rainfall data |
8 | Kasim et al. [35] | Mathematical model | Preliminary assessment | Did not discuss the source of rainfall data and no validation of the model |
9 | Maturidi et al. [41] | Mathematical model | Preliminary assessment | No validation of the model |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ligong, S.; Sidek, L.M.; Hayder, G.; Mohd Dom, N. Application of Rainfall Threshold for Sediment-Related Disasters in Malaysia: Status, Issues and Challenges. Water 2022, 14, 3212. https://doi.org/10.3390/w14203212
Ligong S, Sidek LM, Hayder G, Mohd Dom N. Application of Rainfall Threshold for Sediment-Related Disasters in Malaysia: Status, Issues and Challenges. Water. 2022; 14(20):3212. https://doi.org/10.3390/w14203212
Chicago/Turabian StyleLigong, Sandra, Lariyah Mohd Sidek, Gasim Hayder, and Norlida Mohd Dom. 2022. "Application of Rainfall Threshold for Sediment-Related Disasters in Malaysia: Status, Issues and Challenges" Water 14, no. 20: 3212. https://doi.org/10.3390/w14203212
APA StyleLigong, S., Sidek, L. M., Hayder, G., & Mohd Dom, N. (2022). Application of Rainfall Threshold for Sediment-Related Disasters in Malaysia: Status, Issues and Challenges. Water, 14(20), 3212. https://doi.org/10.3390/w14203212