Biochar Effects Coastal Saline Soil and Improves Crop Yields in a Maize-Barley Rotation System in the Tidal Flat Reclamation Zone, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Biochar
2.3. Experimental Design
2.4. Soil Sampling and Analysis
2.5. Statistical Analysis
3. Results
3.1. Soil Physical Properties
3.1.1. Soil Bulk Density
3.1.2. Soil Water Holding Capacity
3.2. Water Stable Aggregate Content
3.3. Soil Salinity
3.4. SOC and Crop Yield
4. Discussion
4.1. Effects of Biochar on Improvement of Soil Physical Properties
4.2. Effects of Biochar on Soil Salinity
4.3. Effects of Biochar on Carbon Sequestration and Yield
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mario Martín-Antón, V.N.; del Campo, J.M.; López-Gutiérrez, J.S.; Esteban, M.D. Review of coastal Land Reclamation situation in the World. J. Coast. Res. 2016, 75, 667–671. [Google Scholar] [CrossRef]
- Li, X.; Kang, Y.; Wan, S.; Chen, X.; Liu, S.; Xu, J. Effect of ridge planting on reclamation of coastal saline soil using drip-irrigation with saline water. Catena 2017, 150, 24–31. [Google Scholar] [CrossRef]
- Qin, Y.; Druzhinina, I.S.; Pan, X.; Yuan, Z. Microbially Mediated Plant Salt Tolerance and Microbiome-based Solutions for Saline Agriculture. Biotechnol. Adv. 2016, 34, 1245–1259. [Google Scholar] [CrossRef] [PubMed]
- Munns, R. Comparative physiology of salt and water stress. Plant Cell Environ. 2002, 25, 239–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Min, W.; Guo, H.J.; Zhou, G.W.; Zhang, W.; Ma, L.J.; Ye, J.; Hou, Z.N.; Wu, L.S. Soil salinity, leaching, and cotton growth as affected by saline water drip irrigation and N fertigation. Acta Agric. Scand. Sect. B Soil Plant Sci. 2016, 66, 489–501. [Google Scholar] [CrossRef]
- Tao, J.; Wu, L.H.; Liu, X.J.; Zhang, H.; Xu, Y.J.; Gu, W.; Li, Y. Effect of Brackish Ice on Salt and Nutrient Contents of Saline Soil in Flue-Gas Desulfurization Gypsum Amended, Raised Bed Agroecosystem. Soil Sci. Soc. Am. J. 2014, 78, 1734–1740. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Nahar, K.; Alam, M.M.; Bhowmik, P.C.; Hossain, M.A.; Rahman, M.M.; Prasad, M.N.V.; Ozturk, M.; Fujita, M. Potential Use of Halophytes to Remediate Saline Soils. Biomed. Res. Int. 2014, 2014, 589341. [Google Scholar] [CrossRef] [PubMed]
- Cui, Q.; Xia, J.B.; Yang, H.J.; Liu, J.T.; Shao, P.S. Biochar and effective microorganisms promote Sesbania cannabina growth and soil quality in the coastal saline-alkali soil of the Yellow River Delta, China. Sci Total Environ 2021, 756, 143801. [Google Scholar] [CrossRef]
- Munns, R.; James, R.A.; Xu, B.; Athman, A.; Conn, S.J.; Jordans, C.; Byrt, C.S.; Hare, R.A.; Tyerman, S.D.; Tester, M.; et al. Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nat. Biotechnol. 2012, 30, 360–364. [Google Scholar] [CrossRef]
- Ahmad, S.; Ghafoor, A.; Akhtar, M.E.; Khan, M.Z. Ionic Displacement and Reclamation of Saline-Sodic Soils Using Chemical Amendments and Crop Rotation. Land Degrad. Dev. 2013, 24, 170–178. [Google Scholar] [CrossRef]
- Shen, X.; Liu, X. Multiple Cropping System; China Agriculture Press: Beijing, China, 1983; pp. 2–3. [Google Scholar]
- Shrestha, B.M.; Singh, B.R.; Forte, C.; Certini, G. Long-term effects of tillage, nutrient application and crop rotation on soil organic matter quality assessed by NMR spectroscopy. Soil Use Manag. 2015, 31, 358–366. [Google Scholar] [CrossRef]
- Venter, Z.S.; Jacobs, K.; Hawkins, H.J. The impact of crop rotation on soil microbial diversity: A meta-analysis. Pedobiologia 2016, 59, 215–223. [Google Scholar] [CrossRef]
- Lopez-Bellido, R.J.; Munoz-Romero, V.; Lopez-Bellido, F.J.; Guzman, C.; Lopez-Bellido, L. Crack formation in a mediterranean rainfed Vertisol: Effects of tillage and crop rotation. Geoderma 2016, 281, 127–132. [Google Scholar] [CrossRef]
- Kaur, R.; Malik, R.; Paul, M. Long-term effects of various crop rotations for managing salt-affected soils through a field scale decision support system—A case study. Soil Use Manag. 2007, 23, 52–62. [Google Scholar] [CrossRef]
- Lehmann, J.; Gaunt, J.; Rondon, M. Bio-char Sequestration in Terrestrial Ecosystems—A Review. Mitig. Adapt. Strateg. Glob. Change 2006, 11, 395–419. [Google Scholar] [CrossRef]
- Thomas, S.C.; Frye, S.; Gale, N.; Garmon, M.; Launchbury, R.; Machado, N.; Melamed, S.; Murray, J.; Petroff, A.; Winsborough, C. Biochar mitigates negative effects of salt additions on two herbaceous plant species. J. Environ. Manag. 2013, 129, 62–68. [Google Scholar] [CrossRef]
- Suliman, W.; Harsh, J.B.; Abu-Lail, N.I.; Fortuna, A.-M.; Dallmeyer, I.; Garcia-Pérez, M. The role of biochar porosity and surface functionality in augmenting hydrologic properties of a sandy soil. Sci. Total Environ. 2017, 574, 139–147. [Google Scholar] [CrossRef]
- Githinji, L. Effect of biochar application rate on soil physical and hydraulic properties of a sandy loam. Arch. Agron. Soil Sci. 2014, 60, 457–470. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, S.; Ghafoor, A.; Akhtar, M.E.; Khan, M.Z. Implication of Gypsum Rates to Optimize Hydraulic Conductivity for Variable-Texture Saline-Sodic Soils Reclamation. Land Degrad. Dev. 2016, 27, 550–560. [Google Scholar] [CrossRef]
- Bakry, B.A.; Taha, M.H.; Abdelgawad, Z.A.; Abdallah, M.M.S. The Role of Humic Acid and Proline on Growth, Chemical Constituents and Yield Quantity and Quality of Three Flax Cultivars Grown under Saline Soil Conditions. Agric. Sci. 2014, 5, 1566–1574. [Google Scholar] [CrossRef]
- Walker, D.J.; Bernal, M.P. The effects of olive mill waste compost and poultry manure on the availability and plant uptake of nutrients in a highly saline soil. Bioresour. Technol. 2008, 99, 396–403. [Google Scholar] [CrossRef] [PubMed]
- Bradshaw, A.D.; Chadwick, M.J. The Restoration of Land; Blackwell Sciences: Oxford, UK, 1980; ISBN 10: 0632091800. [Google Scholar]
- Pan, G.; Lin, Z.; Li, L.; Zhang, A.; Zheng, J.; Zhang, X. Perspective on biomass carbon industrialization of organic waste from agriculture and rural areas in China. J. Agric. Sci. Technol. 2011, 13, 75–82. [Google Scholar] [CrossRef]
- Zhang, A.F.; Liu, Y.M.; Pan, G.X.; Hussain, Q.; Li, L.Q.; Zheng, J.W.; Zhang, X.H. Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from Central China Plain. Plant Soil 2012, 351, 263–275. [Google Scholar] [CrossRef]
- Qin, X.B.; Li, Y.E.; Wang, H.; Liu, C.; Li, J.L.; Wan, Y.F.; Gao, Q.Z.; Fan, F.L.; Liao, Y.L. Long-term effect of biochar application on yield-scaled greenhouse gas emissions in a rice paddy cropping system: A four-year case study in south China. Sci. Total Environ. 2016, 569, 1390–1401. [Google Scholar] [CrossRef]
- Hou, X.; Yang, J.; Wang, X.; Jin, W.; Yao, R.; Yu, S. Effects of fertilization on soil organic carbon and distribution of soc in aggregates in tidal flat polders. Acta Pedapologica Sin. 2015, 52, 818–827. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, J.; Yao, R.; Yu, S.; Li, F.; Hou, X.; Jin, W.; Wang, X. Dynamics of soil water, salt and crop growth under farmyard manure and mulching in coastal tidal flat soil of northern Jiangsu Province. Trans. Chin. Soc. Agric. Eng. 2013, 29, 116–125. [Google Scholar] [CrossRef]
- Sparks, D.L.; Soil Science Society of America; American Society of Agronomy. Methods of Soil Analysis. Part 3, Chemical Methods; American Society of Agronomy: Madison, WI, USA, 1996; p. 1390. [Google Scholar] [CrossRef] [Green Version]
- Oliver, D.P.; Bramley, R.G.V.; Riches, D.; Porter, I.; Edwards, J. Review: Soil physical and chemical properties as indicators of soil quality in Australian viticulture. Aust. J. Grape Wine Res. 2013, 19, 129–139. [Google Scholar] [CrossRef]
- Drake, J.A.; Cavagnaro, T.R.; Cunningham, S.C.; Jackson, W.R.; Patti, A.F. Does Biochar Improve Establishment of Tree Seedlings in Saline Sodic Soils? Land Degrad. Dev. 2016, 27, 52–59. [Google Scholar] [CrossRef]
- Sun, H.J.; Lu, H.Y.; Chu, L.; Shao, H.B.; Shi, W.M. Biochar applied with appropriate rates can reduce N leaching, keep N retention and not increase NH3 volatilization in a coastal saline soil. Sci. Total Environ. 2017, 575, 820–825. [Google Scholar] [CrossRef]
- Sequeira, C.H.; Wills, S.A.; Seybold, C.A.; West, L.T. Predicting soil bulk density for incomplete databases. Geoderma 2014, 213, 64–73. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, C.J.; Fitzgerald, J.D.; Hipps, N.A. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: A review. Plant Soil 2010, 337, 0464-5. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, B.J.; Zhang, Y.H.; Lin, Z.B.; Zhu, T.B.; Sun, R.B.; Wang, X.J.; Ma, J.; Bei, Q.C.; Liu, G.; et al. Can biochar alleviate soil compaction stress on wheat growth and mitigate soil N2O emissions? Soil Biol. Biochem. 2017, 104, 8–17. [Google Scholar] [CrossRef]
- Ajayi, A.E.; Horn, R. Modification of chemical and hydrophysical properties of two texturally differentiated soils due to varying magnitudes of added biochar. Soil Tillage Res. 2016, 164, 34–44. [Google Scholar] [CrossRef]
- Yu, H.L.; Yang, P.L.; Lin, H.; Ren, S.M.; He, X. Effects of Sodic Soil Reclamation using Flue Gas Desulphurization Gypsum on Soil Pore Characteristics, Bulk Density, and Saturated Hydraulic Conductivity. Soil Sci. Soc. Am. J. 2014, 78, 1201–1213. [Google Scholar] [CrossRef]
- Fungo, B.; Lehmann, J.; Kalbitz, K.; Thiongo, M.; Okeyo, I.; Tenywa, M.; Neufeldt, H. Aggregate size distribution in a biochar-amended tropical Ultisol under conventional hand-hoe tillage. Soil Tillage Res. 2017, 165, 190–197. [Google Scholar] [CrossRef] [Green Version]
- Peng, X.; Zhu, Q.H.; Xie, Z.B.; Darboux, F.; Holden, N.M. The impact of manure, straw and biochar amendments on aggregation and erosion in a hillslope Ultisol. Catena 2016, 138, 30–37. [Google Scholar] [CrossRef]
- Kim, H.S.; Kim, K.R.; Yang, J.E.; Ok, Y.S.; Owens, G.; Nehls, T.; Wessolek, G.; Kim, K.H. Effect of biochar on reclaimed tidal land soil properties and maize (Zea mays L.) response. Chemosphere 2016, 142, 153–159. [Google Scholar] [CrossRef]
- Bronick, C.J.; Lal, R. Soil structure and management: A review. Geoderma 2005, 124, 3–22. [Google Scholar] [CrossRef]
- Liu, Z.X.; Chen, X.M.; Jing, Y.; Li, Q.X.; Zhang, J.B.; Huang, Q.R. Effects of biochar amendment on rapeseed and sweet potato yields and water stable aggregate in upland red soil. Catena 2014, 123, 45–51. [Google Scholar] [CrossRef]
- Dong, X.L.; Guan, T.Y.; Li, G.T.; Lin, Q.M.; Zhao, X.R. Long-term effects of biochar amount on the content and composition of organic matter in soil aggregates under field conditions. J. Soils Sediments 2016, 16, 1481–1497. [Google Scholar] [CrossRef]
- Zhang, Q.Z.; Du, Z.L.; Lou, Y.L.; He, X.H. A one-year short-term biochar application improved carbon accumulation in large macroaggregate fractions. Catena 2015, 127, 26–31. [Google Scholar] [CrossRef]
- Wong, J.T.F.; Chen, Z.; Chen, X.; Ng, C.W.W.; Wong, M.H. Soil-water retention behavior of compacted biochar-amended clay: A novel landfill final cover material. J. Soils Sediments 2016, 17, 590–598. [Google Scholar] [CrossRef]
- Sohi, S.; Loez-Capel, E.; Krull, E.; Bol, R. Biochar’s Roles in Soil and Climate Change: A Review of Research Needs; CSIRO: Canberra, Australia, 2009; pp. 117–121. ISSN 1834-6618.
- Ma, N.N.; Zhang, L.L.; Zhang, Y.L.; Yang, L.J.; Yu, C.X.; Yin, G.H.; Doane, T.A.; Wu, Z.J.; Zhu, P.; Ma, X.Z. Biochar Improves Soil Aggregate Stability and Water Availability in a Mollisol after Three Years of Field Application. PLoS ONE 2016, 11, 0154091. [Google Scholar] [CrossRef] [Green Version]
- Obia, A.; Mulder, J.; Martinsen, V.; Cornelissen, G.; Borresen, T. In situ effects of biochar on aggregation, water retention and porosity in light-textured tropical soils. Soil Tillage Res. 2016, 155, 35–44. [Google Scholar] [CrossRef]
- Sun, F.F.; Lu, S.G. Biochars improve aggregate stability, water retention, and pore- space properties of clayey soil. J. Plant Nutr. Soil Sci. 2014, 177, 26–33. [Google Scholar] [CrossRef]
- Shang, J.; Geng, Z.; Zhao, J.; Geng, R.; Zhao, Y. Effects of biochar on water thermal properties and aggregate stability of Lou soil. Chin. J. Appl. Ecol. 2015, 26, 1969–1976. [Google Scholar] [PubMed]
- Wang, Z.; Zhu, S.; Yu, R. China Saline Soils; Science Press: Beijing, China, 1993; ISBN 7030037944. [Google Scholar]
- Wang, L.; Butterly, C.R.; Wang, Y.; Herath, H.M.S.K.; Xi, Y.G.; Xiao, X.J. Effect of crop residue biochar on soil acidity amelioration in strongly acidic tea garden soils. Soil Use Manag. 2014, 30, 119–128. [Google Scholar] [CrossRef]
- Akhtar, S.S.; Andersen, M.N.; Liu, F. Biochar Mitigates Salinity Stress in Potato. J. Agron. Crop Sci. 2015, 201, 368–378. [Google Scholar] [CrossRef]
- Lehmann, J. A handful of carbon. Nature 2007, 447, 143–144. [Google Scholar] [CrossRef]
- Major, J.; Rondon, M.; Molina, D.; Riha, S.J.; Lehmann, J. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant Soil 2010, 333, 117–128. [Google Scholar] [CrossRef]
- Rutigliano, F.A.; Romano, M.; Marzaioli, R.; Baglivo, I.; Baronti, S.; Miglietta, F.; Castaldi, S. Effect of biochar addition on soil microbial community in a wheat crop. Eur. J. Soil Biol. 2014, 60, 9–15. [Google Scholar] [CrossRef]
- Brennan, A.; Jimenez, E.M.; Puschenreiter, M.; Alburquerque, J.A.; Switzer, C. Effects of biochar amendment on root traits and contaminant availability of maize plants in a copper and arsenic impacted soil. Plant Soil 2014, 379, 351–360. [Google Scholar] [CrossRef] [Green Version]
- Hardie, M.; Clothier, B.; Bound, S.; Oliver, G.; Close, D. Does biochar influence soil physical properties and soil water availability? Plant Soil 2014, 376, 347–361. [Google Scholar] [CrossRef]
- Huang, M.; Yang, L.; Qin, H.D.; Jiang, L.G.; Zou, Y.B. Fertilizer nitrogen uptake by rice increased by biochar application. Biol. Fertil. Soils 2014, 50, 997–1000. [Google Scholar] [CrossRef]
- Lin, X.W.; Xie, Z.B.; Zheng, J.Y.; Liu, Q.; Bei, Q.C.; Zhu, J.G. Effects of biochar application on greenhouse gas emissions, carbon sequestration and crop growth in coastal saline soil. Eur. J. Soil Sci. 2015, 66, 329–338. [Google Scholar] [CrossRef]
- Lehmann, J.; Rillig, M.C.; Thies, J.; Masiello, C.A.; Hockaday, W.C.; Crowley, D. Biochar effects on soil biota—A review. Soil Biol. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- Lehmann, J.; da Silva, J.P.; Steiner, C.; Nehls, T.; Zech, W.; Glaser, B. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: Fertilizer, manure and charcoal amendments. Plant Soil 2003, 249, 343–357. [Google Scholar] [CrossRef]
- Nelissen, V.; Saha, B.K.; Ruysschaert, G.; Boeckx, P. Effect of different biochar and fertilizer types on N2O and NO emissions. Soil Biol. Biochem. 2014, 70, 244–255. [Google Scholar] [CrossRef]
- Oppenheimer, M.; Alley, R.B. How high will the seas rise? Science 2016, 354, 1375–1377. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, J.W.; Xu, H.J.; Zhou, C.J.; Wang, S.Q.; Xing, G.X. Effects of crop-straw biochar on crop growth and soil fertility over a wheat-millet rotation in soils of China. Soil Use Manag. 2014, 30, 311–319. [Google Scholar] [CrossRef]
- Zhang, A.F.; Bian, R.J.; Pan, G.X.; Cui, L.Q.; Hussain, Q.; Li, L.Q.; Zheng, J.W.; Zheng, J.F.; Zhang, X.H.; Han, X.J.; et al. Effects of biochar amendment on soil quality, crop yield and greenhouse gas emission in a Chinese rice paddy: A field study of 2 consecutive rice growing cycles. Field Crops Res. 2012, 127, 153–160. [Google Scholar] [CrossRef]
- Vaccari, F.P.; Baronti, S.; Lugato, E.; Genesio, L.; Castaldi, S.; Fornasier, F.; Miglietta, F. Biochar as a strategy to sequester carbon and increase yield in durum wheat. Eur. J. Agron. 2011, 34, 231–238. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, X.Y.; Tian, Y.; Gong, X.Q. Biochar and humic acid amendments improve the quality of composted green waste as a growth medium for the ornamental plant Calathea insignis. Sci. Hortic. 2014, 176, 70–78. [Google Scholar] [CrossRef]
- Wang, C.; Tu, Q.P.; Dong, D.; Strong, P.J.; Wang, H.L.; Sun, B.; Wu, W.X. Spectroscopic evidence for biochar amendment promoting humic acid synthesis and intensifying humification during composting. J. Hazard. Mater. 2014, 280, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Nelissen, V.; Ruysschaert, G.; Manka’Abusi, D.; D’Hose, T.; De Beuf, K.; Al-Barri, B.; Cornelis, W.; Boeckx, P. Impact of a woody biochar on properties of a sandy loam soil and spring barley during a two-year field experiment. Eur. J. Agron. 2015, 62, 65–78. [Google Scholar] [CrossRef]
Sample | pHH2O | CEC | BD | SOC | TOC | Total N | Salt | Sand | Clay | Silt |
---|---|---|---|---|---|---|---|---|---|---|
cmol kg−1 | g cm−3 | g kg−1 | g kg−1 | g kg−1 | g kg−1 | |||||
Topsoil | 9.2 | 2.4 | 1.41 | 2.4 | 0.3 | 2.3 | 191 | 124 | 685 | |
Biochar | 10.4 | 21.8 | 0.65 | 467 | 5.9 | 42.0 | ND | ND | ND |
Maize | Barley | |||||
---|---|---|---|---|---|---|
Biochar Rate | WC | SWC | FC | WC | SWC | FC |
Mg ha−1 | g 100 g−1 | g 100 g−1 | g 100 g−1 | g 100 g−1 | g 100 g−1 | g 100 g−1 |
0 | 29.1 ± 1.3 b | 33.7 ± 1.8 a | 32.4 ± 1.3 b | 21.1 ± 0.7 b | 25.2 ± 0.4 a | 23.7 ± 0.6 b |
7.5 | 29.6 ± 1.4 ab | 35.5 ± 1.1 a | 33.7 ± 0.5 b | 22.4 ± 2.4 ab | 26.9 ± 3.5 a | 25.1 ± 3.2 ab |
15 | 29.3 ± 1.1 ab | 37.0 ± 3.8 a | 34.6 ± 2.6 ab | 23.2 ± 0.5 ab | 26.7 ± 0.2 a | 25.1 ± 0.5 ab |
30 | 31.0 ± 1.3 a | 37.5 ± 5.9 a | 36.4 ± 2.1 a | 24.7 ± 0.7 a | 29.1 ± 1.5 a | 26.7 ± 0.2 a |
Property | Biochar | 10 June 2015 Seeding Stage | 2 July 2015 Seedling Stage | 28 July 2015 Elongation Stage | 30 September 2015 Mature Stage | 25 April 2016 Harvest Stage | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Rate Mg ha−1 | 0~20 cm | 20~40 cm | 0~20 cm | 20~40 cm | 0~20 cm | 20~40 cm | 0~20 cm | 20~40 cm | 0~20 cm | 20~40 cm | |
EC dS m−1 | 0 | 0.43 ± 0.18 a | 0.64 ± 0.27 a | 0.30 ± 0.11 a | 0.55 ± 0.28 a | 0.49 ± 0.19 a | 0.56 ± 0.25 a | 0.68 ± 0.27 a | 0.52 ± 0.32 c | 0.25 ± 0.06 a | 0.48 ± 0.26 a |
7.5 | 0.51 ± 0.34 a | 0.79 ± 0.29 a | 0.36 ± 0.12 a | 0.48 ± 0.17 a | 0.47 ± 0.21 a | 0.69 ± 0.33 a | 0.79 ± 0.30 a | 0.66 ± 0.34 a | 0.30 ± 0.14 a | 0.51 ± 0.22 a | |
15 | 0.50 ± 0.54 a | 0.78 ± 0.20 a | 0.34 ± 0.18 a | 0.49 ± 0.15 a | 0.51 ± 0.34 a | 0.37 ± 0.13 a | 0.73 ± 0.30 a | 0.75 ± 0.20 a | 0.32 ± 0.07 a | 0.60 ± 0.11 a | |
30 | 0.47 ± 0.14 a | 0.83 ± 0.19 a | 0.39 ± 0.25 a | 0.53 ± 0.23 a | 0.58 ± 0.25 a | 0.50 ± 0.08 a | 0.82 ± 0.24 a | 0.62 ± 0.20 a | 0.33 ± 0.03 a | 0.54 ± 0.11 a | |
pH | 0 | 9.8 ± 0.3 a | 9.3 ± 0.1 a | 9.3 ± 0.1 a | 9.2 ± 0.2 a | 9.1 ± 0.3 a | 9.0 ± 0.1 b | 8.9 ± 0.1 a | 9.1 ± 0.1 a | 9.2 ± 0.1 a | 9.3 ± 0.1 a |
7.5 | 9.5 ± 0.7 a | 9.5 ± 0.5 a | 9.1 ± 0.3 a | 9.4 ± 0.4 a | 9.2 ± 0.2 a | 9.3 ± 0.4 ab | 9.1 ± 0.6 a | 9.4 ± 0.5 a | 9.2 ± 0.3 a | 9.4 ± 0.3 a | |
15 | 9.7 ± 0.4 a | 9.2 ± 0.3 a | 9.2 ± 0.2 a | 9.2 ± 0.1 a | 9.1 ± 0.1 a | 9.0 ± 0.0 ab | 8.9 ± 0.1 a | 9.2 ± 0.1 a | 9.0 ± 0.1 a | 9.2 ± 0.1 a | |
30 | 9.7 ± 0.5 a | 9.4 ± 0.6 a | 9.5 ± 0.4 a | 9.4 ± 0.2 a | 9.3 ± 0.3 a | 9.4 ± 0.4 a | 9.4 ± 0.4 a | 9.4 ± 0.4 a | 9.1 ± 0.3 a | 9.4 ± 0.3 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Chen, X.; Yang, J.; Luo, Y.; Yao, R.; Wang, X.; Xie, W.; Zhang, X. Biochar Effects Coastal Saline Soil and Improves Crop Yields in a Maize-Barley Rotation System in the Tidal Flat Reclamation Zone, China. Water 2022, 14, 3204. https://doi.org/10.3390/w14203204
Sun Y, Chen X, Yang J, Luo Y, Yao R, Wang X, Xie W, Zhang X. Biochar Effects Coastal Saline Soil and Improves Crop Yields in a Maize-Barley Rotation System in the Tidal Flat Reclamation Zone, China. Water. 2022; 14(20):3204. https://doi.org/10.3390/w14203204
Chicago/Turabian StyleSun, Yunpeng, Xiaobing Chen, Jingsong Yang, Yongming Luo, Rongjiang Yao, Xiangping Wang, Wenping Xie, and Xin Zhang. 2022. "Biochar Effects Coastal Saline Soil and Improves Crop Yields in a Maize-Barley Rotation System in the Tidal Flat Reclamation Zone, China" Water 14, no. 20: 3204. https://doi.org/10.3390/w14203204