Temperature Estimation of a Deep Geothermal Reservoir Based on Multiple Methods: A Case Study in Southeastern China
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
4. Results
4.1. Hydrochemical Characteristics of Geothermal Fluids
4.1.1. General Water Chemistry
4.1.2. Stable Isotopic Characteristics
4.2. Water–Rock Balance Analysis
4.2.1. Na-K-Mg Geoindicator
4.2.2. SiO2, Na/K, and 1000/T Diagrams
4.3. Multiple Mineral Equilibrium Approaches
4.4. Silicon-Enthalpy Mixing Model
5. Discussions
6. Conclusions
- (1)
- The geothermal anomaly area in the study area can be divided into coastal and inland zones. The hot water in the inland zone is dominated by HCO3-Ca type water with a low TDS. On the other hand, the coastal zone is dominated by Cl-Na type water with a high TDS, indicating that the hot water is influenced by seawater recharge or dissolved residual salt in the marine sediment.
- (2)
- The isotopes of hot water samples in the study area are distributed near the GMWL and LMWL, showing a limited range of variability, indicating that the geothermal receives local precipitation recharge. Most of the hot water in the inland area falls below the Na/K equilibrium line, indicating that the hot water may be influenced by cold water mixing. Most of the hot water in the coastal zone falls on the seawater mixing line, and the Cl content shows an apparent linear relationship with δ2H and δ18O, indicating that the geothermal fluid is influenced by the seawater mixing effect. Therefore, using cationic geothermometers to calculate the geothermal reservoir temperature in these areas is unsuitable.
- (3)
- The results of the geothermal reservoir temperature estimation of the geothermal system in the study area using silica geothermometers (without vapor loss) and multiple mineral saturation indices are reliable. However, due to the mixing of hot water with cold water at shallow depths during ascent, the temperature calculated with the SiO2 geothermometer is usually considered the minimum temperature of the reservoir. Therefore, the results of the quartz geothermometer (without vapor loss) and the multimineral saturation index (SI) can be selected as the range of geothermal reservoir temperatures for different geothermal systems in the study area.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Spycher, N.; Peiffer, L.; Sonnenhal, E.L. Integrated multicomponent solute geothermometry. Geothermics 2014, 51, 113–123. [Google Scholar] [CrossRef]
- Arnórsson, S.; Gunnlaugsson, E.; Svavarsson, H. The chemistry of geothermal waters in Iceland. III. Chemical geothermometry in geothermal investigations. Geochim. Et Cosmochim. Acta 1983, 47, 567–577. [Google Scholar] [CrossRef]
- Pang, Z.; Yang, F.; Luo, L. Methods for determining reservoir temperature in geothermal fields. In Solid Earth Science Research Methods; Ding, Z., Ed.; Science Press: Beijing, China, 2013. (In Chinese) [Google Scholar]
- D’Amore, F.; Pannichi, C. Geochemistry in geothermal exploration. In Applied Geothermics; Economides, M., Ungemach, P.O., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 1988. [Google Scholar]
- Pang, Z.; Wang, J.; Fan, Z. Calculation of geothermal reservoir temperature in Zhangzhou geothermal field using SiO2 mixing model. Sci. Bull. 1990, 1, 57–59. (In Chinese) [Google Scholar]
- Wang, P.; Chen, X.; Shen, L.; Xiao, Q.; Wu, X. Reservoir temperature of geothermal anomaly area and its environmental effect in Tibet. Geol. China 2016, 43, 1429–1438, (In Chinese with English Abstract). [Google Scholar]
- Dong, W.; Liao, Z.; Liu, S. Geothermal in Tibet; Science Press: Beijing, China, 2000. (In Chinese) [Google Scholar]
- Zhao, C.; Ran, H.; Chen, K. Present-day magma chambers in Tengchong volcano area inferred from relative geothermal gradient. Acta Petrol. Sin. 2006, 22, 1517–1528, (In Chinese with English Abstract). [Google Scholar]
- Guo, N.; Liu, Z.; Nang, D.; Sun, H.; Li, H.; Zhao, H. The characteristics and reservoir temperatures of hot springs in Jueyong, Chamdo, Xizang (Tibet). Geol. Rev. 2020, 66, 499–509, (In Chinese with English Abstract). [Google Scholar]
- Zheng, X.; Liu, H. Study of water-rock equilibrium state in geothermometer. J. Xi’an Geol. Inst. 1996, 18, 74–79, (In Chinese with English Abstract). [Google Scholar]
- Arnórsson, S. Isotopic and Chemical Techniques in Geothermal Exploration, Development and Use; International Atomic Energy Agency: Vienna, Austria, 2000. [Google Scholar]
- Gan, H.; Wang, G.; Wang, X.; Lin, W.; Yue, G. Research on the hydrochemistry and fault control mechanism of geothermal water in northwestern Zhangzhou basin. Geofluids 2019, 2019, 3925462. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Y.; He, B.; Tang, L.; Wu, N.; Song, J.; Zhao, Z. Numerical simulation of temperature field and pressure field of the fracture system at Zhangzhou geothermal field. Environ. Earth Sci. 2020, 79, 262, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Lin, W.; Wang, G.; Shao, J.; Gan, H.; Tan, X. Distribution and exploration of hot dry rock resources in China: Progress and inspiration. Acta Geol. Sin. 2021, 95, 1366–1381, (In Chinese with English Abstract). [Google Scholar]
- Gan, H.; Wang, G.; Wang, B.; Wang, X.; Lin, W.; Yue, G.; Tan, X. Abnormally low heat flow in Southeast China resulted from remnant slab subducted beneath the east Asian lithosphere. Terra Nova 2022, 34, 340–348. [Google Scholar] [CrossRef]
- Liu, K.; Li, Z.; Xu, W.; Ye, H.; Zhao, X.; Hu, Y.; Zhou, J.; Mao, J. The spatial-temporal distributions and migrations of Mesozoic magmaism in South China and subduction process of the Paleo-Pacific Plate. Bull. Mineral. Petrol. Geochem. 2016, 35, 1141–1155. [Google Scholar]
- Zheng, H.; Luo, J.; Zhang, Y.; Feng, J.; Zeng, Y.; Wang, M. Geological characteristics and distribution of granite geothermal reservoir in southeast coastal areas in China. Front. Earth Sci. 2021, 9, 683696. [Google Scholar] [CrossRef]
- Wang, J.; Xiong, L.; Pang, Z. Low-medium Temperature Geothermal System of Convective Type; Science Press: Beijing, China, 1993. (In Chinese) [Google Scholar]
- Lin, W.; Chen, X.; Gan, H.; Yue, G. Geothermal, geological characteristics and exploration direction of hot dry rocks in the Xiamen bay- Zhangzhou basin, southeastern China. Acta Geol. Sin. 2020, 94, 2066–2077. [Google Scholar]
- Wang, G.; Lin, W. Main hydro-geothermal systems and their genetic models in China. Acta Geol. Sin. 2020, 94, 1923–1937. [Google Scholar]
- Yao, Z.; Chen, Z. Geological assessment of geothermal potential for regional development in southeast coast of China. Bull. Inst. Hydrogeol. Eng. Geol. CAGS 1990, 6, 43–67. [Google Scholar]
- Liu, C.; Lu, C.; Li, Y.; Hao, Q.; Cao, S. Genetic model and exploration target area of geothermal resources in Hongtang Area, Xiamen, China. J. Groundw. Sci. Eng. 2022, 10, 128–137. [Google Scholar]
- Tian, J.; Li, Y.; Zhou, X.; Pang, Z.; Li, L.; Xing, L.; Li, Z. Geochemical characteristics of hydrothermal volatiles from southeast China and their implications on the tectonic structure controlling heat convection. Front. Earth Sci. 2021, 9, 786051. [Google Scholar] [CrossRef]
- Lin, W.; Wang, G.; Gan, H.; Wang, A.; Yue, G.; Long, X. Heat generation and accumulation for Hot Dry Rock resources in the igneous rock distribution areas of southeastern China. Lithosphere 2022, 2021, 2039112. [Google Scholar] [CrossRef]
- Lin, W.; Wang, G.; Gan, H.; Zhang, S.; Zhao, Z.; Yue, G.; Long, X. Heat source model for Enhanced Geothermal Systems (EGS) under different geological conditions in China. Gondwana Res. 2022; in press. [Google Scholar] [CrossRef]
- Liu, Z.; Lin, W.; Zhang, M.; Xie, E.; Liu, Z.; Wang, G. Geothermal fluid genesis and mantle fluids contributions in Nimu-Naqu, Tibet. Earth Sci. Front. 2014, 21, 356–371. [Google Scholar]
- Zhang, M.; Lin, W.; Liu, Z.; Liu, Z.; Hu, X.; Wang, G. Hydrogeochemical characteristics and genetic model of Gulu high-temperature geothermal system in Tibet. J. Chengdu Univ. Technol. (Sci. Technol. Ed.) 2014, 3, 382–392. [Google Scholar]
- Gan, H.; Lin, W.; Yan, X.; Yue, G.; Zhang, W.; Wang, G. Analysis of geothermal occurrence characteristics and origin of the thermal anomalies in the hidden igneous rock area in the central Guangdong. Acta Geol. Sin. 2020, 94, 2096–2106. [Google Scholar]
- Craig, H. Isotopic Variations in Meteoric Waters. Science 1961, 133, 1702–1703. [Google Scholar] [CrossRef]
- Chen, Y.; Du, W.; Chen, J.; Xu, L. Composition of hydrogen and oxygen isotopic of precipitation and source apportionment of water vapor in Xiamen Area. Acta Sci. Circumstantiae 2016, 36, 667–674, (In Chinese with English Abstract). [Google Scholar]
- Giggenbach, W.F. Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators. Geochim. Et Cosmochim. Acta 1988, 52, 2749–2765. [Google Scholar] [CrossRef]
- Fournier, R.O.; Truesdell, A.H. An empirical Na-K-Ca geothermometer for natural waters. Geochim. Et Cosmochim. Acta 1973, 37, 1255–1275. [Google Scholar] [CrossRef]
- Fournier, R.O. A revised equation for Na/K geothermometer. Trans.-Geotherm. Resour. Counc. 1979, 3, 221–224. [Google Scholar]
- Reed, M.; Spycher, N. Calculation of pH and mineral equilibria in hydrothermal waters with application to geothermometry and studies of boiling and dilution. Geochim. Et Cosmochim. Acta 1983, 48, 1479–1492. [Google Scholar] [CrossRef]
- Pang, Z.; Reed, M. Theoretical Chemical Thermometry on Geothermal Waters: Problems and Methods. Geochim. Et Cosmochim. Acta 1998, 62, 1083–1091. [Google Scholar] [CrossRef]
- Integrated Scientific Expedition to Qinghai-Tibet Plateau; Chinese Academy of Sciences. Geothermals Beneath Xizang (Tibetan) Plateau; Science Press: Beijing, China, 1981. (In Chinese) [Google Scholar]
- Hu, H.; Lu, G.; Lu, Q.; Li, Y.; Xie, L.; Lin, X.; Wu, M.; Mo, C.; Zhang, B. Hydrogeochemical characteristics and geothermometry of hot springs in the tensile tectonic region Leizhou peninsula and Hainan island in south China. Geofluids 2022, 2022, 1101015. [Google Scholar] [CrossRef]
ID | Types | T (°C) | K+ | Na+ | Ca2+ | Mg2+ | Cl− | SO42 | HCO3− | HSiO3− | δ2H | δ18O |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Huangkeng(HK) | H | 58.0 | 39.35 | 689.0 | 207.5 | 2.84 | 1216 | 178.2 | 139.0 | 151.30 | −42 | −6.6 |
Tangdou (TD) | H | 55.6 | 3.29 | 137.6 | 4.04 | 0.04 | 29.88 | 78.34 | 154.1 | 99.84 | −45 | −6.9 |
Xintang (XT) | H | 47.5 | 3.98 | 185.0 | 24.22 | 0.08 | 135.3 | 159.4 | 90.67 | 82.94 | −47 | −7.2 |
Tangkeng (TK) | H | 70.5 | 3.05 | 142.0 | 4.73 | 0.04 | 29.88 | 130.0 | 114.8 | 95.42 | −48 | −7.5 |
Xiazhuang (XZ) | H | 65.1 | 51.14 | 1737 | 1332 | 7.82 | 4868 | 241.9 | 30.22 | 98.28 | −38 | −5.9 |
Songling (SL) | H | 77.4 | 65.84 | 1746 | 1258 | 11.58 | 4745 | 267.1 | 48.35 | 133.30 | −39 | −5.9 |
Jingu (JG) | H | 64.5 | 75.06 | 2276 | 1846 | 9.48 | 6415 | 307.4 | 42.31 | 120.90 | −36 | −5.7 |
Tangtou (TT) | H | 62.7 | 36.45 | 1289 | 399.1 | 1.26 | 2566 | 71.57 | 33.24 | 105.82 | −40 | −5.8 |
Pangu (PG) | H | 36.5 | 1.69 | 91.57 | 7.22 | 0.13 | 12.30 | 67.68 | 126.9 | 67.73 | −46 | −6.6 |
Xuemei (XM) | H | 45.8 | 2.57 | 115.0 | 11.94 | <0.013 | 12.30 | 151.4 | 76.16 | 92.82 | −45 | −6.3 |
Tianli (TLH) | H | 50.5 | 45.82 | 1350 | 985.0 | 4.50 | 3691 | 213.3 | 72.53 | 115.10 | −49 | −6.7 |
Tangan (TA) | H | 74.4 | 44.06 | 945.6 | 537.4 | 2.19 | 2249 | 220.0 | 36.87 | 132.00 | −51 | −7.3 |
Baofen (BF) | H | 68.6 | 4.33 | 125.6 | 5.86 | 0.10 | 19.33 | 80.75 | 151.1 | 127.40 | −44 | −6.7 |
Dongshan (DS) | H | 71.0 | 204.3 | 4916.0 | 2943.0 | 56.60 | 12,214.0 | 347.0 | 48.35 | 118.30 | −26 | −4 |
Yuandanhu (YDH) | G | 41.0 | 79.50 | 4018.0 | 2882.0 | 163.6 | 10,720.0 | 662.1 | 47.75 | 86.58 | −30 | −4.5 |
Wuyuanwan (WYW) | G | 56.0 | 130.7 | 4572.0 | 2022.0 | 117.0 | 10,544.0 | 467.5 | 78.58 | 104.00 | −29 | −4.4 |
Xinlinwan (XLW) | G | 72.0 | 91.12 | 1607.0 | 1029.0 | 5.77 | 4306.0 | 147.9 | 105.8 | 142.50 | −30 | −4.4 |
Yuanshan (YS) | G | 73.0 | 89.94 | 1598.0 | 1024.0 | 5.64 | 4306.0 | 148.0 | 105.8 | 142.20 | −38 | −5.9 |
Qingquan forest (QQ) | C | 24.4 | 3.15 | 10.18 | 33.46 | 1.66 | 5.27 | 13.80 | 114.8 | 78.52 | −45 | −7 |
Shuangdi farm (SD) | C | 24.7 | 2.66 | 6.40 | 8.68 | 0.70 | 2.11 | 3.21 | 36.27 | 37.39 | −44 | −6.8 |
Taiwushan (TWS) | C | 23.7 | 1.94 | 20.38 | 6.13 | 1.27 | 13.36 | 3.67 | 51.38 | 78.65 | −44 | −6.7 |
Tianzhushan (TZS) | C | 19.7 | 2.14 | 2.38 | 1.56 | 0.23 | 3.51 | 2.63 | 12.09 | 19.50 | −46 | −6.5 |
Dacuoshan (DCS) | C | 24.3 | 3.49 | 65.55 | 95.98 | 20.28 | 65.38 | 135.2 | 229.7 | 48.88 | −38 | −5.9 |
Tatan (TT) | C | 20.1 | 1.16 | 9.41 | 4.34 | 0.81 | 1.76 | 2.09 | 36.27 | 59.28 | −48 | −7.5 |
Qianjin (QJ) | C | 23.4 | 3.74 | 4.70 | 4.71 | 0.89 | 1.76 | 2.58 | 12.09 | 36.87 | −46 | −7.3 |
Tianli (TLC) | C | 23.6 | 2.46 | 3.49 | 1.26 | 0.35 | 2.11 | 5.85 | 12.09 | 28.50 | −42 | −6.7 |
Tianbaobeishan (TB) | C | 24.3 | 1.79 | 7.67 | 11.45 | 3.34 | 5.98 | 3.62 | 48.35 | 39.26 | −41 | −6.6 |
Wutianshan (WTS) | C | 19.9 | 0.60 | 1.81 | 1.52 | 0.63 | 2.46 | 1.60 | 12.09 | 13.26 | −46 | −7.2 |
Zhangzhou (ZZ) | C | 25.6 | 8.76 | 21.38 | 17.24 | 5.14 | 33.39 | 6.43 | 36.27 | 50.23 | −41 | −6.5 |
Zhangshan (ZS) | C | 25.1 | 2.99 | 11.45 | 9.49 | 2.85 | 5.27 | 3.07 | 66.49 | 66.82 | −40 | −6.3 |
Dongsi(DS) | R | -- | 0.85 | 0.99 | 2.39 | 0.16 | 4.57 | 3.82 | 3.02 | 1.20 | −28 | −4.6 |
Sampling Location | Chalcedony—No Vapor Loss | Chalcedony—Maximum Vapor Loss | Quartz—No Vapor Loss | Quartz—Maximum Vapor Loss |
---|---|---|---|---|
Huangkeng | 123.8 | 119.4 | 149.1 | 142.7 |
Tangdou | 98.0 | 98.6 | 125.9 | 123.1 |
Xintang | 87.6 | 90.0 | 116.3 | 115.0 |
Tangkeng | 95.4 | 96.4 | 123.5 | 121.1 |
Xiazhuang | 97.1 | 97.8 | 125.0 | 122.4 |
Songling | 115.5 | 112.8 | 141.7 | 136.5 |
Jingu | 109.4 | 107.9 | 136.2 | 131.9 |
Tangtou | 101.4 | 101.3 | 129.0 | 125.8 |
Pangu | 76.8 | 81.0 | 106.4 | 106.5 |
Xuemei | 93.8 | 95.1 | 122.1 | 119.9 |
Tianli | 106.4 | 105.4 | 133.5 | 129.6 |
Tangan | 114.9 | 112.3 | 141.2 | 136.1 |
Baofen | 112.7 | 110.5 | 139.2 | 134.4 |
Yuandanhu | 89.9 | 91.9 | 118.5 | 116.9 |
Wuyuanwan | 100.4 | 100.5 | 128.0 | 125.0 |
Xinglingwan | 119.8 | 116.2 | 145.6 | 139.8 |
Dongshan | 108.1 | 106.8 | 135.0 | 130.9 |
Yuanshan | 119.7 | 116.1 | 145.5 | 139.7 |
Hot Springs | Geothermal Reservoir Temperature (°C) | The Proportion of Cold Water | Hot Springs | Geothermal Reservoir Temperature (°C) | The Proportion of Cold Water |
---|---|---|---|---|---|
Huangkeng | 325 °C | 0.87 | Xuemei | 226 °C | 0.88 |
Tangdou | 205 °C | 0.81 | Tianli | 260 °C | 0.88 |
Xintang | 199 °C | 0.85 | Tangan | 210 °C | 0.71 |
Tangkeng | 166 °C | 0.66 | Baofen | 219 °C | 0.76 |
Xiazhuang | 176 °C | 0.72 | Yuandanhu | 179 °C | 0.88 |
Songling | 205 °C | 0.69 | Wuyuanwan | 173 °C | 0.77 |
Jingu | 220 °C | 0.78 | Xinglinwan | 196 °C | 0.71 |
Tangtou | 199 °C | 0.77 | Dongshan | 198 °C | 0.72 |
Pangu | 193 °C | 0.91 | Yuanshan | 228 °C | 0.75 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, W.; Yin, X. Temperature Estimation of a Deep Geothermal Reservoir Based on Multiple Methods: A Case Study in Southeastern China. Water 2022, 14, 3205. https://doi.org/10.3390/w14203205
Lin W, Yin X. Temperature Estimation of a Deep Geothermal Reservoir Based on Multiple Methods: A Case Study in Southeastern China. Water. 2022; 14(20):3205. https://doi.org/10.3390/w14203205
Chicago/Turabian StyleLin, Wenjing, and Xiaoxiao Yin. 2022. "Temperature Estimation of a Deep Geothermal Reservoir Based on Multiple Methods: A Case Study in Southeastern China" Water 14, no. 20: 3205. https://doi.org/10.3390/w14203205
APA StyleLin, W., & Yin, X. (2022). Temperature Estimation of a Deep Geothermal Reservoir Based on Multiple Methods: A Case Study in Southeastern China. Water, 14(20), 3205. https://doi.org/10.3390/w14203205